+
+/** CMSIS-NN object to contain the width and height of a tile */
+typedef struct
+{
+ int32_t w; /**< Width */
+ int32_t h; /**< Height */
+} cmsis_nn_tile;
+
+/** CMSIS-NN object used for the function context. */
+typedef struct
+{
+ void *buf; /**< Pointer to a buffer needed for the optimization */
+ int32_t size; /**< Buffer size */
+} cmsis_nn_context;
+
+/** CMSIS-NN object to contain the dimensions of the tensors */
+typedef struct
+{
+ int32_t n; /**< Generic dimension to contain either the batch size or output channels.
+ Please refer to the function documentation for more information */
+ int32_t h; /**< Height */
+ int32_t w; /**< Width */
+ int32_t c; /**< Input channels */
+} cmsis_nn_dims;
+
+/** CMSIS-NN object for the per-channel quantization parameters */
+typedef struct
+{
+ int32_t *multiplier; /**< Multiplier values */
+ int32_t *shift; /**< Shift values */
+} cmsis_nn_per_channel_quant_params;
+
+/** CMSIS-NN object for the per-tensor quantization parameters */
+typedef struct
+{
+ int32_t multiplier; /**< Multiplier value */
+ int32_t shift; /**< Shift value */
+} cmsis_nn_per_tensor_quant_params;
+
+/** CMSIS-NN object for the quantized Relu activation */
+typedef struct
+{
+ int32_t min; /**< Min value used to clamp the result */
+ int32_t max; /**< Max value used to clamp the result */
+} cmsis_nn_activation;
+
+/** CMSIS-NN object for the convolution layer parameters */
+typedef struct
+{
+ int32_t input_offset; /**< Zero value for the input tensor */
+ int32_t output_offset; /**< Zero value for the output tensor */
+ cmsis_nn_tile stride;
+ cmsis_nn_tile padding;
+ cmsis_nn_tile dilation;
+ cmsis_nn_activation activation;
+} cmsis_nn_conv_params;
+
+/** CMSIS-NN object for Depthwise convolution layer parameters */
+typedef struct
+{
+ int32_t input_offset; /**< Zero value for the input tensor */
+ int32_t output_offset; /**< Zero value for the output tensor */
+ int32_t ch_mult; /**< Channel Multiplier. ch_mult * in_ch = out_ch */
+ cmsis_nn_tile stride;
+ cmsis_nn_tile padding;
+ cmsis_nn_tile dilation;
+ cmsis_nn_activation activation;
+} cmsis_nn_dw_conv_params;
+/** CMSIS-NN object for pooling layer parameters */
+typedef struct
+{
+ cmsis_nn_tile stride;
+ cmsis_nn_tile padding;
+ cmsis_nn_activation activation;
+} cmsis_nn_pool_params;
+
+/** CMSIS-NN object for Fully Connected layer parameters */
+typedef struct
+{
+ int32_t input_offset; /**< Zero value for the input tensor */
+ int32_t filter_offset; /**< Zero value for the filter tensor. Not used */
+ int32_t output_offset; /**< Zero value for the output tensor */
+ cmsis_nn_activation activation;
+} cmsis_nn_fc_params;
+
+/** CMSIS-NN object for SVDF layer parameters */
+typedef struct
+{
+ int32_t rank;
+ int32_t input_offset; /**< Zero value for the input tensor */
+ int32_t output_offset; /**< Zero value for the output tensor */
+ cmsis_nn_activation input_activation;
+ cmsis_nn_activation output_activation;
+} cmsis_nn_svdf_params;
+
+#endif // _ARM_NN_TYPES_H
diff --git a/features/cmsis_nn_sample_code/nnlib/Include/arm_nnfunctions.h b/features/cmsis_nn_sample_code/nnlib/Include/arm_nnfunctions.h
new file mode 100644
index 0000000..4c20e99
--- /dev/null
+++ b/features/cmsis_nn_sample_code/nnlib/Include/arm_nnfunctions.h
@@ -0,0 +1,2314 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nnfunctions.h
+ * Description: Public header file for CMSIS NN Library
+ *
+ * $Date: 17 August 2021
+ * $Revision: V.7.3.1
+ *
+ * Target Processor: Cortex-M CPUs
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS NN Software Library
+ *
+ * Introduction
+ * ------------
+ *
+ * This user manual describes the CMSIS NN software library,
+ * a collection of efficient neural network kernels developed to maximize the
+ * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
+ *
+ * The library is divided into a number of functions each covering a specific category:
+ * - Convolution Functions
+ * - Activation Functions
+ * - Fully-connected Layer Functions
+ * - SVDF Layer Functions
+ * - Pooling Functions
+ * - Softmax Functions
+ * - Basic math Functions
+ *
+ * The library has separate functions for operating on different weight and activation data
+ * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
+ * kernels are included in the function description. The implementation details are also
+ * described in this paper [1].
+ *
+ * Function Classification
+ * --------
+ * The functions can be classified into two segments
+ * - Legacy functions supporting ARM's internal symmetric quantization(8 bits).
+ * - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits).
+ *
+ * The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there.
+ * The article in [2] describes in detail how to run a network using the legacy functions.
+ *
+ * The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL
+ * micro. The functions are bit exact to TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run
+ * a TensorFlow Lite model using optimized CMSIS-NN kernels.
+ *
+ * Block Diagram
+ * --------
+ * \image html CMSIS-NN-OVERVIEW.PNG
+ *
+ * Examples
+ * --------
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Pre-processor Macros
+ * ------------
+ *
+ * Each library project have different pre-processor macros.
+ *
+ * - ARM_MATH_DSP:
+ *
+ * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension).
+ *
+ * - ARM_MATH_MVEI:
+ *
+ * Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension.
+
+ * - ARM_MATH_AUTOVECTORIZE
+ * Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline
+ * assembly. It does not affect functions that use C or intrinsics.
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy
+ * functions i.e, functions targetted at TensorFlow Lite do not support big endianness. By default library builds for
+ * little endian targets.
+ *
+ * - ARM_NN_TRUNCATE:
+ *
+ * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
+ *
+ *
+ * Copyright Notice
+ * ------------
+ *
+ * Copyright (C) 2010-2019 Arm Limited. All rights reserved.
+ *
+ * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
+ *
+ * [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN
+ *
+ https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
+ * [3] https://www.tensorflow.org/lite/microcontrollers/library
+ *
+ * [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis
+ */
+
+/**
+ * @defgroup groupNN Neural Network Functions
+ * A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support
+ * TensorFlow Lite framework.
+ */
+
+#ifndef _ARM_NNFUNCTIONS_H
+#define _ARM_NNFUNCTIONS_H
+
+#include "arm_nn_math_types.h"
+#include "arm_nn_types.h"
+
+#define USE_INTRINSIC
+
+//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * @brief Struct for specifying activation function types
+ *
+ */
+typedef enum
+{
+ ARM_SIGMOID = 0,
+ /**< Sigmoid activation function */
+ ARM_TANH = 1,
+ /**< Tanh activation function */
+} arm_nn_activation_type;
+
+/**
+ * @defgroup NNConv Convolution Functions
+ *
+ * Collection of convolution, depthwise convolution functions and their variants.
+ *
+ * The convolution is implemented in 2 steps: im2col and GEMM
+ *
+ * im2col is a process of converting each patch of image data into
+ * a column. After im2col, the convolution is computed as matrix-matrix
+ * multiplication.
+ *
+ * To reduce the memory footprint, the im2col is performed partially.
+ * Each iteration, only a few column (i.e., patches) are generated and
+ * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
+ *
+ */
+
+/**
+ * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
+ cmsis-nn
+ * to perform the convolution.
+ *
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * Range of conv_params->input_offset : [-127, 128]
+ * Range of conv_params->output_offset : [-128, 127]
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+ * spatial filter dimensions
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int8
+ *
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
if argument constraints fail. or,
+ * ARM_MATH_SUCCESS
on successful completion.
+ *
+ */
+arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required buffer size for arm_convolve_wrapper_s8
+ *
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * Range of conv_params->input_offset : [-127, 128]
+ * Range of conv_params->output_offset : [-128, 127]
+ * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
+ * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
+ * filter dimensions
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ *
+ * @return The function returns required buffer size(bytes)
+ *
+ */
+int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_dims *input_dims,
+ const cmsis_nn_dims *filter_dims,
+ const cmsis_nn_dims *output_dims);
+
+/**
+ * @brief s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in
+ cmsis-nn
+ * to perform the convolution.
+ *
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * conv_params->input_offset : Not used
+ * conv_params->output_offset : Not used
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int16
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+ * spatial filter dimensions
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Bias data pointer. Data type: int64
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int16
+ *
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
if argument constraints fail. or,
+ * ARM_MATH_SUCCESS
on successful completion.
+ *
+ */
+arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q15_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int64_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q15_t *output_data);
+
+/**
+ * @brief Get the required buffer size for arm_convolve_wrapper_s16
+ *
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * conv_params->input_offset : Not used
+ * conv_params->output_offset : Not used
+ * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
+ * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
+ * filter dimensions
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ *
+ * @return The function returns required buffer size(bytes)
+ *
+ */
+int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_dims *input_dims,
+ const cmsis_nn_dims *filter_dims,
+ const cmsis_nn_dims *output_dims);
+
+/**
+ * @brief Basic s8 convolution function
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_s8_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * Range of conv_params->input_offset : [-127, 128]
+ * Range of conv_params->output_offset : [-128, 127]
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+ * spatial filter dimensions
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Optional bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int8
+
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * 1. Supported framework: TensorFlow Lite micro
+ * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+ * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
+ *
+ */
+arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required buffer size for s8 convolution function
+ *
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
+ * are the spatial filter dimensions
+ * @return The function returns required buffer size(bytes)
+ *
+ */
+int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+
+/**
+ * @brief Basic s16 convolution function
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_s16_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * conv_params->input_offset : Not used
+ * conv_params->output_offset : Not used
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int16
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+ * spatial filter dimensions
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Optional bias data pointer. Data type: int64
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int16
+
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * 1. Supported framework: TensorFlow Lite micro
+ * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
+ * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
+ *
+ */
+arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q15_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int64_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q15_t *output_data);
+/**
+ * @brief Optimized s16 convolution function
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_fast_s16_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * conv_params->input_offset : Not used
+ * conv_params->output_offset : Not used
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int16
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+ * spatial filter dimensions. (filter_dims->w * filter_dims->h * input_dims->c) must not
+ exceed 512
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Optional bias data pointer. Data type: int64
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int16
+
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * 1. Supported framework: TensorFlow Lite micro
+ * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
+ * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
+ * 4. Implementation supports kernel volumes (filter width * filter height * input channels) < 512.
+ *
+ */
+
+arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q15_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int64_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q15_t *output_data);
+
+/**
+ * @brief Get the required buffer size for s16 convolution function
+ *
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
+ * are the spatial filter dimensions
+ * @return The function returns required buffer size(bytes)
+ *
+ */
+int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+
+/**
+ * @brief Get the required buffer size for fast s16 convolution function
+ *
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
+ * are the spatial filter dimensions
+ * @return The function returns required buffer size(bytes)
+ *
+ */
+int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+
+/**
+ * @brief Basic Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Basic Q7 convolution function (non-square shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimension x
+ * @param[in] dim_im_in_y input tensor dimension y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns ARM_MATH_SUCCESS
+ */
+arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Basic Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t *Im_out,
+ const uint16_t dim_im_out,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Fast Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Fast Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimension x
+ * @param[in] dim_im_in_y input tensor dimension y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+
+arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimension x
+ * @param[in] dim_im_in_y input tensor dimension y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
if argument constraints fail. or,
+ * ARM_MATH_SUCCESS
on successful completion.
+ *
+ * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
+ * and dim_kernel_y=1). It can be used for
+ * second half of MobileNets after depthwise separable convolution.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Fast s8 version for 1x1 convolution (non-square shape)
+ *
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * Range of conv_params->input_offset : [-127, 128]
+ * Range of conv_params->output_offset : [-128, 127]
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Optional bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int8
+ *
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
if argument constraints fail. or,
+ * ARM_MATH_SUCCESS
on successful completion.
+ *
+ * @details
+ * - Supported framework : TensorFlow Lite Micro
+ * - The following constrains on the arguments apply
+ * -# input_dims->c is a multiple of 4
+ * -# conv_params->padding.w = conv_params->padding.h = 0
+ * -# conv_params->stride.w = conv_params->stride.h = 1
+ *
+ */
+arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required buffer size for arm_convolve_1x1_s8_fast
+ *
+ * @param[in] input_dims Input (activation) dimensions
+ * @return The function returns the required buffer size in bytes
+ *
+ */
+int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims);
+
+/**
+ * @brief 1xn convolution
+ *
+ * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
+ arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required
+ * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
+ * Range of conv_params->input_offset : [-127, 128]
+ * Range of conv_params->output_offset : [-128, 127]
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal
+ * spatial filter dimension
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Optional bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
+ * @param[out] output_data Output data pointer. Data type: int8
+ *
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
if argument constraints fail. or,
+ * ARM_MATH_SUCCESS
on successful completion.
+ *
+ * @details
+ * - Supported framework : TensorFlow Lite Micro
+ * - The following constrains on the arguments apply
+ * -# input_dims->n equals 1
+ * -# ouput_dims->w is a multiple of 4
+ * -# Explicit constraints(since it is for 1xN convolution)
+ * -## input_dims->h equals 1
+ * -## output_dims->h equals 1
+ * -## filter_dims->h equals 1
+ *@todo Remove constraint on output_dims->w to make the function generic.
+ *
+ */
+arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required additional buffer size for 1xn convolution
+ *
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the
+ * horizontal spatial filter dimension
+ * @return The function returns required buffer size(bytes)
+ *
+ */
+int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+
+/**
+ * @brief Q7 version of convolution for RGB image
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * This kernel is written exclusively for convolution with ch_im_in
+ * equals 3. This applies on the first layer of CNNs which has input
+ * image with RGB format.
