diff --git a/config/scenario_config.csv b/config/scenario_config.csv index 30de5795b..6d2efbf88 100644 --- a/config/scenario_config.csv +++ b/config/scenario_config.csv @@ -16,11 +16,11 @@ SSP2-EU21-PkBudg500;1,AMT,2;;;./config/regionmapping_21_EU11.csv;./config/extram SSP2-EU21-PkBudg650;1,AMT,2;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffLin2Lin;75;2055;9;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4ICEban;2030;;SSP2-EU21-NPi;;SSP2-EU21-NPi;SSP2-EU21-PkBudg650: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. SSP2-EU21-PkBudg1000;1,AMT,2;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;9;globallyOptimal;1000;diffLin2Lin;45;2080;9;;;;;;;;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix3ICEban;2030;;SSP2-EU21-NPi;;SSP2-EU21-NPi;SSP2-EU21-PkBudg1050: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. # H12 SSP3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP3-NPi-calibrate;calibrate;calibrate;14;;;rcp45;;;0;NPi;;;9;;;;;;;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;highOil;highGas;highCoal;3;6;4;3;SSP3;;;forcing_SSP3;SSP3;Mix1;2005;;;;;SSP3-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 3 called High. -SSP3-NDC;0;;;;;rcp45;3;globallyOptimal;0;NDC;;;9;;;;;;;2;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;highOil;highGas;highCoal;3;6;4;3;SSP3;;;forcing_SSP3;SSP3;Mix2;2030;;SSP2-NPi;SSP3-NPi;SSP3-NPi;SSP3-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 3 called High. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP3-NPi;0;;;;;rcp45;3;;0;NPi;;;9;;;;;;;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;highOil;highGas;highCoal;3;6;4;3;SSP3;;;forcing_SSP3;SSP3;Mix1;2005;;;;;SSP3-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 3 called High. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP3-PkBudg650;0;;;;;rcp20;9;globallyOptimal;650;diffLin2Lin;75;2055;9;;;;;;;2;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;highOil;highGas;highCoal;3;6;4;;SSP3;;;forcing_SSP3;SSP3;Mix4ICEban;2030;;SSP2-NPi;;;SSP3-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 3 called High. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP3-PkBudg1000;0;;;;;rcp26;9;globallyOptimal;1000;diffLin2Lin;45;2080;9;;;;;;;2;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;highOil;highGas;highCoal;3;6;4;;SSP3;;;forcing_SSP3;SSP3;Mix3ICEban;2030;;SSP2-NPi;;;SSP3-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 3 called High. The stylized climate policy scenario assumes a peak budget of 1150 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. +SSP3-NPi-calibrate;calibrate;calibrate;14;;;rcp45;;;0;NPi;;;9;;;;;;;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;;;highCoal;3;6;4;3;SSP3;;;forcing_SSP3;SSP3;Mix1;2005;;;;;SSP3-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 3 called High. +SSP3-NDC;0;;;;;rcp45;3;globallyOptimal;0;NDC;;;9;;;;;;;2;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;;;highCoal;3;6;4;3;SSP3;;;forcing_SSP3;SSP3;Mix2;2030;;SSP2-NPi;SSP3-NPi;SSP3-NPi;SSP3-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 3 called High. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP3-NPi;0;;;;;rcp45;3;;0;NPi;;;9;;;;;;;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;;;highCoal;3;6;4;3;SSP3;;;forcing_SSP3;SSP3;Mix1;2005;;;;;SSP3-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 3 called High. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP3-PkBudg650;0;;;;;rcp20;9;globallyOptimal;650;diffLin2Lin;75;2055;9;;;;;;;2;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;;;highCoal;3;6;4;;SSP3;;;forcing_SSP3;SSP3;Mix4ICEban;2030;;SSP2-NPi;;;SSP3-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 3 called High. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP3-PkBudg1000;0;;;;;rcp26;9;globallyOptimal;1000;diffLin2Lin;45;2080;9;;;;;;;2;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP3;gdp_SSP3;gdp_SSP3;;;highCoal;3;6;4;;SSP3;;;forcing_SSP3;SSP3;Mix3ICEban;2030;;SSP2-NPi;;;SSP3-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 3 called High. The stylized climate policy scenario assumes a peak budget of 1150 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. # H12 SSP1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; SSP1-NPi-calibrate;calibrate;calibrate;14;;;rcp45;;;0;NPi;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix1;2005;;;;;SSP1-calibration: This baseline calibration scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. SSP1-NDC;1,AMT,compileInTests;;;;;rcp45;3;globallyOptimal;0;NDC;;;9;GLO 0.12, EUR_regi 0.16;;2;1.025;1.75;2;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix2;2030;;SSP2-NPi;SSP1-NPi;SSP1-NPi;SSP1-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. diff --git a/core/bounds.gms b/core/bounds.gms index 165215412..6394c539c 100755 --- a/core/bounds.gms +++ b/core/bounds.gms @@ -350,10 +350,10 @@ loop((ext_regi,te)$p_techEarlyRetiRate(ext_regi,te), ); $endif.tech_earlyreti -***restrict early retirement to the modeling time frame (to reduce runtime, the early retirement equations are phased out after 2110) +*** restrict early retirement to the modeling time frame (to reduce runtime, the early retirement equations are phased out after 2110) vm_capEarlyReti.up(ttot,regi,te)$(ttot.val lt 2009 or ttot.val gt 2111) = 0; -* lower bound of 0.01% to help the model to be aware of the early retirement option +*** lower bound of 0.01% to help the model to be aware of the early retirement option vm_capEarlyReti.lo(t,regi,te)$((vm_capEarlyReti.up(t,regi,te) ge 1) and (t.val gt 2010) and (t.val le 2100)) = 1e-4; *cb 20120301 no early retirement for dot, they are used despite their economic non-competitiveness for various reasons. @@ -368,16 +368,13 @@ vm_deltaCap.up(t,regi,"dot","1")$( (t.val gt 2005) AND regi_group("EUR_regi",reg *' DK 20100929: default value (pm_ccsinjecrate= 0.5%) is consistent with Interview Gerling (BGR) *' (http://www.iz-klima.de/aktuelles/archiv/news-2010/mai/news-05052010-2/): *' 12 Gt storage potential in Germany, 50-75 Mt/a injection => 60 Mt/a => 60/12000=0.005 -*LP* if c_ccsinjecratescen=0 --> no CCS at all and vm_co2CCS is fixed to 0 before, therefore the upper bound is only set if there should be CCS! +*** if c_ccsinjecratescen=0 --> no CCS at all and vm_co2CCS is fixed to 0 before, therefore the upper bound is only set if there should be CCS! *** ----------------------------------------------------------------------------- if ( c_ccsinjecratescen gt 0, - - loop(regi, -***vm_co2CCS.up(t,regi,"tco2","ico2","ccsinje","1") = pm_dataccs(regi,"quan","1")*pm_ccsinjecrate(regi) - vm_co2CCS.up(t,regi,"cco2","ico2","ccsinje","1") = pm_dataccs(regi,"quan","1") * pm_ccsinjecrate(regi); - ); - + loop(regi, + vm_co2CCS.up(t,regi,"cco2","ico2","ccsinje","1") = pm_dataccs(regi,"quan","1") * pm_ccsinjecrate(regi); + ); ); *' @stop @@ -392,16 +389,15 @@ if(cm_emiscen gt 1, ); $endif - *** ------------------------------------------------------------------------------------------------------------- -*AM* Lower limit for 2020-2030 is capacities of all projects that are operational (2020-2030) from project data base -*AM* Upper limit for 2025 and 2030 additionally includes all projects under construction and 30% -*AM* (default, or changed by c_fracRealfromAnnouncedCCScap2030) of announced/planned projects from project data base -*AM* See also corresponding code in input validation data preparation in mrremind/R/calcProjectPipeline.R. -*AM* In nash-mode regions cannot easily share ressources, therefore CCS potentials are redistributed in Europe in data preprocessing in mrremind: -*AM* Potential of EU27 regions is pooled and redistributed according to GDP (Only upper limit for 2030) -*AM* Norway and UK announced to store CO2 for EU27 countries. So 50% of Norway and UK potential in 2030 is attributed to EU27-Pool -*LP* if c_ccsinjecratescen=0 --> no CCS at all and vm_co2CCS is fixed to 0 before, therefore the upper bound is only set if there should be CCS! +*** Lower limit for 2020-2030 is capacities of all projects that are operational (2020-2030) from project data base +*** Upper limit for 2025 and 2030 additionally includes all projects under construction and 30% +*** (default, or changed by c_fracRealfromAnnouncedCCScap2030) of announced/planned projects from project data base +*** See also corresponding code in input validation data preparation in mrremind/R/calcProjectPipeline.R. +*** In nash-mode regions cannot easily share ressources, therefore CCS potentials are redistributed in Europe in data preprocessing in mrremind: +*** Potential of EU27 regions is pooled and redistributed according to GDP (Only upper limit for 2030) +*** Norway and UK announced to store CO2 for EU27 countries. So 50% of Norway and UK potential in 2030 is attributed to EU27-Pool +*** if c_ccsinjecratescen=0 --> no CCS at all and vm_co2CCS is fixed to 0 before, therefore the upper bound is only set if there should be CCS! *** ------------------------------------------------------------------------------------------------------------- if ( (c_ccsinjecratescen gt 0) AND (NOT cm_emiscen eq 1), @@ -409,8 +405,8 @@ if ( (c_ccsinjecratescen gt 0) AND (NOT cm_emiscen eq 1), vm_co2CCS.up(t,regi,"cco2","ico2","ccsinje","1")$(t.val le 2030) = (p_boundCapCCS(t,regi,"operational")$(t.val le 2030) + p_boundCapCCS(t,regi,"construction")$(t.val le 2030) + p_boundCapCCS(t,regi,"planned")$(t.val le 2030) * c_fracRealfromAnnouncedCCScap2030) * s_MtCO2_2_GtC; ); -*AM* Fix capacities of technologies with carbon capture to zero if there are no CCS projects in the pipeline in that region -*AM* This is only reasonable, as long as we also don't expect any CCU projects in the early years. +*** Fix capacities of technologies with carbon capture to zero if there are no CCS projects in the pipeline in that region +*** This is only reasonable, as long as we also don't expect any CCU projects in the early years. loop(regi, loop(t$(t.val le 2030), if( ((p_boundCapCCS(t,regi,"operational") + p_boundCapCCS(t,regi,"construction") + p_boundCapCCS(t,regi,"planned")) eq 0), @@ -422,31 +418,20 @@ loop(regi, loop(regi, if( (p_boundCapCCSindicator(regi) eq 0), vm_cap.fx("2025",regi,teCCS,rlf) = 0; - vm_cap.fx("2030",regi,teCCS,rlf) = 0; + vm_cap.fx("2030",regi,teCCS,rlf) = 0; ); ); *** ------------------------------------------------------------------------------------------------------------- -*AM* Limit REMINDs ability to vent captured CO2 to 1 MtCO2 per yr per region. This happens otherwise to a great extend in stringent climate -*AM* policy scenarios if CCS and CCU capacities are limited in early years, to lower overall adjustment costs of capture technologies. -*AM* In reality, people don't have perfect foresight and without storage or usage capacities, no capture facilities will be built. +*** Limit REMINDs ability to vent captured CO2 to 1 MtCO2 per yr per region. This happens otherwise to a great extend in stringent climate +*** policy scenarios if CCS and CCU capacities are