-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathconfig.sample.txt
executable file
·115 lines (84 loc) · 4.75 KB
/
config.sample.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
##################################################################################################
#
# Wellcome to the Generalized Language Model toolkit config file.
#
# !!!!!!!!!! copy config.sample.txt to config.txt !!!!!!!!
#
# this is the configuration file for the generalized language modelleing toolkit
# you can configure everything such as model length and the place of your training data.
#
# also this software can be used to run in several stages if your data set is large and your machine
# got killed for some reason you don't have to redo the calculation.
#
# if you have questions please send a mail to rene@rene-pickhardt.de
##################################################################################################
##################################################################################################
### basic settings which will be most certainly be needed to change
##################################################################################################
#directory from which we will start to work
outputDirectory = /media/mssd/datasets/glm/out/
#length of the model to be trained
modelLength = 5
#amount of threads that should be concurrently assigned to the program
numberOfCores = 4
#name of the input data set (this is supposed to be a subfolder of outputDirectory) in this folder the trainingfile should be named normalized.txt and should contain one sentence per line.
inputDataSet = wiki
#can be used for multiple languages
languages = en
##################################################################################################
### stages of the entire calculaten in the order they are being processed
### usefull for big data sets. here if something goes wrong you don't have to start over again
### set the following values to false for the stages of processing you wish to skip
##################################################################################################
### first the data sets are split to training and test data
splitData = true
### state if the index of words should be build. The index is used to create subfiles for counting and aggregating sequences
buildIndex = true
### if the absolute values for skipped sequences should be build
buildGLM = true
### states if also all the continuation values should be build.
buildContinuationGLM = true
### the absolute counts and continuation counts from the entire LM which are needed for the testing-samples
### will be extracted and stored in testing-samples/ pay attantion. If your testing-samples are too large
### you might run out of memory when running the experiment since all the data needed will be stored into main
### memory
extractContinuationGLM = true
### set this to true if you want to build a standard kneser ney (generalized) language model
buildKneserNey = true
### set this to true if you want to build a modified kneser ney (generalized) language model
buildModKneserNey = true
# was not used for paper since there is currently an acompaning python script for the task
calculateEntropy = false
### calculate a standard language model
kneserNeySimple = true
### calculate a generalized language model
kneserNeyComplex = true
### use absolute discounting for interpolated probabilities (this should be set to false for the standard (modified) kneser ney implementation)
backoffAbsolute = false
### don't use any smoothing but just calculate conditional probabilities.
conditionalProbabilityOnly = false
##################################################################################################
### misc
##################################################################################################
### should be used to save space
deleteTempFiles = true
### is useful for modified kneser ney smoothing
addSentenceTags = true
addFakeStartTag = true
### number of decimal places that will be used for calculation of smoothing algorithms
decimalPlaces = 30
##################################################################################################
### configuration of training data
##################################################################################################
### number of test queries which will be sampled from the test query set
numberOfQueries = 100000
### used for splitting files in which the skipped ngrams are stored and for index building
maxCountDivider = 1000
##################################################################################################
### the following numbers are for creation of training, learning and testing data splits.
##################################################################################################
# 20 means that only 20% of the input data will be thrown away
sampleRate = 0
# 90 means that 90% of data will be training data
splitDataRatio = 2
splitTestRatio = 100