+ */
+
+arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Fast Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ * dim_im_out is a multiple of 2
+ */
+
+arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t *Im_out,
+ const uint16_t dim_im_out,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Fast Q15 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimension x
+ * @param[in] dim_im_in_y input tensor dimension y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * @details
+ *
+ * Buffer size:
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * Input dimension constraints:
+ *
+ * ch_im_in is multiple of 2
+ *
+ * ch_im_out is multipe of 2
+ *
+ */
+
+arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q15_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q15_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t *Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Q7 depthwise separable convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+
+arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Q7 depthwise separable convolution function (non-square shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimension x
+ * @param[in] dim_im_in_y input tensor dimension y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding sizes x
+ * @param[in] padding_y padding sizes y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t *wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t *bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t *Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t *bufferA,
+ q7_t *bufferB);
+
+/**
+ * @brief Wrapper function to pick the right optimized s8 depthwise convolution function
+ *
+ * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
+ * definition file to see if an additional buffer is required.
+ * Optional function {API}_get_buffer_size() provides the buffer
+ * size if required.
+ * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
+ * dw_conv_params->dilation is not used.
+ * Range of dw_conv_params->input_offset : [-127, 128]
+ * Range of dw_conv_params->output_offset : [-128, 127]
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each
+ * output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
+ * Batch argument N is not used and assumed to be 1.
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
+ * @param[in, out] output_data Output data pointer. Data type: int8
+ * @return The function returns
+ * ARM_MATH_SUCCESS
- Successful completion.
+ *
+ * @details
+ * - Supported framework: TensorFlow Lite
+ * - Picks one of the the following functions
+ * -# arm_depthwise_conv_s8()
+ * -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only
+ * -# arm_depthwise_conv_s8_opt()
+ * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+ * - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the
+ * boundary.
+ */
+arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_dw_conv_params *dw_conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8()
+ *
+ * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
+ * dw_conv_params->dilation is not used.
+ * Range of dw_conv_params->input_offset : [-127, 128]
+ * Range of dw_conv_params->input_offset : [-128, 127]
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
+ * Batch argument N is not used and assumed to be 1.
+ * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
+ * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
+ * @return Size of additional memory required for optimizations in bytes.
+ *
+ */
+int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
+ const cmsis_nn_dims *input_dims,
+ const cmsis_nn_dims *filter_dims,
+ const cmsis_nn_dims *output_dims);
+
+/**
+ * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.
+ *
+ * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
+ * definition file to see if an additional buffer is required.
+ * Optional function {API}_get_buffer_size() provides the buffer
+ * size if an additional buffer is required.
+ * exists if additional memory is.
+ * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
+ * dw_conv_params->dilation is not used.
+ * Range of dw_conv_params->input_offset : [-127, 128]
+ * Range of dw_conv_params->input_offset : [-128, 127]
+ * @param[in] quant_params Per-channel quantization info.
+ * It contains the multiplier and shift values to be applied to each
+ * output channel
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
+ * Batch argument N is not used.
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * @param[in] bias_data Bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
+ * @param[in, out] output_data Output data pointer. Data type: int8
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * - Supported framework: TensorFlow Lite
+ * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+ */
+arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_dw_conv_params *dw_conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on
+ * the input arguments(documented below). Refer arm_depthwise_conv_s8() for function
+ * argument details.
+ *
+ * @return The function returns one of the following
+ * ARM_MATH_SIZE_MISMATCH
- Unsupported dimension of tensors
+ * ARM_MATH_ARGUMENT_ERROR
- Unsupported pad size along the x axis
+ * ARM_MATH_SUCCESS
- Successful operation
+ *
+ * @details
+ * - Supported framework : TensorFlow Lite Micro
+ * - The following constrains on the arguments apply
+ * -# Number of input channel equals number of output channels
+ * -# Filter height and width equals 3
+ * -# Padding along x is either 0 or 1.
+ *
+ */
+arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_dw_conv_params *dw_conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel.
+ * Refer arm_depthwise_conv_s8() for function argument details.
+ *
+ * @return The function returns one of the following
+ * ARM_MATH_SIZE_MISMATCH
- input channel != output channel or
+ * ch_mult != 1
+ * ARM_MATH_SUCCESS
- Successful operation
+ *
+ * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
+ * for the following if MVE optimizations(Arm Helium Technology) are used.
+ * - Output shift
+ * - Output multiplier
+ * - Output bias
+ * - kernel
+ * @details
+ * - Supported framework: TensorFlow Lite
+ * - The following constrains on the arguments apply
+ * -# Number of input channel equals number of output channels or ch_mult equals 1
+ * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+ * - Reccomended when number of channels is 4 or greater.
+ *
+ */
+arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
+ const cmsis_nn_dw_conv_params *dw_conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required buffer size for optimized s8 depthwise convolution
+ * function with constraint that in_channel equals out_channel.
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
+ * Batch argument N is not used.
+ * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
+ * @return The function returns required buffer size in bytes
+ *
+ */
+int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+
+/**
+ * @defgroup FC Fully-connected Layer Functions
+ *
+ * Collection of fully-connected and matrix multiplication functions.
+ *
+ * Fully-connected layer is basically a matrix-vector multiplication
+ * with bias. The matrix is the weights and the input/output vectors
+ * are the activation values. Supported {weight, activation} precisions
+ * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
+ *
+ * Here we have two types of kernel functions. The basic function
+ * implements the function using regular GEMV approach. The opt functions
+ * operates with weights in interleaved formats.
+ *
+ */
+
+/**
+ *@brief Q7 basic fully-connected layer function
+ *@param[in] pV pointer to input vector
+ *@param[in] pM pointer to matrix weights
+ *@param[in] dim_vec length of the vector
+ *@param[in] num_of_rows number of rows in weight matrix
+ *@param[in] bias_shift amount of left-shift for bias
+ *@param[in] out_shift amount of right-shift for output
+ *@param[in] bias pointer to bias
+ *@param[in,out] pOut pointer to output vector
+ *@param[in,out] vec_buffer pointer to buffer space for input
+ *@return The function returns ARM_MATH_SUCCESS
+ *
+ */
+
+arm_status arm_fully_connected_q7(const q7_t *pV,
+ const q7_t *pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t *bias,
+ q7_t *pOut,
+ q15_t *vec_buffer);
+
+/**
+ * @brief Basic s8 Fully Connected function.
+ *
+ * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
+ * definition file to see if an additional buffer is required.
+ * Optional function {API}_get_buffer_size() provides the buffer
+ * size if an additional buffer is required.
+ * @param[in] fc_params Fully Connected layer parameters.
+ * Range of fc_params->input_offset : [-127, 128]
+ * fc_params->filter_offset : 0
+ * Range of fc_params->output_offset : [-128, 127]
+ * @param[in] quant_params Per-tensor quantization info.
+ * It contains the multiplier and shift values to be applied to the output tensor.
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * Input dimension is taken as Nx(H * W * C_IN)
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
+ * N : accumulation depth and equals (H * W * C_IN) from input_dims
+ * C : output depth and equals C_OUT in output_dims
+ * H & W : Not used
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * N, H, W : Not used
+ * @param[in] bias_data Bias data pointer. Data type: int32
+ * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
+ * N : Batches
+ * C_OUT : Output depth
+ * H & W : Not used.
+ * @param[in, out] output_data Output data pointer. Data type: int8
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * - Supported framework: TensorFlow Lite
+ * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+ */
+arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_fc_params *fc_params,
+ const cmsis_nn_per_tensor_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required buffer size for S8 basic fully-connected and
+ * matrix multiplication layer function for TF Lite
+ * @param[in] filter_dims dimension of filter
+ * @return The function returns required buffer size in bytes
+ *
+ */
+int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims);
+
+/**
+ * @brief Basic s16 Fully Connected function.
+ *
+ * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
+ * definition file to see if an additional buffer is required.
+ * Optional function {API}_get_buffer_size() provides the buffer
+ * size if an additional buffer is required.
+ * @param[in] fc_params Fully Connected layer parameters.
+ * fc_params->input_offset : 0
+ * fc_params->filter_offset : 0
+ * fc_params->output_offset : 0
+ * @param[in] quant_params Per-tensor quantization info.
+ * It contains the multiplier and shift values to be applied to the output tensor.
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+ * Input dimension is taken as Nx(H * W * C_IN)
+ * @param[in] input_data Input (activation) data pointer. Data type: int16
+ * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
+ * N : accumulation depth and equals (H * W * C_IN) from input_dims
+ * C : output depth and equals C_OUT in output_dims
+ * H & W : Not used
+ * @param[in] filter_data Filter data pointer. Data type: int8
+ * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
+ * N, H, W : Not used
+ * @param[in] bias_data Bias data pointer. Data type: int64
+ * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
+ * N : Batches
+ * C_OUT : Output depth
+ * H & W : Not used.
+ * @param[in, out] output_data Output data pointer. Data type: int16
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * - Supported framework: TensorFlow Lite
+ * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
+ */
+arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx,
+ const cmsis_nn_fc_params *fc_params,
+ const cmsis_nn_per_tensor_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q15_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int64_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q15_t *output_data);
+
+/**
+ * @brief Get the required buffer size for S16 basic fully-connected and
+ * matrix multiplication layer function for TF Lite
+ * @param[in] filter_dims dimension of filter
+ * @return The function returns required buffer size in bytes
+ *
+ */
+int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims);
+
+/**
+ * @brief Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+
+arm_status arm_fully_connected_q7_opt(const q7_t *pV,
+ const q7_t *pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t *bias,
+ q7_t *pOut,
+ q15_t *vec_buffer);
+
+/**
+ * @brief Q15 basic fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+
+arm_status arm_fully_connected_q15(const q15_t *pV,
+ const q15_t *pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t *bias,
+ q15_t *pOut,
+ q15_t *vec_buffer);
+
+/**
+ * @brief Q15 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+
+arm_status arm_fully_connected_q15_opt(const q15_t *pV,
+ const q15_t *pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t *bias,
+ q15_t *pOut,
+ q15_t *vec_buffer);
+
+/**
+ * @brief Mixed Q15-Q7 fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+
+arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
+ const q7_t *pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t *bias,
+ q15_t *pOut,
+ q15_t *vec_buffer);
+
+/**
+ * @brief Mixed Q15-Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+
+arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
+ const q7_t *pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t *bias,
+ q15_t *pOut,
+ q15_t *vec_buffer);
+
+/**
+ * @brief Matrix-Multiplication Kernels for Convolution
+ *
+ * These functions are used within convolution layer functions for
+ * matrix multiplication.
+ *
+ * The implementation is similar to CMSIS-DSP arm_mat_mult functions
+ * with one Q7 and one Q15 operands. The Q15 operand is the im2col
+ * output which is always with 2 columns.
+ *
+ */
+
+/**
+ * @brief Matrix-multiplication function for convolution
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ */
+
+q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
+ const q15_t *pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t *bias,
+ q7_t *pOut);
+/**
+ * @brief Matrix-multiplication function for convolution with per-channel requantization.
+ * @param[in] input_a pointer to operand A
+ * @param[in] input_b pointer to operand B, always consists of 2 vectors.
+ * @param[in] output_ch number of rows of A
+ * @param[in] out_shift pointer to per output channel requantization shift parameter.
+ * @param[in] out_mult pointer to per output channel requantization multiplier parameter.
+ * @param[in] out_offset output tensor offset.
+ * @param[in] activation_min minimum value to clamp the output to. Range : int8
+ * @param[in] activation_max maximum value to clamp the output to. Range : int8
+ * @param[in] num_col_a number of columns of A
+ * @param[in] output_bias per output channel bias. Range : int32
+ * @param[in,out] out_0 pointer to output
+ * @return The function returns one of the two
+ * 1. The incremented output pointer for a successful operation or
+ * 2. NULL if implementation is not available.
+ *
+ * @details This function does the matrix multiplication of weight matrix for all output channels
+ * with 2 columns from im2col and produces two elements/output_channel. The outputs are
+ * clamped in the range provided by activation min and max.
+ * Supported framework: TensorFlow Lite micro.
+ */
+q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a,
+ const q15_t *input_b,
+ const uint16_t output_ch,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int32_t out_offset,
+ const int16_t activation_min,
+ const int16_t activation_max,
+ const uint16_t num_col_a,
+ const int32_t *const output_bias,
+ q7_t *out_0);
+
+/**
+ * @brief Matrix-multiplication of re-ordered input B with A.
+ *
+ * @details For arguments, refer arm_nn_mat_mult_kernel_s8_s16. The re-ordering is a consequence
+ * of sign extension done by the SXTB16 command on input_b. The outputs are clamped in the range
+ * provided by activation min and max.
+ * * @details
+ * - Supported framework : TensorFlow Lite Micro
+ * - The following constrains on the arguments apply
+ * -# num_col_a is a multiple of 4
+ * -# output_ch is a multiple of 2
+ *
+ */
+q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a,
+ const q15_t *input_b,
+ const uint16_t output_ch,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int32_t out_offset,
+ const int16_t activation_min,
+ const int16_t activation_max,
+ const uint16_t num_col_a,
+ const int32_t *const output_bias,
+ q7_t *out_0);
+
+/**
+ *@brief Matrix-multiplication function for convolution with reordered columns
+ *@param[in] pA pointer to operand A
+ *@param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ *@param[in] ch_im_out numRow of A
+ *@param[in] numCol_A numCol of A
+ *@param[in] bias_shift amount of left-shift for bias
+ *@param[in] out_shift amount of right-shift for output
+ *@param[in] bias the bias
+ *@param[in,out] pOut pointer to output
+ *@return The function returns the incremented output pointer
+ *
+ *@details This function assumes that data in pInBuffer are reordered
+ */
+q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t *pA,
+ const q15_t *pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t *bias,
+ q7_t *pOut);
+
+#ifdef __cplusplus
+}
+#endif
+
+/*
+ * Other functions
+ * These layers are typically not timing critical
+ * Basic implementation is supported here
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * @defgroup BasicMath Basic math functions
+ *
+ * Element wise add and multiplication functions.