limited in early years, to lower overall adjustment costs of capture technologies. +*** In reality, people don't have perfect foresight and without storage or usage capacities, no capture facilities will be built. v_co2capturevalve.up(t,regi) = 1 * s_MtCO2_2_GtC; -*AL* fixing prodFE in 2005 to the value contained in pm_cesdata("2005",regi,in,"quantity"). This is done to ensure that the energy system will reproduce the 2005 calibration values. +*** fixing prodFE in 2005 to the value contained in pm_cesdata("2005",regi,in,"quantity"). This is done to ensure that the energy system will reproduce the 2005 calibration values. *** Fixing will produce clearly attributable errors (good for debugging) when using inconsistent data, as the GAMS accuracy when comparing fixed results is very high (< 1e-8). -***vm_prodFe.fx("2005",regi,se2fe(enty,enty2,te)) = sum(fe2ppfEn(enty2,in), pm_cesdata("2005",regi,in,"quantity") ); - -$ontext -*** ------------------------------------------------------------- -*** *RP* Chinese depoyment of coal power plants and coal use in industry was probably not only demand-driven, but also policy-driven (faster than demand). Therefore, we implement lower bounds on coal power plants and solid coal use: -*** ------------------------------------------------------------- -if (cm_startyear le 2015, -vm_cap.lo("2015","CHN","pc","1") = 0.75; !! WEO says 826GW in 2013, 980 in 2020 -vm_cap.lo("2010","CHN","coaltr","1") = 0.79; !! IEA says ~27EJ in 2010. In REMIND, a coaltr cap of 0.647 is equivalent to an FE solids coal level of 20.5 EJ, thus 25*0.647/20.5 = 0.79 -vm_cap.lo("2015","CHN","coaltr","1") = 0.88; !! IEA says ~29.7EJ in 2012. In REMIND, a coaltr cap of 0.647 is equivalent to an FE solids coal level of 20.5 EJ, thus 28*0.647/20.5 = 0.88 -); -$offtext +*** vm_prodFe.fx("2005",regi,se2fe(enty,enty2,te)) = sum(fe2ppfEn(enty2,in), pm_cesdata("2005",regi,in,"quantity") ); $if %c_SSP_forcing_adjust% == "forcing_SSP1" vm_deltaCap.up(t,regi,"coalgas",rlf)$(t.val gt 2010) = 0.00001; @@ -454,8 +439,8 @@ $if %c_SSP_forcing_adjust% == "forcing_SSP1" vm_deltaCap.up(t,regi,"coalgas" *** H2 Curtailment *** ------------------------------------------------------------- *** RLDC removal -***Fixing h2curt value to zero to avoid the model to generate SE out of nothing. -***Models that have additional se production channels should release this variable (eg. RLDC power module). +*** Fixing h2curt value to zero to avoid the model to generate SE out of nothing. +*** Models that have additional se production channels should release this variable (eg. RLDC power module). loop(prodSeOth2te(enty,te), v_prodSeOth.fx(t,regi,"seh2","h2curt") = 0; ); @@ -488,9 +473,9 @@ vm_emiFgas.fx(ttot,all_regi,all_enty) = f_emiFgas(ttot,all_regi,"%c_SSP_forcing_ display vm_emiFgas.L; -*AL* Bugfix. For some reason the model cannot reduce the production of district heating to 0 -*AL* where it should be 0. Not fixings can account for this -*AL* Fixing vm_prodSe to 0 avoids the problem +*** Bugfix. For some reason the model cannot reduce the production of district heating to 0 +*** where it should be 0. Not fixings can account for this +*** Fixing vm_prodSe to 0 avoids the problem loop ((in,in2) $ (sameAs(in,"feheb") and sameAs(in2,"fehei")), loop ((t, regi) $ ( (sameAs(t,"2010") OR sameAs(t,"2015")) AND diff --git a/core/datainput.gms b/core/datainput.gms index e46239725..6882530eb 100644 --- a/core/datainput.gms +++ b/core/datainput.gms @@ -959,9 +959,9 @@ $offdelim $if %cm_LU_emi_scen% == "SSP1" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0047/sm_EJ_2_TWa; $if %cm_LU_emi_scen% == "SSP2" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0079/sm_EJ_2_TWa; +$if %cm_LU_emi_scen% == "SSP3" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0079/sm_EJ_2_TWa; $if %cm_LU_emi_scen% == "SSP5" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0066/sm_EJ_2_TWa; -*BS* added SDP, copied SSP1 number -$if %cm_LU_emi_scen% == "SDP" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0047/sm_EJ_2_TWa; +$if %cm_LU_emi_scen% == "SDP" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0047/sm_EJ_2_TWa; *DK* In case REMIND is coupled to MAgPIE emissions are obtained from the MAgPIE reporting. Thus, emission factors are set to zero $if %cm_MAgPIE_coupling% == "on" p_efFossilFuelExtr(regi,"pebiolc","n2obio") = 0.0; @@ -1058,7 +1058,7 @@ loop(regi, p_aux_capToDistr(regi,te) = pm_histCap("2015",regi,te)$(pm_histCap("2015",regi,te) gt 1e-10); s_aux_cap_remaining = p_aux_capToDistr(regi,te); *RP* fill up the renewable grades to calculate the total capacity needed to produce the amount calculated in initialcap2, -* assuming the best grades are filled first (with 20% of each grade not yet used) +*** assuming the best grades are filled first (with 20% of each grade not yet used) loop(teRe2rlfDetail(te,rlf)$(pm_dataren(regi,"nur",rlf,te) > 0), if(s_aux_cap_remaining > 0, @@ -1131,7 +1131,7 @@ $endif.VREPot_Factor pm_dataeta(tall,regi,te) = f_dataetaglob(tall,te); -*RP* 20100620 adjust which technologies have time-varying etas +*** adjust which technologies have time-varying etas display f_dataetaglob; display teEtaIncr; loop(te, @@ -1151,7 +1151,7 @@ $offdelim ***----------------------------------------------------------------------------- *** adjustment cost parameter ***----------------------------------------------------------------------------- -***RP 20100531 import regional offset for adjustment cost calculations +*** import regional offset for adjustment cost calculations parameter p_adj_deltacapoffset(tall,all_regi,all_te) "adjustment cost offset to prevent delay of capacity addition" / $ondelim diff --git a/main.gms b/main.gms index 3f26b96f9..c61c09375 100755 --- a/main.gms +++ b/main.gms @@ -1232,7 +1232,7 @@ $setglobal c_tech_earlyreti_rate GLO.(biodiesel 0.14, bioeths 0.14), EUR_regi.( *** (SSP2): emissions (from SSP2 scenario in MAgPIE) *** (SSP5): emissions (from SSP5 scenario in MAgPIE) *** (SDP): -$setglobal cm_LU_emi_scen SSP2 !! def = SSP2 !! regexp = SSP(1|2|5)|SDP +$setglobal cm_LU_emi_scen SSP2 !! def = SSP2 !! regexp = SSP(1|2|3|5)|SDP *** cm_regi_bioenergy_EFTax "region(s) in which bioenergy is charged with an emission-factor-based tax" *** This switch has only an effect if 21_tax is on and cm_bioenergy_EF_for_tax *** is not zero. It reads in the regions that are affected by the emission- @@ -1305,7 +1305,7 @@ $setglobal c_ccsinjecrateRegi off !! def = "off" *** ("forcing_SSP1") settings consistent with SSP 1 *** ("forcing_SSP2") settings consistent with SSP 2 *** ("forcing_SSP5") settings consistent with SSP 5 -$setglobal c_SSP_forcing_adjust forcing_SSP2 !! def = forcing_SSP2 !! regexp = forcing_SSP(1|2|5) +$setglobal c_SSP_forcing_adjust forcing_SSP2 !! def = forcing_SSP2 !! regexp = forcing_SSP(1|2|3|5) *** cm_regiExoPrice "set exogenous co2 tax path for specific regions using a switch, require regipol module to be set to regiCarbonPrice (e.g. GLO.(2025 38,2030 49,2035 63,2040 80,2045 102,2050 130,2055 166,2060 212,2070 346,2080 563,2090 917,2100 1494,2110 1494,2130 1494,2150 1494) )" $setGlobal cm_regiExoPrice off !! def = off *** cm_emiMktTarget "set a budget or year emission target, for all (all) or specific emission markets (ETS, ESD or other), and specific regions (e.g. DEU) or region groups (e.g. EU27)"