+ *
+ */
+
+/**
+ * @brief s8 element wise add of two vectors
+ * @param[in] input_1_vect pointer to input vector 1
+ * @param[in] input_2_vect pointer to input vector 2
+ * @param[in] input_1_offset offset for input 1. Range: Range: -127 to 128
+ * @param[in] input_1_mult multiplier for input 1
+ * @param[in] input_1_shift shift for input 1
+ * @param[in] input_2_offset offset for input 2. Range: Range: -127 to 128
+ * @param[in] input_2_mult multiplier for input 2
+ * @param[in] input_2_shift shift for input 2
+ * @param[in] left_shift input left shift
+ * @param[in,out] output pointer to output vector
+ * @param[in] out_offset output offset
+ * @param[in] out_mult output multiplier
+ * @param[in] out_shift output shift
+ * @param[in] out_activation_min minimum value to clamp output to
+ * @param[in] out_activation_max maximum value to clamp output to
+ * @param[in] block_size number of samples
+ * @return The function returns ARM_MATH_SUCCESS
+ */
+arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
+ const int8_t *input_2_vect,
+ const int32_t input_1_offset,
+ const int32_t input_1_mult,
+ const int32_t input_1_shift,
+ const int32_t input_2_offset,
+ const int32_t input_2_mult,
+ const int32_t input_2_shift,
+ const int32_t left_shift,
+ int8_t *output,
+ const int32_t out_offset,
+ const int32_t out_mult,
+ const int32_t out_shift,
+ const int32_t out_activation_min,
+ const int32_t out_activation_max,
+ const uint32_t block_size);
+
+/**
+ * @brief s8 element wise multiplication
+ * @param[in] input_1_vect pointer to input vector 1
+ * @param[in] input_2_vect pointer to input vector 2
+ * @param[in] input_1_offset offset for input 1. Range: Range: -127 to 128
+ * @param[in] input_2_offset offset for input 2. Range: Range: -127 to 128
+ * @param[in,out] output pointer to output vector
+ * @param[in] out_offset output offset
+ * @param[in] out_mult output multiplier
+ * @param[in] out_shift output shift
+ * @param[in] out_activation_min minimum value to clamp output to
+ * @param[in] out_activation_max maximum value to clamp output to
+ * @param[in] block_size number of samples
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details Supported framework: TensorFlow Lite micro
+ */
+arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
+ const int8_t *input_2_vect,
+ const int32_t input_1_offset,
+ const int32_t input_2_offset,
+ int8_t *output,
+ const int32_t out_offset,
+ const int32_t out_mult,
+ const int32_t out_shift,
+ const int32_t out_activation_min,
+ const int32_t out_activation_max,
+ const uint32_t block_size);
+/**
+ * @defgroup Acti Activation Functions
+ *
+ * Perform activation layers, including ReLU (Rectified Linear Unit),
+ * sigmoid and tanh
+ *
+ */
+
+/**
+ * @brief Q7 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ */
+
+void arm_relu_q7(q7_t *data, uint16_t size);
+
+/**
+ * @brief s8 ReLU6 function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ */
+
+void arm_relu6_s8(q7_t *data, uint16_t size);
+
+/**
+ * @brief Q15 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ */
+
+void arm_relu_q15(q15_t *data, uint16_t size);
+
+/**
+ * @brief Q7 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ */
+
+void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
+
+/**
+ * @brief Q15 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ *
+ * @details
+ *
+ * This is the direct table look-up approach.
+ *
+ * Assume here the integer part of the fixed-point is <= 3.
+ * More than 3 just not making much sense, makes no difference with
+ * saturation followed by any of these activation functions.
+ */
+
+void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
+
+/**
+ * @defgroup Pooling Pooling Functions
+ *
+ * Perform pooling functions, including max pooling and average pooling
+ *
+ */
+
+/**
+ * @brief Q7 max pooling function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ */
+
+void arm_maxpool_q7_HWC(q7_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const uint16_t dim_im_out,
+ q7_t *bufferA,
+ q7_t *Im_out);
+
+/**
+ * @brief Q7 average pooling function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimension
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ */
+
+void arm_avepool_q7_HWC(q7_t *Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const uint16_t dim_im_out,
+ q7_t *bufferA,
+ q7_t *Im_out);
+
+/**
+ * @brief s8 average pooling function.
+ *
+ * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
+ * definition file to see if an additional buffer is required.
+ * Optional function {API}_get_buffer_size() provides the buffer
+ * size if an additional buffer is required.
+ * @param[in] pool_params Pooling parameters
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
+ * Argument 'N' is not used.
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
+ * Argument N and C are not used.
+ * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
+ * Argument N is not used.
+ * C_OUT equals C_IN.
+ * @param[in, out] output_data Output data pointer. Data type: int8
+ * @return The function returns
+ * ARM_MATH_SUCCESS
- Successful operation
+ *
+ * @details
+ * - Supported Framework: TensorFlow Lite
+ *
+ */
+arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_pool_params *pool_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+/**
+ * @brief Get the required buffer size for S8 average pooling function
+ * @param[in] dim_dst_width output tensor dimension
+ * @param[in] ch_src number of input tensor channels
+ * @return The function returns required buffer size in bytes
+ *
+ */
+int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src);
+
+/**
+ * @brief s8 max pooling function.
+ *
+ * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
+ * definition file to see if an additional buffer is required.
+ * Optional function {API}_get_buffer_size() provides the buffer
+ * size if an additional buffer is required.
+ * @param[in] pool_params Pooling parameters
+ * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
+ * Argument 'N' is not used.
+ * @param[in] input_data Input (activation) data pointer. Data type: int8
+ * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
+ * Argument N and C are not used.
+ * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
+ * Argument N is not used.
+ * C_OUT equals C_IN.
+ * @param[in, out] output_data Output data pointer. Data type: int8
+ * @return The function returns
+ * ARM_MATH_SUCCESS
- Successful operation
+ *
+ * @details
+ * - Supported Framework: TensorFlow Lite
+ *
+ */
+arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_pool_params *pool_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+/**
+ * @defgroup Softmax Softmax Functions
+ *
+ * EXP(2) based softmax functions.
+ *
+ */
+
+/**
+ * @brief Q7 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimension
+ * @param[out] p_out pointer to output vector
+ *
+ * @note This function is an optimized version which is not bit-accurate with
+ * TensorFlow Lite's kernel
+ *
+ */
+
+void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out);
+
+/**
+ * @brief Q7 softmax function with batch parameter
+ * @param[in] vec_in pointer to input vector
+ * @param[in] nb_batches number of batches
+ * @param[in] dim_vec input vector dimension
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ * @note This function is an optimized version which is not bit-accurate with
+ * TensorFlow Lite's kernel
+ *
+ */
+
+void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out);
+/**
+ * @brief Q15 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimension
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ * @note This function is an optimized version which is not bit-accurate with
+ * TensorFlow Lite's kernel
+ *
+ */
+
+void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out);
+
+/**
+ * @brief S8 softmax function
+ * @param[in] input Pointer to the input tensor
+ * @param[in] num_rows Number of rows in the input tensor
+ * @param[in] row_size Number of elements in each input row
+ * @param[in] mult Input quantization multiplier
+ * @param[in] shift Input quantization shift within the range [0, 31]
+ * @param[in] diff_min Minimum difference with max in row. Used to check if
+ * the quantized exponential operation can be performed
+ * @param[out] output Pointer to the output tensor
+ *
+ * @note Supported framework: TensorFlow Lite micro (bit-accurate)
+ *
+ */
+
+void arm_softmax_s8(const int8_t *input,
+ const int32_t num_rows,
+ const int32_t row_size,
+ const int32_t mult,
+ const int32_t shift,
+ const int32_t diff_min,
+ int8_t *output);
+
+/**
+ * @brief U8 softmax function
+ * @param[in] input Pointer to the input tensor
+ * @param[in] num_rows Number of rows in the input tensor
+ * @param[in] row_size Number of elements in each input row
+ * @param[in] mult Input quantization multiplier
+ * @param[in] shift Input quantization shift within the range [0, 31]
+ * @param[in] diff_min Minimum difference with max in row. Used to check if
+ * the quantized exponential operation can be performed
+ * @param[out] output Pointer to the output tensor
+ *
+ * @note Supported framework: TensorFlow Lite micro (bit-accurate)
+ *
+ */
+
+void arm_softmax_u8(const uint8_t *input,
+ const int32_t num_rows,
+ const int32_t row_size,
+ const int32_t mult,
+ const int32_t shift,
+ const int32_t diff_min,
+ uint8_t *output);
+
+/**
+ * @brief uint8 depthwise convolution function with asymmetric quantization
+ * Unless specified otherwise, arguments are mandatory.
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_ch Channels in input tensor
+ * @param[in] kernel Pointer to kernel weights
+ * @param[in] kernel_x Width of kernel
+ * @param[in] kernel_y Height of kernel
+ * @param[in] ch_mult Number of channel multiplier
+ * @param[in] pad_x Padding sizes x
+ * @param[in] pad_y Padding sizes y
+ * @param[in] stride_x stride along the width
+ * @param[in] stride_y stride along the height
+ * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
+ * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
+ * @param[in] bias Pointer to optional bias values. If no bias is
+ * availble, NULL is expected
+ * @param[in] input_offset Input tensor zero offset
+ * @param[in] filter_offset Kernel tensor zero offset
+ * @param[in] output_offset Output tensor zero offset
+ * @param[in,out] output Pointer to output tensor
+ * @param[in] output_x Width of output tensor
+ * @param[in] output_y Height of output tensor
+ * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] out_shift Amount of right-shift for output
+ * @param[in] out_mult Output multiplier for requantization
+ * @return The function returns the following
+ * ARM_MATH_SUCCESS
- Successful operation
+ *
+ */
+arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_ch,
+ const uint8_t *kernel,
+ const uint16_t kernel_x,
+ const uint16_t kernel_y,
+ const int16_t ch_mult,
+ const int16_t pad_x,
+ const int16_t pad_y,
+ const int16_t stride_x,
+ const int16_t stride_y,
+ const int16_t dilation_x,
+ const int16_t dilation_y,
+ const int32_t *bias,
+ const int32_t input_offset,
+ const int32_t filter_offset,
+ const int32_t output_offset,
+ uint8_t *output,
+ const uint16_t output_x,
+ const uint16_t output_y,
+ const int32_t output_activation_min,
+ const int32_t output_activation_max,
+ const int32_t out_shift,
+ const int32_t out_mult);
+
+/**
+ * @defgroup Reshape Reshape Functions
+ *
+ */
+
+/**
+ * @brief Reshape a s8 vector into another with different shape
+ * @param[in] input points to the s8 input vector
+ * @param[out] output points to the s8 output vector
+ * @param[in] total_size total size of the input and output vectors in bytes
+ *
+ * @note The output is expected to be in a memory area that does not overlap with the input's
+ *
+ */
+void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size);
+
+/**
+ * @defgroup Concatenation Concatenation Functions
+ *
+ */
+
+/**
+ * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis
+ * This function should be called for each input tensor to concatenate. The argument offset_x
+ * will be used to store the input tensor in the correct position in the output tensor
+ *
+ * i.e. offset_x = 0
+ * for(i = 0 i < num_input_tensors; ++i)
+ * {
+ * arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x)
+ * offset_x += input_x[i]
+ * }
+ *
+ * This function assumes that the output tensor has:
+ * -# The same height of the input tensor
+ * -# The same number of channels of the input tensor
+ * -# The same batch size of the input tensor
+ *
+ * Unless specified otherwise, arguments are mandatory.
+ *
+ * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+ * does not involve any arithmetic operation
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_z Channels in input tensor
+ * @param[in] input_w Batch size in input tensor
+ * @param[out] output Pointer to output tensor
+ * @param[in] output_x Width of output tensor
+ * @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor
+ * It is user responsibility to provide the correct value
+ *
+ * Input constraints
+ * offset_x is less than output_x
+ *
+ */
+void arm_concatenation_s8_x(const int8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_z,
+ const uint16_t input_w,
+ int8_t *output,
+ const uint16_t output_x,
+ const uint32_t offset_x);
+
+/**
+ * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis
+ * This function should be called for each input tensor to concatenate. The argument offset_y
+ * will be used to store the input tensor in the correct position in the output tensor
+ *
+ * i.e. offset_y = 0
+ * for(i = 0 i < num_input_tensors; ++i)
+ * {
+ * arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y)
+ * offset_y += input_y[i]
+ * }
+ *
+ * This function assumes that the output tensor has:
+ * -# The same width of the input tensor
+ * -# The same number of channels of the input tensor
+ * -# The same batch size of the input tensor
+ *
+ * Unless specified otherwise, arguments are mandatory.
+ *
+ * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+ * does not involve any arithmetic operation
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_z Channels in input tensor
+ * @param[in] input_w Batch size in input tensor
+ * @param[out] output Pointer to output tensor
+ * @param[in] output_y Height of output tensor
+ * @param[in] offset_y The offset on the Y axis to start concatenating the input tensor
+ * It is user responsibility to provide the correct value
+ *
+ * Input constraints
+ * offset_y is less than output_y
+ *
+ */
+void arm_concatenation_s8_y(const int8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_z,
+ const uint16_t input_w,
+ int8_t *output,
+ const uint16_t output_y,
+ const uint32_t offset_y);
+
+/**
+ * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis
+ * This function should be called for each input tensor to concatenate. The argument offset_z
+ * will be used to store the input tensor in the correct position in the output tensor
+ *
+ * i.e. offset_z = 0
+ * for(i = 0 i < num_input_tensors; ++i)
+ * {
+ * arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z)
+ * offset_z += input_z[i]
+ * }
+ *
+ * This function assumes that the output tensor has:
+ * -# The same width of the input tensor
+ * -# The same height of the input tensor
+ * -# The same batch size of the input tensor
+ *
+ * Unless specified otherwise, arguments are mandatory.
+ *
+ * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+ * does not involve any arithmetic operation
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_z Channels in input tensor
+ * @param[in] input_w Batch size in input tensor
+ * @param[out] output Pointer to output tensor
+ * @param[in] output_z Channels in output tensor
+ * @param[in] offset_z The offset on the Z axis to start concatenating the input tensor
+ * It is user responsibility to provide the correct value
+ *
+ * Input constraints
+ * offset_z is less than output_z
+ *
+ */
+void arm_concatenation_s8_z(const int8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_z,
+ const uint16_t input_w,
+ int8_t *output,
+ const uint16_t output_z,
+ const uint32_t offset_z);
+
+/**
+ * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size)
+ * This function should be called for each input tensor to concatenate. The argument offset_w
+ * will be used to store the input tensor in the correct position in the output tensor
+ *
+ * i.e. offset_w = 0
+ * for(i = 0 i < num_input_tensors; ++i)
+ * {
+ * arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w)
+ * offset_w += input_w[i]
+ * }
+ *
+ * This function assumes that the output tensor has:
+ * -# The same width of the input tensor
+ * -# The same height of the input tensor
+ * -# The same number o channels of the input tensor
+ *
+ * Unless specified otherwise, arguments are mandatory.
+ *
+ * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+ * does not involve any arithmetic operation
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_z Channels in input tensor
+ * @param[in] input_w Batch size in input tensor
+ * @param[out] output Pointer to output tensor
+ * @param[in] offset_w The offset on the W axis to start concatenating the input tensor
+ * It is user responsibility to provide the correct value
+ *
+ */
+void arm_concatenation_s8_w(const int8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_z,
+ const uint16_t input_w,
+ int8_t *output,
+ const uint32_t offset_w);
+/**
+ * @defgroup SVDF SVDF Layer Functions
+ *
+ */
+
+/**
+ * @brief s8 SVDF function
+ *
+ * @param[in] input_ctx Temporary scratch buffer
+ * @param[in] output_ctx Temporary output scratch buffer
+ * @param[in] svdf_params SVDF Parameters
+ * Range of svdf_params->input_offset : [-128, 127]
+ * Range of svdf_params->output_offset : [-128, 127]
+ * @param[in] input_quant_params Input quantization parameters
+ * @param[in] output_quant_params Output quantization parameters
+ * @param[in] input_dims Input tensor dimensions
+ * @param[in] input_data Pointer to input tensor
+ * @param[in] state_dims State tensor dimensions
+ * @param[in] state_data Pointer to state tensor
+ * @param[in] weights_feature_dims Weights (feature) tensor dimensions
+ * @param[in] weights_feature_data Pointer to the weights (feature) tensor
+ * @param[in] weights_time_dims Weights (time) tensor dimensions
+ * @param[in] weights_time_data Pointer to the weights (time) tensor
+ * @param[in] bias_dims Bias tensor dimensions
+ * @param[in] bias_data Pointer to bias tensor
+ * @param[in] output_dims Output tensor dimensions
+ * @param[out] output_data Pointer to the output tensor
+ *
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ * @details
+ * 1. Supported framework: TensorFlow Lite micro
+ * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+ *
+ */
+arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
+ const cmsis_nn_context *output_ctx,
+ const cmsis_nn_svdf_params *svdf_params,
+ const cmsis_nn_per_tensor_quant_params *input_quant_params,
+ const cmsis_nn_per_tensor_quant_params *output_quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *state_dims,
+ q15_t *state_data,
+ const cmsis_nn_dims *weights_feature_dims,
+ const q7_t *weights_feature_data,
+ const cmsis_nn_dims *weights_time_dims,
+ const q15_t *weights_time_data,
+ const cmsis_nn_dims *bias_dims,
+ const q31_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/features/cmsis_nn_sample_code/nnlib/Include/arm_nnsupportfunctions.h b/features/cmsis_nn_sample_code/nnlib/Include/arm_nnsupportfunctions.h
new file mode 100644
index 0000000..71eadb1
--- /dev/null
+++ b/features/cmsis_nn_sample_code/nnlib/Include/arm_nnsupportfunctions.h
@@ -0,0 +1,1071 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nnsupportfunctions.h
+ * Description: Public header file of support functions for CMSIS NN Library
+ *
+ * $Date: 24. Aug 2021
+ * $Revision: V.5.10.0
+ *
+ * Target Processor: Cortex-M CPUs
+ * -------------------------------------------------------------------- */
+
+#ifndef _ARM_NNSUPPORTFUNCTIONS_H_
+#define _ARM_NNSUPPORTFUNCTIONS_H_
+
+#include "arm_nn_math_types.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0)
+#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift)
+#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0
+#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0
+#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b))
+
+#define MAX(A, B) ((A) > (B) ? (A) : (B))
+#define MIN(A, B) ((A) < (B) ? (A) : (B))
+#define CLAMP(x, h, l) MAX(MIN((x), (h)), (l))
+#define REDUCE_MULTIPLIER(_mult) ((_mult < 0x7FFF0000) ? ((_mult + (1 << 15)) >> 16) : 0x7FFF)
+
+/**
+ * @brief definition to pack four 8 bit values.
+ */
+#define PACK_Q7x4_32x1(v0, v1, v2, v3) \
+ ((((int32_t)(v0) << 0) & (int32_t)0x000000FF) | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | (((int32_t)(v3) << 24) & (int32_t)0xFF000000))
+
+/**
+ * @brief Union for SIMD access of q31/q15/q7 types
+ */
+union arm_nnword
+{
+ q31_t word;
+ /**< q31 type */
+ q15_t half_words[2];
+ /**< q15 type */
+ q7_t bytes[4];
+ /**< q7 type */
+};
+
+/**
+ * @brief Union for data type long long
+ */
+struct arm_nn_double
+{
+ uint32_t low;
+ int32_t high;
+};
+
+union arm_nn_long_long
+{
+ int64_t long_long;
+ struct arm_nn_double word;
+};
+
+/**
+ * @defgroup nndata_convert Neural Network Data Conversion Functions
+ *
+ * Perform data type conversion in-between neural network operations
+ *
+ */
+
+/**
+ * @brief Converts the elements of the q7 vector to q15 vector without left-shift
+ * @param[in] *pSrc points to the q7 input vector
+ * @param[out] *pDst points to the q15 output vector
+ * @param[in] blockSize length of the input vector
+ *
+ */
+void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize);
+
+/**
+ * @brief Non-saturating addition of elements of a q7 vector
+ * @param[in] *input Pointer to the q7 input vector
+ * @param[out] *output Pointer to the q31 output variable.
+ * @param[in] block_size length of the input vector
+ * \par Description:
+ *
+ * 2^24 samples can be added without saturating the result.
+ *
+ * The equation used for the conversion process is:
+ *
+ *
+ * sum = input[0] + input[1] + .. + input[block_size -1]
+ *
+ *
+ * */
+void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size);
+
+/**
+ * @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift
+ * @param[in] *pSrc points to the q7 input vector
+ * @param[out] *pDst points to the q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ *
+ */
+void arm_q7_to_q15_reordered_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements from a q7 vector to a q15 vector with an added offset
+ * @param[in] src pointer to the q7 input vector
+ * @param[out] dst pointer to the q15 output vector
+ * @param[in] block_size length of the input vector
+ * @param[in] offset q7 offset to be added to each input vector element.
+ *
+ * \par Description:
+ *
+ * The equation used for the conversion process is:
+ *
+ *
+ * dst[n] = (q15_t) src[n] + offset; 0 <= n < block_size.
+ *
+ *
+ */
+void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset);
+
+/**
+ * @brief Converts the elements of the q7 vector to reordered q15 vector with an added offset
+ * @param[in] src pointer to the q7 input vector
+ * @param[out] dst pointer to the q15 output vector
+ * @param[in] block_size length of the input vector
+ * @param[in] offset offset to be added to each input vector element.
+ * @return none.
+ *
+ * @details This function does the q7 to q15 expansion with re-ordering of bytes. Re-ordering is a consequence of
+ * the sign extension intrinsic(DSP extension). The tail (i.e., last (N % 4) elements) retains its
+ * original order.
+ *
+ */
+void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset);
+
+/**
+ * @brief Converts the elements from a q7 vector and accumulate to a q15 vector
+ * @param[in] *src points to the q7 input vector
+ * @param[out] *dst points to the q15 output vector
+ * @param[in] block_size length of the input vector
+ *
+ * \par Description:
+ *
+ * The equation used for the conversion process is:
+ *
+ *
+ * dst[n] += (q15_t) src[n] ; 0 <= n < block_size.
+ *
+ *
+ */
+void arm_nn_accumulate_q7_to_q15(q15_t *dst, const q7_t *src, uint32_t block_size);
+
+/**
+ * @brief Depthwise conv on an im2col buffer where the input channel equals output channel.
+ * @param[in] row pointer to row
+ * @param[in] col pointer to im2col buffer, always consists of 2 columns.
+ * @param[in] num_ch number of channels
+ * @param[in] out_shift pointer to per output channel requantization shift parameter.
+ * @param[in] out_mult pointer to per output channel requantization multiplier parameter.
+ * @param[in] out_offset output tensor offset.
+ * @param[in] activation_min minimum value to clamp the output to. Range : int8
+ * @param[in] activation_max maximum value to clamp the output to. Range : int8
+ * @param[in] kernel_size number of elements in one column.
+ * @param[in] output_bias per output channel bias. Range : int32
+ * @param[out] out pointer to output
+ * @return The function returns one of the two
+ * 1. The incremented output pointer for a successful operation or
+ * 2. NULL if implementation is not available.
+ *
+ * @details Supported framework: TensorFlow Lite micro.
+ */
+q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row,
+ const q15_t *col,
+ const uint16_t num_ch,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int32_t out_offset,
+ const int32_t activation_min,
+ const int32_t activation_max,
+ const uint16_t kernel_size,
+ const int32_t *const output_bias,
+ q7_t *out);
+
+/**
+ * @brief General Matrix-multiplication function with per-channel requantization.
+ * @param[in] input_row pointer to row operand
+ * @param[in] input_col pointer to col operand
+ * @param[in] output_ch number of rows of input_row
+ * @param[in] col_batches number of column batches. Range: 1 to 4
+ * @param[in] output_shift pointer to per output channel requantization shift parameter.
+ * @param[in] output_mult pointer to per output channel requantization multiplier parameter.
+ * @param[in] out_offset output tensor offset.
+ * @param[in] col_offset input tensor(col) offset.
+ * @param[in] row_offset kernel offset(row). Not used.
+ * @param[in] out_activation_min minimum value to clamp the output to. Range : int8
+ * @param[in] out_activation_max maximum value to clamp the output to. Range : int8
+ * @param[in] row_len number of elements in each row
+ * @param[in] bias per output channel bias. Range : int32
+ * @param[in,out] out pointer to output
+ * @return The function returns one of the two
+ * 1. The incremented output pointer for a successful operation or
+ * 2. NULL if implementation is not available.
+ *
+ * @details Supported framework: TensorFlow Lite
+ */
+q7_t *arm_nn_mat_mult_s8(const q7_t *input_row,
+ const q7_t *input_col,
+ const uint16_t output_ch,
+ const uint16_t col_batches,
+ const int32_t *output_shift,
+ const int32_t *output_mult,
+ const int32_t out_offset,
+ const int32_t col_offset,
+ const int32_t row_offset,
+ const int16_t out_activation_min,
+ const int16_t out_activation_max,
+ const uint16_t row_len,
+ const int32_t *const bias,
+ q7_t *out);
+/**
+ * @brief Matrix-multiplication function for convolution with per-channel requantization for 16 bits convolution.
+ * @param[in] input_a pointer to operand A
+ * @param[in] input_b pointer to operand B, always consists of 2 vectors.
+ * @param[in] output_ch number of rows of A
+ * @param[in] out_shift pointer to per output channel requantization shift parameter.
+ * @param[in] out_mult pointer to per output channel requantization multiplier parameter.
+ * @param[in] activation_min minimum value to clamp the output to. Range : int16
+ * @param[in] activation_max maximum value to clamp the output to. Range : int16
+ * @param[in] num_col_a number of columns of A
+ * @param[in] output_bias per output channel bias. Range : int64
+ * @param[in,out] out_0 pointer to output
+ * @return The function returns one of the two
+ * 1. The incremented output pointer for a successful operation or
+ * 2. NULL if implementation is not available.
+ *
+ * @details This function does the matrix multiplication of weight matrix for all output channels
+ * with 2 columns from im2col and produces two elements/output_channel. The outputs are
+ * clamped in the range provided by activation min and max.
+ * Supported framework: TensorFlow Lite micro.
+ */
+q15_t *arm_nn_mat_mult_kernel_s16(const q7_t *input_a,
+ const q15_t *input_b,
+ const int32_t output_ch,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int16_t activation_min,
+ const int16_t activation_max,
+ const int32_t num_col_a,
+ const int64_t *const output_bias,
+ q15_t *out_0);
+/**
+ * @brief General Matrix-multiplication without requantization for one row & one column
+ * @param[in] row_elements number of row elements
+ * @param[in] row_base pointer to row operand
+ * @param[in] col_base pointer to col operand
+ * @param[out] sum_col pointer to store sum of column elements
+ * @param[out] output pointer to store result of multiply-accumulate
+ * @return The function returns the multiply-accumulated result of the row by column.
+ *
+ * @details Pseudo-code
+ * *output = 0
+ * sum_col = 0
+ * for (i = 0; i < row_elements; i++)
+ * *output += row_base[i] * col_base[i]
+ * sum_col += col_base[i]
+ *
+ */
+arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements,
+ const int8_t *row_base,
+ const int8_t *col_base,
+ int32_t *const sum_col,
+ int32_t *const output);
+
+/**
+ * @brief General Matrix-multiplication without requantization for four rows and one column
+ * @param[in] row_elements number of row elements
+ * @param[in] offset offset between rows. Can be the same as row_elements.
+ * For e.g, in a 1x1 conv scenario with stride as 1.
+ * @param[in] row_base pointer to row operand
+ * @param[in] col_base pointer to col operand
+ * @param[out] sum_col pointer to store sum of column elements
+ * @param[out] output pointer to store result(4 int32's) of multiply-accumulate
+ * @return The function returns the multiply-accumulated result of the row by column
+ *
+ * @details Pseudo-code
+ * output[0] = 0
+ * ..
+ * output[3] = 0
+ * sum_col = 0
+ * for (i = 0; i < row_elements; i++)
+ * output[0] += row_base[i] * col_base[i]
+ * ..
+ * output[3] += row_base[i + (row_elements * 3)] * col_base[i]
+ * sum_col += col_base[i]
+ */
+arm_status arm_nn_mat_mul_core_4x_s8(const int32_t row_elements,
+ const int32_t offset,
+ const int8_t *row_base,
+ const int8_t *col_base,
+ int32_t *const sum_col,
+ int32_t *const output);
+
+/**
+ * @brief General Matrix-multiplication function with per-channel requantization.
+ * This function assumes:
+ * - LHS input matrix NOT transposed (nt)
+ * - RHS input matrix transposed (t)
+ *
+ * @note This operation also performs the broadcast bias addition before the requantization
+ *
+ * @param[in] lhs Pointer to the LHS input matrix
+ * @param[in] rhs Pointer to the RHS input matrix
+ * @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of
+ * output columns (or RHS input rows)
+ * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns
+ * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization.
+ * The length of this vector is equal to the number of output columns (or RHS input
+ * rows)
+ * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length
+ * of this vector is equal to the number of output columns (or RHS input rows)
+ * @param[in] lhs_rows Number of LHS input rows
+ * @param[in] rhs_rows Number of RHS input rows
+ * @param[in] rhs_cols Number of LHS/RHS input columns
+ * @param[in] lhs_offset Offset to be applied to the LHS input value
+ * @param[in] dst_offset Offset to be applied the output result
+ * @param[in] activation_min Minimum value to clamp down the output. Range : int8
+ * @param[in] activation_max Maximum value to clamp up the output. Range : int8
+ *
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs,
+ const q7_t *rhs,
+ const q31_t *bias,
+ q7_t *dst,
+ const int32_t *dst_multipliers,
+ const int32_t *dst_shifts,
+ const int32_t lhs_rows,
+ const int32_t rhs_rows,
+ const int32_t rhs_cols,
+ const int32_t lhs_offset,
+ const int32_t dst_offset,
+ const int32_t activation_min,
+ const int32_t activation_max);
+
+/**
+ * @brief s8 Vector by Matrix (transposed) multiplication
+ *
+ * @param[in] lhs Input left-hand side vector
+ * @param[in] rhs Input right-hand side matrix (transposed)
+ * @param[in] bias Input bias
+ * @param[out] dst Output vector
+ * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector.
+ * Range: -127 to 128
+ * @param[in] rhs_offset Not used
+ * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128
+ * @param[in] dst_multiplier Output multiplier
+ * @param[in] dst_shift Output shift
+ * @param[in] rhs_cols Number of columns in the right-hand side input matrix
+ * @param[in] rhs_rows Number of rows in the right-hand side input matrix
+ * @param[in] activation_min Minimum value to clamp the output to. Range: int8
+ * @param[in] activation_max Maximum value to clamp the output to. Range: int8
+ *
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs,
+ const q7_t *rhs,
+ const q31_t *bias,
+ q7_t *dst,
+ const int32_t lhs_offset,
+ const int32_t rhs_offset,
+ const int32_t dst_offset,
+ const int32_t dst_multiplier,
+ const int32_t dst_shift,
+ const int32_t rhs_cols,
+ const int32_t rhs_rows,
+ const int32_t activation_min,
+ const int32_t activation_max);
+
+/**
+ * @brief s16 Vector by Matrix (transposed) multiplication
+ *
+ * @param[in] lhs Input left-hand side vector
+ * @param[in] rhs Input right-hand side matrix (transposed)
+ * @param[in] bias Input bias
+ * @param[out] dst Output vector
+ * @param[in] dst_multiplier Output multiplier
+ * @param[in] dst_shift Output shift
+ * @param[in] rhs_cols Number of columns in the right-hand side input matrix
+ * @param[in] rhs_rows Number of rows in the right-hand side input matrix
+ * @param[in] activation_min Minimum value to clamp the output to. Range: int16
+ * @param[in] activation_max Maximum value to clamp the output to. Range: int16
+ *
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+arm_status arm_nn_vec_mat_mult_t_s16(const q15_t *lhs,
+ const q7_t *rhs,
+ const q63_t *bias,
+ q15_t *dst,
+ const int32_t dst_multiplier,
+ const int32_t dst_shift,
+ const int32_t rhs_cols,
+ const int32_t rhs_rows,
+ const int32_t activation_min,
+ const int32_t activation_max);
+
+/**
+ * @brief s8 Vector by Matrix (transposed) multiplication with s16 output
+ *
+ * @param[in] lhs Input left-hand side vector
+ * @param[in] rhs Input right-hand side matrix (transposed)
+ * @param[out] dst Output vector
+ * @param[in] lhs_offset Offset to be added to the input values of the left-hand side
+ * vector. Range: -127 to 128
+ * @param[in] rhs_offset Not used
+ * @param[in] scatter_offset Address offset for dst. First output is stored at 'dst', the
+ * second at 'dst + scatter_offset' and so on.
+ * @param[in] dst_multiplier Output multiplier
+ * @param[in] dst_shift Output shift
+ * @param[in] rhs_cols Number of columns in the right-hand side input matrix
+ * @param[in] rhs_rows Number of rows in the right-hand side input matrix
+ * @param[in] activation_min Minimum value to clamp the output to. Range: int16
+ * @param[in] activation_max Maximum value to clamp the output to. Range: int16
+ *
+ * @return The function returns ARM_MATH_SUCCESS
+ *
+ */
+arm_status arm_nn_vec_mat_mult_t_svdf_s8(const q7_t *lhs,
+ const q7_t *rhs,
+ q15_t *dst,
+ const int32_t lhs_offset,
+ const int32_t rhs_offset,
+ const int32_t scatter_offset,
+ const int32_t dst_multiplier,
+ const int32_t dst_shift,
+ const int32_t rhs_cols,
+ const int32_t rhs_rows,
+ const int32_t activation_min,
+ const int32_t activation_max);
+
+/**
+ * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where
+ * the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs.
+ *
+ * @param[in] lhs Input left-hand side matrix
+ * @param[in] rhs Input right-hand side matrix (transposed)
+ * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128
+ * @param[in] num_ch Number of channels in LHS/RHS
+ * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels
+ * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels
+ * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128
+ * @param[in] activation_min Minimum value to clamp the output to. Range: int8
+ * @param[in] activation_max Maximum value to clamp the output to. Range: int8
+ * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix
+ * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels
+ * @param[in] out Output pointer
+ *
+ * @return The function returns one of the two
+ * - Updated output pointer if an implementation is available
+ * - NULL if no implementation is available.
+ *
+ * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read
+ * out for the following.
+ * - Output shift
+ * - Output multiplier
+ * - Output bias
+ * - rhs
+ */
+q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs,
+ const q7_t *rhs,
+ const int32_t lhs_offset,
+ const uint16_t num_ch,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int32_t out_offset,
+ const int32_t activation_min,
+ const int32_t activation_max,
+ const uint16_t row_x_col,
+ const int32_t *const output_bias,
+ q7_t *out);
+
+/**
+ * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases.
+ * Dimensions are the same for lhs and rhs.
+ *
+ * @param[in] lhs Input left-hand side matrix
+ * @param[in] rhs Input right-hand side matrix (transposed)
+ * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128
+ * @param[in] num_ch Number of channels in LHS/RHS
+ * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels.
+ * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels.
+ * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128
+ * @param[in] activation_min Minimum value to clamp the output to. Range: int8
+ * @param[in] activation_max Maximum value to clamp the output to. Range: int8
+ * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix
+ * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels.
+ * @param[in] out Output pointer
+ *
+ * @return The function returns one of the two
+ * - Updated output pointer if an implementation is available
+ * - NULL if no implementation is available.
+ *
+ * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read
+ * out for the following.
+ * - Output shift
+ * - Output multiplier
+ * - Output bias
+ * - rhs
+ */
+q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs,
+ const q7_t *rhs,
+ const int32_t lhs_offset,
+ const uint16_t num_ch,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int32_t out_offset,
+ const int32_t activation_min,
+ const int32_t activation_max,
+ const uint16_t row_x_col,
+ const int32_t *const output_bias,
+ q7_t *out);
+
+/**
+ @brief Read 2 q15 elements and post increment pointer.
+ @param[in] in_q15 Pointer to pointer that holds address of input.
+ @return q31 value
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2_ia(const q15_t **in_q15)
+{
+ q31_t val;
+
+ memcpy(&val, *in_q15, 4);
+ *in_q15 += 2;
+
+ return (val);
+}
+
+/**
+ @brief Read 4 q7 from q7 pointer and post increment pointer.
+ @param[in] in_q7 Pointer to pointer that holds address of input.
+ @return q31 value
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4_ia(const q7_t **in_q7)
+{
+ q31_t val;
+ memcpy(&val, *in_q7, 4);
+ *in_q7 += 4;
+
+ return (val);
+}
+
+/**
+ @brief Read 2 q15 from q15 pointer.
+ @param[in] in_q15 pointer to address of input.
+ @return q31 value
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2(const q15_t *in_q15)
+{
+ q31_t val;
+ memcpy(&val, in_q15, 4);
+
+ return (val);
+}
+
+/**
+ @brief Read 4 q7 values.
+ @param[in] in_q7 pointer to address of input.
+ @return q31 value
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4(const q7_t *in_q7)
+{
+ q31_t val;
+ memcpy(&val, in_q7, 4);
+
+ return (val);
+}
+
+/**
+ @brief Write four q7 to q7 pointer and increment pointer afterwards.
+ @param[in] in Double pointer to input value
+ @param[in] value Four bytes to copy
+ @return none
+ */
+__STATIC_FORCEINLINE void arm_nn_write_q7x4_ia(q7_t **in, q31_t value)
+{
+ memcpy(*in, &value, 4);
+ *in += 4;
+}
+
+/**
+ * @brief memset optimized for MVE
+ * @param[in, out] dst Destination pointer
+ * @param[in] val Value to set
+ * @param[in] block_size Number of bytes to copy.
+ *
+ */
+__STATIC_FORCEINLINE void arm_memset_q7(q7_t *dst, const q7_t val, uint32_t block_size)
+{
+#if defined(ARM_MATH_MVEI)
+ __asm volatile(" vdup.8 q0, %[set_val] \n"
+ " wlstp.8 lr, %[cnt], 1f \n"
+ "2: \n"
+ " vstrb.8 q0, [%[in]], 16 \n"
+ " letp lr, 2b \n"
+ "1: \n"
+ : [ in ] "+r"(dst)
+ : [ cnt ] "r"(block_size), [ set_val ] "r"(val)
+ : "q0", "memory", "r14");
+#else
+ memset(dst, val, block_size);
+#endif
+}
+
+#if defined(ARM_MATH_DSP)
+
+/**
+ * @brief read and expand one q7 word into two q15 words
+ */
+
+__STATIC_FORCEINLINE const q7_t *read_and_pad(const q7_t *source, q31_t *out1, q31_t *out2)
+{
+ q31_t inA = arm_nn_read_q7x4_ia(&source);
+ q31_t inAbuf1 = __SXTB16_RORn((uint32_t)inA, 8);
+ q31_t inAbuf2 = __SXTB16(inA);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ *out2 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16));
+ *out1 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16));
+#else
+ *out1 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16));
+ *out2 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16));
+#endif
+
+ return source;
+}
+
+/**
+ * @brief read and expand one q7 word into two q15 words with reordering
+ */
+
+__STATIC_FORCEINLINE const q7_t *read_and_pad_reordered(const q7_t *source, q31_t *out1, q31_t *out2)
+{
+ q31_t inA = arm_nn_read_q7x4_ia(&source);
+#ifndef ARM_MATH_BIG_ENDIAN
+ *out2 = __SXTB16(__ROR((uint32_t)inA, 8));
+ *out1 = __SXTB16(inA);
+#else
+ *out1 = __SXTB16(__ROR((uint32_t)inA, 8));
+ *out2 = __SXTB16(inA);
+#endif
+
+ return source;
+}
+
+/**
+ * @brief read and expand one q7 word into two q15 words with reordering and add an offset
+ */
+__STATIC_FORCEINLINE const q7_t *
+read_and_pad_reordered_with_offset(const q7_t *source, q31_t *out1, q31_t *out2, q31_t offset)
+{
+ q31_t inA = arm_nn_read_q7x4_ia(&source);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ *out2 = __SXTB16(__ROR((uint32_t)inA, 8));
+ *out1 = __SXTB16(inA);
+#else
+ *out1 = __SXTB16(__ROR((uint32_t)inA, 8));
+ *out2 = __SXTB16(inA);
+#endif
+ *out1 = __QADD16(*out1, offset);
+ *out2 = __QADD16(*out2, offset);
+
+ return source;
+}
+
+#endif
+
+/**
+ * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
+ *
+ * Basic Math Functions for Neural Network Computation
+ *
+ */
+
+/**
+ * @brief q7 vector multiplication with variable output shifts
+ * @param[in] *pSrcA pointer to the first input vector
+ * @param[in] *pSrcB pointer to the second input vector
+ * @param[out] *pDst pointer to the output vector
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function uses saturating arithmetic.
+ * Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated.
+ */
+
+void arm_nn_mult_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, const uint16_t out_shift, uint32_t blockSize);
+
+/**
+ * @brief q7 vector multiplication with variable output shifts
+ * @param[in] *pSrcA pointer to the first input vector
+ * @param[in] *pSrcB pointer to the second input vector
+ * @param[out] *pDst pointer to the output vector
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function uses saturating arithmetic.
+ * Results outside of the allowable q7 range [0x80 0x7F] will be saturated.
+ */
+
+void arm_nn_mult_q7(q7_t *pSrcA, q7_t *pSrcB, q7_t *pDst, const uint16_t out_shift, uint32_t blockSize);
+
+/**
+ * @brief macro for adding rounding offset
+ */
+#ifndef ARM_NN_TRUNCATE
+#define NN_ROUND(out_shift) ((0x1u << out_shift) >> 1)
+#else
+#define NN_ROUND(out_shift) 0
+#endif
+
+// Macros for shortening quantization functions' names and avoid long lines
+#define MUL_SAT(a, b) arm_nn_doubling_high_mult((a), (b))
+#define MUL_SAT_MVE(a, b) arm_doubling_high_mult_mve_32x4((a), (b))
+#define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b))
+
+#define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b))
+#define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b))
+
+#define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x))
+#define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x))
+
+/**
+ * @brief Saturating doubling high multiply. Result matches
+ * NEON instruction VQRDMULH.
+ * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX}
+ * @param[in] m2 Multiplier. Range: {NN_Q31_MIN, NN_Q31_MAX}
+ * @return Result of multiplication.
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult(const q31_t m1, const q31_t m2)
+{
+ q31_t result = 0;
+ // Rounding offset to add for a right shift of 31
+ q63_t mult = 1 << 30;
+
+ if ((m1 < 0) ^ (m2 < 0))
+ {
+ mult = 1 - mult;
+ }
+ // Gets resolved as a SMLAL instruction
+ mult = mult + (q63_t)m1 * m2;
+
+ // Utilize all of the upper 32 bits. This is the doubling step
+ // as well.
+ result = (int32_t)(mult / (1ll << 31));
+
+ if ((m1 == m2) && (m1 == (int32_t)NN_Q31_MIN))
+ {
+ result = NN_Q31_MAX;
+ }
+ return result;
+}
+
+/**
+ * @brief Doubling high multiply without saturation. This is intended
+ * for requantization where the scale is a positive integer
+ *
+ * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX}
+ * @param[in] m2 Multiplier Range: {NN_Q31_MIN, NN_Q31_MAX}
+ * @return Result of multiplication.
+ * @note The result of this matches that of neon instruction
+ * VQRDMULH for m1 in range {NN_Q31_MIN, NN_Q31_MAX} and m2 in
+ * range {NN_Q31_MIN + 1, NN_Q31_MAX}. Saturation occurs when
+ * m1 equals m2 equals NN_Q31_MIN and that is not handled by
+ * this function.
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult_no_sat(const q31_t m1, const q31_t m2)
+{
+ q31_t result = 0;
+ union arm_nn_long_long mult;
+
+ // Rounding offset to add for a right shift of 31
+ mult.word.low = 1 << 30;
+ mult.word.high = 0;
+
+ // Gets resolved as a SMLAL instruction
+ mult.long_long = mult.long_long + (q63_t)m1 * m2;
+
+ // Utilize all of the upper 32 bits. This is the doubling step
+ // as well.
+ result = (int32_t)(mult.long_long >> 31);
+
+ return result;
+}
+
+/**
+ * @brief Rounding divide by power of two.
+ * @param[in] dividend - Dividend
+ * @param[in] exponent - Divisor = power(2, exponent)
+ * Range: [0, 31]
+ * @return Rounded result of division. Midpoint is rounded away from zero.
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent)
+{
+ q31_t result = 0;
+ const q31_t remainder_mask = (1 << exponent) - 1;
+ int32_t remainder = remainder_mask & dividend;
+
+ // Basic division
+ result = dividend >> exponent;
+
+ // Adjust 'result' for rounding (mid point away from zero)
+ q31_t threshold = remainder_mask >> 1;
+ if (result < 0)
+ {
+ threshold++;
+ }
+ if (remainder > threshold)
+ {
+ result++;
+ }
+
+ return result;
+}
+
+/**
+ * @brief Requantize a given value.
+ * @param[in] val Value to be requantized
+ * @param[in] multiplier multiplier. Range {NN_Q31_MIN + 1, Q32_MAX}
+ * @param[in] shift left or right shift for 'val * multiplier'
+ *
+ * @return Returns (val * multiplier)/(2 ^ shift)
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift)
+{
+ return arm_nn_divide_by_power_of_two(arm_nn_doubling_high_mult_no_sat(val * (1 << LEFT_SHIFT(shift)), multiplier),
+ RIGHT_SHIFT(shift));
+}
+
+/**
+ * @brief Requantize a given 64 bit value.
+ * @param[in] val Value to be requantized
+ * @param[in] reduced_multiplier Reduced multiplier from range {NN_Q31_MIN + 1, Q32_MAX} to {Q16_MIN + 1,
+ * Q16_MAX}
+ * @param[in] shift left or right shift for 'val * multiplier'
+ *
+ * @return Returns (val * multiplier)/(2 ^ shift)
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_requantize_s64(const q63_t val, const q31_t reduced_multiplier, const q31_t shift)
+{
+ q31_t result = 0;
+ q63_t new_val = val * reduced_multiplier;
+
+ result = new_val >> (14 - shift); // 64->32 bit reduction
+ result = (result + 1) >> 1; // Last shift position and insert round
+
+ return result;
+}
+
+/**
+ * @brief memcpy optimized for MVE
+ * @param[in, out] dst Destination pointer
+ * @param[in] src Source pointer.
+ * @param[in] block_size Number of bytes to copy.
+ *
+ */
+__STATIC_FORCEINLINE void arm_memcpy_q7(q7_t *__RESTRICT dst, const q7_t *__RESTRICT src, uint32_t block_size)
+{
+#if defined(ARM_MATH_MVEI)
+ __asm volatile(" wlstp.8 lr, %[cnt], 1f \n"
+ "2: \n"
+ " vldrb.8 q0, [%[in]], 16 \n"
+ " vstrb.8 q0, [%[out]], 16 \n"
+ " letp lr, 2b \n"
+ "1: \n"
+ : [ in ] "+r"(src), [ out ] "+r"(dst)
+ : [ cnt ] "r"(block_size)
+ : "q0", "memory", "r14");
+#else
+ memcpy(dst, src, block_size);
+#endif
+}
+
+#if defined(ARM_MATH_MVEI)
+/**
+ * @brief Vector saturating doubling high multiply returning high half.
+ * @param[in] m1 Multiplicand
+ * @param[in] m2 Multiplier
+ * @return Result of multiplication.
+ *
+ */
+__STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve(const int32x4_t m1, const q31_t m2)
+{
+ return vqrdmulhq_n_s32(m1, m2);
+}
+
+/**
+ * @brief Vector rounding divide by power of two.
+ * @param[in] dividend - Dividend vector
+ * @param[in] exponent - Divisor = power(2, exponent)
+ * Range: [0, 31]
+ * @return Rounded result of division. Midpoint is rounded away from zero.
+ *
+ */
+__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const q31_t exponent)
+{
+ const int32x4_t shift = vdupq_n_s32(-exponent);
+ const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31);
+ const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup);
+ return vrshlq_s32(fixed_up_dividend, shift);
+}
+
+/**
+ * @brief Requantize a given vector.
+ * @param[in] val Vector to be requantized
+ * @param[in] multiplier multiplier
+ * @param[in] shift shift
+ *
+ * @return Returns (val * multiplier)/(2 ^ shift)
+ *
+ */
+__STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const q31_t multiplier, const q31_t shift)
+{
+ return arm_divide_by_power_of_two_mve(
+ arm_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier), RIGHT_SHIFT(shift));
+}
+
+__STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2)
+{
+ return vqrdmulhq_s32(m1, m2);
+}
+
+__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent)
+{
+ const int32x4_t shift = -exponent;
+ const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31);
+ const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup);
+ return vrshlq_s32(fixed_up_dividend, shift);
+}
+
+__STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val,
+ const int32x4_t multiplier,
+ const int32x4_t shift)
+{
+ const int32x4_t zz = vdupq_n_s32(0);
+ const mve_pred16_t p = vcmpgtq_n_s32(shift, 0);
+
+ const int32x4_t left_shift = vpselq_s32(shift, zz, p);
+ const int32x4_t right_shift = -vpselq_s32(zz, shift, p);
+
+ return arm_divide_by_power_of_two_mve_32x4(arm_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier),
+ right_shift);
+}
+#endif
+
+// @note The following functions are used only for softmax layer, scaled bits = 5 assumed
+
+__STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val)
+{
+ int32_t mask = 0;
+ int32_t shift = 24;
+
+ const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift);
+ const int32_t remainder = val_mod_minus_quarter - val;
+ const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28);
+ const int32_t x2 = MUL_SAT(x, x);
+
+ int32_t result = 1895147668 +
+ MUL_SAT(1895147668, x + DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1));
+
+#define SELECT_IF_NON_ZERO(x) \
+ { \
+ mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \
+ result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \
+ }
+
+ SELECT_IF_NON_ZERO(1672461947)
+ SELECT_IF_NON_ZERO(1302514674)
+ SELECT_IF_NON_ZERO(790015084)
+ SELECT_IF_NON_ZERO(290630308)
+ SELECT_IF_NON_ZERO(39332535)
+ SELECT_IF_NON_ZERO(720401)
+ SELECT_IF_NON_ZERO(242)
+
+#undef SELECT_IF_NON_ZERO
+
+ mask = MASK_IF_ZERO(val);
+ return SELECT_USING_MASK(mask, NN_Q31_MAX, result);
+}
+
+__STATIC_FORCEINLINE q31_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp)
+{
+ const int32_t thresh = ((1 << (31 - exp)) - 1);
+ int32_t result = val << exp;
+ result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), NN_Q31_MAX, result);
+ result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), NN_Q31_MIN, result);
+ return result;
+}
+
+__STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val)
+{
+ const int64_t sum = (int64_t)val + (int64_t)NN_Q31_MAX;
+ const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L);
+ int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540);
+
+ const int32_t shift = (1 << 29);
+ x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
+ x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
+ x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
+
+ return MUL_POW2(x, 1);
+}
+
+/**
+ @brief Write 2 q15 elements and post increment pointer.
+ @param[in] dest_q15 Pointer to pointer that holds address of destination.
+ @param[in] src_q31 Input value to be written.
+ @return none
+ */
+__STATIC_FORCEINLINE void arm_nn_write_q15x2_ia(q15_t **dest_q15, q31_t src_q31)
+{
+ q31_t val = src_q31;
+
+ memcpy(*dest_q15, &val, 4);
+ *dest_q15 += 2;
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/features/cmsis_nn_sample_code/nnlib/libcmsis-nn.a b/features/cmsis_nn_sample_code/nnlib/libcmsis-nn.a
new file mode 100644
index 0000000..f44974e
Binary files /dev/null and b/features/cmsis_nn_sample_code/nnlib/libcmsis-nn.a differ
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/biases_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/biases_data.h
new file mode 100644
index 0000000..80674a5
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/biases_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const int64_t fully_connected_int16_biases[11] = {-5, 45, 53, -33, 31, 51, 43, 35, 37, -1, 46};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/config_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/config_data.h
new file mode 100644
index 0000000..2607db8
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/config_data.h
@@ -0,0 +1,34 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#define FULLY_CONNECTED_INT16_OUT_CH 11
+#define FULLY_CONNECTED_INT16_IN_CH 7
+#define FULLY_CONNECTED_INT16_INPUT_W 3
+#define FULLY_CONNECTED_INT16_INPUT_H 3
+#define FULLY_CONNECTED_INT16_DST_SIZE 22
+#define FULLY_CONNECTED_INT16_INPUT_SIZE 63
+#define FULLY_CONNECTED_INT16_OUT_ACTIVATION_MIN -32766
+#define FULLY_CONNECTED_INT16_OUT_ACTIVATION_MAX 32767
+#define FULLY_CONNECTED_INT16_INPUT_BATCHES 2
+#define FULLY_CONNECTED_INT16_INPUT_OFFSET 0
+#define FULLY_CONNECTED_INT16_OUTPUT_OFFSET 0
+#define FULLY_CONNECTED_INT16_OUTPUT_MULTIPLIER 1073741824
+#define FULLY_CONNECTED_INT16_OUTPUT_SHIFT 1
+#define FULLY_CONNECTED_INT16_ACCUMULATION_DEPTH 63
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/input_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/input_data.h
new file mode 100644
index 0000000..f112806
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/input_data.h
@@ -0,0 +1,29 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const q15_t fully_connected_int16_input[126] = {
+ -3, -38, 24, 8, -11, -43, 47, 45, 6, -10, -3, -52, -23, 9, 32, 3, -7, -2, -5, 28, -40,
+ -21, -39, 6, -45, 35, -8, -16, -16, 2, -9, -42, -35, 12, -37, 33, 14, -47, -32, -38, 40, 13,
+ 12, 46, 12, -46, 27, -42, 33, 3, -43, 53, 3, -50, -35, 27, -3, -18, 12, -39, -47, 28, 1,
+ 30, 8, -50, 11, -23, 1, 4, -31, 17, 2, -35, -20, 51, -32, -42, -37, -37, 36, -12, 38, -12,
+ -28, -46, -49, -56, 17, -32, 6, -19, -47, 5, -17, -29, 1, 50, -39, 1, 39, 8, -19, 56, 5,
+ -44, -28, -49, -36, 23, 51, -7, -10, 15, 53, 50, -15, -52, -52, -1, -46, 50, -52, -49, 38, 9};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/output_ref_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/output_ref_data.h
new file mode 100644
index 0000000..e264016
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/output_ref_data.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const q15_t fully_connected_int16_output_ref[22] = {-428, 1672, -2140, 1843, -13255, 7356, -9406, -6522,
+ -1898, 7253, -5511, -4247, -9077, 372, -6992, -13817,
+ 9870, -1640, 6758, 5351, -4067, -373};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/test_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/test_data.h
new file mode 100644
index 0000000..c9e0a61
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/test_data.h
@@ -0,0 +1,24 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#include "biases_data.h"
+#include "config_data.h"
+#include "input_data.h"
+#include "output_ref_data.h"
+#include "weights_data.h"
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/weights_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/weights_data.h
new file mode 100644
index 0000000..642743a
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16/weights_data.h
@@ -0,0 +1,54 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const q7_t fully_connected_int16_weights[693] = {
+ -31, -15, -29, -30, -42, 48, 44, -18, 17, 50, 0, 57, 17, 50, -1, -10, 22, -19, -20, -13, 21, -29, 12,
+ 38, 28, 11, 38, -12, -35, -10, -47, -28, -55, -50, 3, 46, -47, -2, 26, 8, 46, 15, 9, -8, 18, 26,
+ 20, 49, -43, 20, -11, 36, -50, 18, -47, 52, -51, 31, -38, -23, -1, -5, -15, -53, -39, 35, -24, -17, 10,
+ 50, 32, -31, 26, -3, 24, 1, 51, -9, 47, -15, -26, 35, -13, -32, -20, -18, -16, 17, -25, -31, -29, -13,
+ 6, 57, -52, 22, -38, 0, -46, 21, -53, 45, -5, 17, -8, 28, 10, -25, 27, 25, -16, 22, -27, 48, 12,
+ 30, -4, 41, -43, 42, 58, -20, 27, 13, 17, 19, 13, -45, 25, 58, 7, 19, 29, 50, -21, 14, -48, 57,
+ -9, -26, -4, -15, -20, 14, 37, -21, -50, 7, 52, 49, 34, -10, 27, -8, -1, -28, 47, 14, -45, -17, -2,
+ 42, 22, 40, 51, -3, -1, 49, -7, -37, 38, -8, 36, 6, 30, -24, 42, 44, -13, 40, -26, -11, -7, -19,
+ 32, -33, 58, -7, -26, 22, 42, -2, -27, -46, 9, 5, -34, 41, -51, 28, -17, -11, 21, -28, -8, 45, -52,
+ 15, 34, 51, -32, -29, 17, -37, -17, 39, 13, -1, -33, -8, 29, 16, -49, -20, 55, 21, 10, -47, -31, -51,
+ 11, -44, 45, 39, 8, -37, -47, 16, 22, 7, 6, 38, 35, 17, 15, -39, -32, -37, -54, 33, -8, 17, -23,
+ 49, -33, 10, -8, 27, 20, -10, 15, -33, 12, 49, 28, -49, 34, 28, -8, -24, -13, 1, -36, -49, 57, 29,
+ 32, -11, -3, 19, 56, 19, -38, 49, 6, 14, -45, 21, -47, -15, -16, 54, 31, 4, -26, -17, -18, 27, -29,
+ 9, 55, 12, -25, 0, 7, 16, -16, -4, -45, -27, -22, 43, 52, -47, 20, 54, -2, -17, 58, 19, -7, 4,
+ -7, -26, -2, 15, 15, -21, -3, 1, 6, 10, -27, 54, -7, -8, -13, 21, 29, -42, 51, 7, 2, -16, -42,
+ -26, 4, -52, -50, 7, 33, 56, -31, 45, 58, 25, 25, -50, -42, -31, -54, 25, 38, -54, 58, -38, 23, 11,
+ -4, 19, 34, -55, 15, -44, -16, -40, 9, 49, -42, -16, -55, 19, -45, 16, -39, 29, 0, 35, -53, 11, -20,
+ -55, -50, 37, -27, 22, 5, -12, 31, 51, -47, 50, -49, 9, 11, 38, -25, -2, -12, -22, -10, 58, -20, -10,
+ -9, 3, -26, 43, -32, 7, 17, 36, -18, 24, 3, 37, -6, -28, 36, -14, 51, 50, -19, 37, 8, 49, -43,
+ 38, 10, -18, 3, -16, 26, 1, -26, -7, 54, 52, -54, 24, -3, 56, 22, 5, 19, 14, 10, 24, -3, 25,
+ 5, -47, -31, 14, -49, 38, -38, 4, -38, 12, -55, -9, -30, 9, 9, 9, -32, -40, -38, 33, 2, -29, -4,
+ -15, -38, -35, -25, -44, -14, -54, -42, -50, -15, 5, 0, -45, -22, 40, -23, 18, 22, -33, 5, 9, -13, -16,
+ 0, -46, 14, 29, -40, -8, 3, 1, 12, 1, -38, 53, -23, 9, -4, 12, 13, -52, -3, -51, 51, 18, -42,
+ 40, -3, 16, -55, -44, 5, 46, 11, 15, 24, -53, -16, -25, 45, -48, -6, 5, -39, 27, 1, 34, -44, 14,
+ -5, 55, 13, 48, 18, -49, -39, 7, 42, 41, 52, 56, -5, 58, -43, -10, 13, 43, 37, -20, 52, 18, -12,
+ 4, 4, 23, 44, -46, -35, 44, -27, 13, 24, -7, -29, -33, 35, 10, 12, -28, 12, 35, -35, 40, -7, -55,
+ -28, 21, 11, -12, 28, -21, -8, -34, 2, -13, -27, -8, 3, 8, -10, -6, 8, -12, -53, -28, 14, 37, -42,
+ -50, -11, -7, -18, -13, 8, -7, -8, -50, 29, -56, 27, -52, 30, 27, 40, -43, 13, 11, -45, 3, 18, 19,
+ -15, -19, -15, 5, -23, 51, -31, -15, 40, -47, 12, 2, -27, -26, -7, -26, -40, 53, 24, -52, 21, 16, 50,
+ -19, -26, 12, -31, -30, 23, -52, 20, 37, 20, -28, -16, 35, 16, -48, -47, 29, 30, 13, -11, -5, 28, -51,
+ 0, 58, -49};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/biases_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/biases_data.h
new file mode 100644
index 0000000..587dd55
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/biases_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const int64_t fully_connected_int16_big_biases[11] = {-1, 3, 4, 2, -1, 3, 3, -2, -5, -3, -4};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/config_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/config_data.h
new file mode 100644
index 0000000..00f0442
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/config_data.h
@@ -0,0 +1,34 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#define FULLY_CONNECTED_INT16_BIG_OUT_CH 11
+#define FULLY_CONNECTED_INT16_BIG_IN_CH 7
+#define FULLY_CONNECTED_INT16_BIG_INPUT_W 10
+#define FULLY_CONNECTED_INT16_BIG_INPUT_H 10
+#define FULLY_CONNECTED_INT16_BIG_DST_SIZE 33
+#define FULLY_CONNECTED_INT16_BIG_INPUT_SIZE 700
+#define FULLY_CONNECTED_INT16_BIG_OUT_ACTIVATION_MIN -32766
+#define FULLY_CONNECTED_INT16_BIG_OUT_ACTIVATION_MAX 32767
+#define FULLY_CONNECTED_INT16_BIG_INPUT_BATCHES 3
+#define FULLY_CONNECTED_INT16_BIG_INPUT_OFFSET 0
+#define FULLY_CONNECTED_INT16_BIG_OUTPUT_OFFSET 0
+#define FULLY_CONNECTED_INT16_BIG_OUTPUT_MULTIPLIER 1073741824
+#define FULLY_CONNECTED_INT16_BIG_OUTPUT_SHIFT 1
+#define FULLY_CONNECTED_INT16_BIG_ACCUMULATION_DEPTH 700
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/input_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/input_data.h
new file mode 100644
index 0000000..b69e08c
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/input_data.h
@@ -0,0 +1,96 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const q15_t fully_connected_int16_big_input[2100] = {
+ -3, 1, -4, -3, 1, 3, -2, 3, 4, -4, 4, 1, -2, -2, -4, 0, 2, -3, 3, 3, -1, -3, 4, -4, -2, -2, 3, 2, 0,
+ -4, 3, -2, -1, 2, 2, 3, -2, -1, -2, -3, -1, 2, -5, -1, 0, 3, 2, -5, 1, 3, -4, 4, -4, -4, -2, 4, -3, -1,
+ -4, -4, -4, -3, -2, 3, -5, 3, 2, 1, 2, 4, -3, 0, 0, 2, 4, -2, -3, 2, 1, 2, -1, -5, -3, 2, 3, -1, 2,
+ -4, 2, -4, -5, -4, 1, -2, 0, -5, -3, 1, 3, 4, 3, 0, -4, 0, 4, 2, 4, 3, -5, -1, -4, 3, 4, 1, -2, -2,
+ 1, -5, 0, -2, -4, -3, -4, 0, -2, -3, -5, 0, -5, -4, 1, 3, 1, -2, -5, -2, -5, 2, 1, 0, -3, -3, 3, -3, -1,
+ 4, -2, -1, -4, 4, 2, 4, 0, 3, -3, 1, -5, -5, 2, 3, 2, 4, 1, -5, 1, 2, 1, 3, 4, 0, 4, 2, 3, 0,
+ -2, 0, 0, 4, 0, -5, -5, 4, 2, -1, -2, 0, -1, -3, 1, 4, 2, -4, 0, 4, 3, -4, 2, -5, 0, 1, -3, 0, -5,
+ 4, -5, 3, 0, -3, 4, 2, 2, 0, -3, -1, 1, -2, 3, -3, 4, -2, -3, -1, 0, -5, 4, 0, 2, -2, 2, -3, 4, 2,
+ 1, -2, -3, 3, -5, -4, -2, -1, 0, 4, 4, -4, -1, -2, -1, 4, -1, -1, -1, 0, -1, -5, 2, -3, 2, 3, 3, 2, -1,
+ 0, 4, 1, -2, 0, -1, 4, 1, -1, 0, -1, 1, 1, -3, -3, 0, -3, 1, -3, 0, 3, -1, 0, -1, 0, 4, -5, 3, -5,
+ -1, 3, -3, -4, 3, -4, -3, -4, 2, -1, 0, -3, 2, -2, 3, -5, 1, -2, -1, -4, 1, -2, -4, -3, -3, 1, 2, 1, -3,
+ 4, -5, -3, 2, 0, -1, 3, -3, 3, 2, -1, -5, 3, -5, 4, 1, 1, 4, -3, -5, 0, -5, 0, 3, 1, 3, 0, 2, -4,
+ 2, -1, 1, -1, -1, 1, 4, 4, 0, -2, 2, 2, -1, 1, 0, -3, -3, 3, 4, 3, 3, -1, 4, 1, -3, 4, -1, 3, -3,
+ -3, -4, 4, 2, -4, -2, -4, 1, 1, -5, -5, -2, -3, -1, 1, -3, -2, -2, -2, -3, -5, -3, 0, 3, -1, 2, -1, -5, -4,
+ 4, 4, 0, 3, -3, 0, 4, 2, 3, -3, 0, 3, -4, 1, -1, -3, 1, -2, -1, -1, -3, -4, -2, 4, 3, -2, 0, 2, 4,
+ 0, -4, 2, 1, -5, -4, 4, -3, 3, 3, -4, -3, 1, -1, 4, -5, -3, -3, -4, 0, 4, 1, -3, 3, 1, 3, -3, 0, -5,
+ 1, -5, -4, 3, -5, -1, 1, -5, -4, 2, 0, 2, 3, -5, -5, -2, 1, 0, -1, -1, -1, -2, 1, 4, -4, -2, 0, 1, 2,
+ -4, 0, 1, -1, -2, 3, 4, -2, -4, 0, -2, 0, 0, 4, 1, 0, -4, 4, -5, 2, -3, 4, 4, 1, -3, -1, -1, 2, 3,
+ -2, 0, 0, 3, -3, 4, -3, -5, -3, 2, 0, 4, -2, 3, -4, 3, 3, -1, -2, -5, -2, -1, 2, 0, 4, 2, 0, 4, -2,
+ 0, 3, 3, 0, 2, -1, 4, 3, 1, 3, -3, 4, 2, 2, 2, -2, 4, 0, -1, 0, 1, 0, -3, -2, -4, 1, 0, -1, 3,
+ 2, -5, -1, 0, -4, -2, -4, -5, -1, 0, -3, -5, 0, 1, -3, -3, 4, 3, -1, -3, 3, -5, 0, -2, -1, 1, -5, -2, -2,
+ -1, 2, 0, -3, -4, 2, -1, -1, -2, -4, -2, 0, -3, -1, -2, -4, -3, -2, -3, -1, -1, -3, 2, -3, 3, -2, 2, 3, -1,
+ 1, -4, -4, 0, 3, 4, -3, -1, 4, -4, 2, -2, -1, 2, -1, 3, -3, 3, 0, -2, -5, 2, 4, -1, -1, 3, -2, 1, -1,
+ -4, 2, 3, 0, 3, 3, 4, 4, 2, 4, 4, -1, 4, -4, 4, 4, 1, 2, -3, 2, -4, 2, 0, -2, 2, 0, -3, 1, 4,
+ -3, -1, 3, -1, 0, 0, -4, -3, 1, -2, -1, -3, 2, -5, 0, -1, -1, 1, 0, -2, 0, 1, 0, 1, 1, 4, -1, 3, 0,
+ 2, 0, 3, 0, -2, 4, 3, -5, -1, -3, 0, -1, -3, 0, 3, -4, 2, -4, 4, -3, 1, 1, -5, -2, -1, 3, 2, 2, 0,
+ 4, 3, -1, -2, -4, 0, 0, 4, 4, 2, 0, 0, -4, -5, 1, -2, -2, 2, -1, -3, -2, 0, 0, -4, 3, 2, 2, 3, -4,
+ -5, -2, -5, 4, -4, 2, 4, 4, 3, -4, 4, 4, -3, -2, 1, -1, -5, -5, 2, 2, -5, 3, 3, -3, -5, -5, 0, -1, -2,
+ 0, 3, 2, -4, -4, 2, -1, -1, -3, -3, -2, 1, -4, 4, 4, -2, -2, 0, 3, -4, -5, -5, 2, -5, 4, 4, -5, -3, -2,
+ -2, 4, 4, 1, 4, 1, -1, -2, 0, -3, 2, 1, 3, -3, 0, -1, 2, -5, -5, 3, 2, 3, 4, -2, -3, 3, -1, -5, 2,
+ 4, 0, 4, -1, 4, -2, -2, -5, 1, -4, -4, -2, 4, 2, -4, 0, 1, -5, 0, 2, 4, -2, -4, 2, -3, 4, 1, 1, -4,
+ -3, -4, 1, 1, 1, 4, -2, 4, -3, -2, 1, 1, -1, -3, 0, 1, 4, 0, -4, 4, 4, -2, -3, 2, -1, 1, 4, -5, 0,
+ -3, -5, 4, -3, -1, 4, 4, 0, -4, -4, 3, -1, 0, -3, -1, -4, -5, 2, -5, 4, 2, -2, -2, 4, 4, -2, -5, -4, 2,
+ -4, -3, -4, -3, -5, -2, 1, -5, -1, -5, -3, 4, 3, 0, -4, 2, 0, 2, 4, -2, -3, 1, -5, -2, 4, 3, -5, -2, 4,
+ 0, -5, -1, 3, -1, -1, -2, 3, 0, 4, 1, -4, 2, 4, 1, 4, -4, 3, -1, -4, -3, -4, -2, -2, -4, 3, -4, -5, 0,
+ -3, -3, -1, -3, 4, 1, 2, -5, 0, 0, -3, 3, -2, 4, -5, -3, -4, 1, -5, 1, 0, 3, 2, 3, -3, 4, 1, -4, 2,
+ -5, -5, -3, -2, -4, 0, -5, 2, -1, -2, 1, 0, 4, 2, -3, -5, 1, 4, -4, 0, -2, -3, -3, -3, 1, 0, 2, -5, -1,
+ -3, -5, -5, 2, 3, 4, -4, 3, 2, -2, -1, -2, -3, 0, 4, 4, 1, -4, 2, -4, 2, -5, 4, -1, 1, 2, -4, -4, -3,
+ 3, -3, -4, 0, 4, 0, 1, -3, -1, 4, -2, 3, -5, 1, 3, 0, -1, -2, 1, 4, 4, -1, 2, 0, -4, -5, 2, 1, 4,
+ -3, 3, -3, -3, 1, 2, -4, -2, -1, -2, -3, -3, -1, -3, 1, -4, 4, -4, -1, 3, 1, 0, -3, 1, 1, -1, 2, 4, 1,
+ 3, 3, -1, -2, -1, -3, 3, 4, 4, 1, 3, 0, 3, 4, 4, 0, 4, -3, 0, -1, 1, 3, -4, 3, -3, -4, -5, -5, -1,
+ -4, 4, 4, 4, -1, -2, -5, 4, -2, 1, -3, -5, 1, 4, 4, 4, -2, -5, -1, -2, 2, 1, -5, 4, -2, 3, -5, 0, -1,
+ 0, 2, -2, -5, 4, -2, 1, 2, 4, -4, -3, -4, 2, 4, -1, 3, -2, 1, -3, 0, 1, -4, 4, 2, -2, 3, -1, -5, 4,
+ 1, 1, 3, -5, 1, -4, -1, -2, -5, -2, 2, -3, -4, -3, -3, 4, -5, -1, 0, 1, 1, -4, -2, 0, -5, -4, -2, 4, -4,
+ -1, 3, -4, 0, -5, 3, 1, -4, -5, -4, -3, 1, -2, -2, -5, 0, 3, 0, -4, 3, 1, 2, -1, 1, 4, -2, -3, -1, 3,
+ -2, 2, 3, -1, -1, 3, 2, 1, -5, -1, -5, 3, 2, 2, 2, 1, -5, -5, -1, 0, 0, 0, -1, 1, -5, -2, 1, -4, 2,
+ -2, 2, 4, -4, 0, -3, -1, -4, 0, -1, -1, -1, 4, 1, -5, -5, -5, -5, 2, 1, 0, -1, 1, 1, -4, 3, -5, 0, 0,
+ 4, 2, -4, -1, -2, -2, 0, 2, -5, -1, 2, 1, 1, 3, -4, 4, -4, -1, 3, 1, 3, -3, -4, -3, 1, -2, -4, 1, 0,
+ -1, 2, 1, -2, -5, -4, 2, -2, 1, -4, 1, 2, -5, -2, 1, -1, -4, -5, 0, 4, 1, -4, 0, 2, 3, -5, -2, -4, -4,
+ -2, 2, -1, 3, -3, 3, 0, 3, 3, -5, 0, -4, 2, 0, 4, -3, -4, -4, 2, 3, 1, 3, -4, -2, -3, 1, 2, -4, 0,
+ -4, -5, 0, 3, -2, 4, -4, -4, -5, 4, -1, -2, 4, -4, 0, -1, 1, 4, -2, -4, -4, -4, 2, 2, -4, -2, 3, 3, -5,
+ -3, -4, -5, -3, 1, -3, -4, 3, -5, 0, -4, -1, -4, 2, 0, -1, 4, -3, 1, 0, -5, -3, 0, 4, 1, -5, -1, -2, 0,
+ 0, -4, 2, -5, -2, 0, 3, 4, 2, 1, -4, -1, 2, -3, 4, -4, -4, 0, -4, 2, 1, 2, 4, 3, -2, -4, -1, 3, -4,
+ 1, 3, -4, 0, -4, -3, 2, -1, 1, 3, 4, -5, 3, -5, -2, -2, -1, -2, 3, -5, -1, -3, 0, 2, -4, -3, 0, -2, 4,
+ -2, -3, -5, -4, -1, -2, -4, -4, -1, 3, -2, -5, 2, 4, -4, -4, 0, 1, 0, -2, -2, -2, 4, 2, -2, 2, 0, -1, 2,
+ 3, 4, -2, -5, 0, 4, 2, -4, 0, 2, -5, 0, -3, -3, -4, -3, -2, 3, -3, -3, 2, 2, -2, 4, -3, -1, -3, -1, -2,
+ 3, -4, -1, 2, -1, -1, 1, 1, 3, 3, -3, -5, -4, 0, -1, 3, -5, 2, -1, 0, 2, -4, -2, -5, -1, 4, -5, -1, 4,
+ 2, -4, -2, 4, 2, -2, -2, -4, 3, 0, 1, 2, -2, 0, -4, -5, 4, 3, 1, 3, 3, -4, 0, -5, -4, 2, 3, 4, 0,
+ -4, 1, -4, 0, -1, 3, 2, -3, 0, -1, 4, 3, -3, 3, 0, 0, 0, -4, -3, 3, -4, 3, -1, -4, 1, -4, 2, 2, -3,
+ 2, -1, 3, 0, 0, -2, 1, -3, -2, -1, -4, 1, -3, 4, 1, 4, -5, 0, 1, 1, 3, -3, 4, 4, 0, -5, 4, 1, 0,
+ -2, -5, 0, 4, -3, -2, -1, 0, -2, 4, -1, -5, 4, 0, -4, 1, -1, 3, 2, 0, 3, 1, 3, 3, -5, -2, 1, 4, -3,
+ 0, 4, -4, 4, -4, -4, -2, -5, 3, -1, 1, 4, 3, -5, 4, -5, -2, -2, -5, -3, -2, -5, 0, -2, -1, -4, 4, 1, -2,
+ 3, -4, -2, -5, 2, -5, -5, 0, -4, -3, 2, -3, 3, 4, 1, -4, 4, 1, -3, -1, -1, 4, -2, -4, -3, 3, 3, 4, 3,
+ 1, -5, 0, -3, 3, 0, 4, -5, -4, 3, -3, -2, -5, 4, 2, 0, -4, -5, 2, 3, -1, -1, 4, 3, 2, 0, -3, 3, 0,
+ 2, -4, 1, -4, -5, 1, -3, 4, 0, -5, 4, -4, -3, -4, 3, 2, 4, 3, -5, 0, 3, 4, -2, 1, -5, 3, 0, -2, 4,
+ 2, 4, -3, -2, -2, -5, 1, -3, 1, -5, 1, -1, 2, -5, 4, -2, 4, -4, -2, -2, -1, 2, -4, 0, 3, -3, 2, -1, -2,
+ -2, -4, -4, -3, 1, -2, 2, 0, -5, 3, -2, 2, -3, -1, 4, 3, -5, -2, -2, 4, 4, -2, -3, -1, -1, 4, -5, 1, 3,
+ 2, -3, 3, -3, -2, 0, 3, 3, -3, 2, 4, 2, 0, 3, -2, -2, 2, 1, -1, -1, 2, 4, -4, 1, 2, 1, -3, -2, 3,
+ -3, -2, -2, -3, -4, -4, -1, -2, -5, 1, 0, -2, 1, 4, -1, -2, 0, 4, -3, 4, 2, -3, 2, 4, 4, 4, -5, 4, -3,
+ 0, 4, 3, -2, 0, 3, -2, 1, 4, 3, 4, -4, 1, 3, 3, -5, 0, 3, 4, 3, 1, -2, -2, 4, -5, -4, 1, 4, -3,
+ -5, 0, 0, -4, -4, -1, 3, -5, -5, 2, -3, 1, -3, 4, -3, -2, -2, 0, 0, -1, -1, 3, 2, 3, 3, 3, -2, -5, -4,
+ -3, -4, -4, -1, -2, 3, -2, -1, -4, 1, -1, -4, -4, 3, -1, -4, 1, -2, 3, 4, -1, 2, -5, -4, 2, -5, -3, 4, -1,
+ 3, -3, 3, -5, 1, -3, 2, 1, -1, 2, 4, -2};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/output_ref_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/output_ref_data.h
new file mode 100644
index 0000000..12e57e4
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/output_ref_data.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const q15_t fully_connected_int16_big_output_ref[33] = {-134, 14, -41, 201, -125, -154, 211, 14, 172, 221, -31,
+ 352, 83, 104, -4, 225, 269, 378, -65, 33, 98, 500,
+ -136, -197, -351, 133, 223, -74, 208, 476, 527, -97, -155};
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/test_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/test_data.h
new file mode 100644
index 0000000..c9e0a61
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/test_data.h
@@ -0,0 +1,24 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#include "biases_data.h"
+#include "config_data.h"
+#include "input_data.h"
+#include "output_ref_data.h"
+#include "weights_data.h"
diff --git a/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/weights_data.h b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/weights_data.h
new file mode 100644
index 0000000..6f4c26b
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/fully_connected_int16_big/weights_data.h
@@ -0,0 +1,289 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.5.0 as reference.
+#pragma once
+#include
+
+const q7_t fully_connected_int16_big_weights[7700] = {
+ 1, -3, 0, -3, 0, -1, -2, -5, -4, -5, -5, -4, 2, 1, 3, -2, -4, 0, -2, -1, 2, -2, -4, 4, 1, -5, 0, -5, 0,
+ -3, -3, -5, -4, -4, 4, -1, 2, 2, 3, 4, -3, 3, 1, -1, -1, 4, 4, -2, 1, -3, 2, 4, 1, 3, -1, -4, 4, 2,
+ 3, 1, 1, -1, -1, -5, -4, -1, -5, -5, -4, -4, -1, -2, -4, -2, 0, 3, 1, 3, -1, -2, -5, -3, 2, -3, 0, -2, -3,
+ 0, -2, 3, 4, -1, -4, 0, 0, -2, 1, 2, -1, -4, -2, -2, 1, 4, 2, -1, 0, 2, -1, 4, -4, 3, -3, -5, 0, 1,
+ 1, -3, 3, -1, 1, -5, -1, 3, -4, 4, -5, -4, -5, -2, 0, -3, 0, -3, 0, 4, -4, 1, 4, -4, 4, 1, -5, 4, -5,
+ -3, -2, 3, 2, -1, 3, 0, -5, -2, 4, 3, -5, 3, 3, 0, -2, -2, -3, 4, 1, 4, 4, -1, 3, 2, 3, 2, -5, -4,
+ 1, -4, -5, 1, 1, 4, -4, -3, 2, -2, -2, 0, -1, -2, -3, 3, -2, -2, -2, -4, 2, -5, -1, -4, 3, 3, -5, 4, -2,
+ -1, -1, 2, 0, -5, 0, -1, 1, 4, -3, 0, 3, 3, -1, 3, -1, -5, -4, -2, 0, 3, 2, -4, -3, -5, -1, 3, 1, -3,
+ -1, -1, 2, -3, -2, -2, 4, -5, -2, 0, 0, -3, 4, 3, 2, 0, -4, -1, -4, 0, 1, 0, -2, -3, 4, -4, -4, 0, -5,
+ 1, -4, 1, 2, 2, 1, -4, 3, -5, -2, 2, 0, -5, -4, -3, -2, 4, -5, -3, 1, 2, 0, 1, -3, 4, -1, -2, -4, -2,
+ 1, 0, 1, -4, 1, -2, 3, -3, 1, 0, -1, 4, 3, 2, -4, -1, -3, 1, -1, 2, -4, 0, 2, -2, 4, -3, 0, -4, -2,
+ 2, -1, -3, 3, 4, 1, 4, -4, -3, 3, 0, -3, -5, 0, -3, 3, 2, 4, -4, 4, -2, 4, -4, -1, -4, -3, 0, -2, 1,
+ 3, -4, -1, -5, -2, 2, 1, 4, -5, -1, 2, -1, 0, 1, 0, -2, -3, 2, -4, -5, -5, 4, 2, -1, 4, -5, -5, 2, 2,
+ -3, 2, -5, -5, 2, -3, -4, 0, -3, 2, 2, -3, 0, 0, -3, -3, -2, -2, -1, -4, 4, -2, -1, 2, -1, -1, 2, 2, 2,
+ -5, 2, -3, 3, 2, -5, -1, 1, -3, 1, -5, -1, 2, 2, -2, 2, -3, 2, -3, 0, -2, -1, 0, -4, -2, -4, -4, -1, -2,
+ -4, 2, -2, 2, 2, 2, -3, 0, 2, 3, 0, -2, -1, 2, 1, -4, 0, 1, -4, -3, 2, -4, 0, 4, -5, 2, -1, 2, 0,
+ -4, 4, -2, 4, 0, 3, 0, -3, -5, -4, -2, 3, -1, 4, -1, -5, -3, -3, -5, -2, 1, 0, 2, 1, 3, 2, -2, 1, -1,
+ 4, 0, -3, -3, -1, -5, -1, -3, 1, -3, 2, -5, 2, -2, 0, -4, -5, -5, -4, -5, -5, -5, 4, 2, 2, -3, 4, 3, 3,
+ 4, 3, 2, 1, 3, -1, -5, 1, 0, -1, 0, -4, 4, 3, 2, 0, 3, 1, -5, 3, -3, 1, 3, -4, 1, 3, -4, 1, -3,
+ -1, 2, -4, -2, 3, 1, 2, 3, 3, -3, 0, 0, -4, -2, -1, 2, -2, 3, 3, -1, 4, -2, 3, 0, -3, -5, -4, -1, -2,
+ -2, -2, 2, 0, 1, 2, -2, 3, 4, -4, 2, -2, -5, -1, -4, 2, -2, 2, 4, -1, 0, -2, 0, 3, -1, -2, 2, 2, 2,
+ 2, -2, -4, 2, -5, 2, -3, 4, -1, 2, -1, 4, -3, -5, 1, 0, -1, 3, -1, -3, 2, -5, -1, -4, -3, 3, -1, 3, -4,
+ 0, -3, -1, 0, -4, 2, -3, 3, 4, -5, 0, -1, 2, -5, -3, 4, -3, -3, -5, 4, 0, -2, -1, -1, -3, 4, -3, -3, 4,
+ -4, -4, -3, -2, 4, 1, -5, 3, -2, -3, -4, 0, -2, 0, 2, 3, -4, 0, 1, -4, -1, -5, 2, 4, 3, -1, 4, 0, 1,
+ -3, -4, -1, -5, 3, 4, 0, -1, 1, 0, 1, 2, -2, -2, 3, 4, 0, -4, -3, -2, -5, -5, -2, -2, -3, -3, -5, -2, -1,
+ 0, 1, -3, -3, 3, -4, 2, -4, 3, -5, -5, 2, 1, 3, -3, 4, -3, -4, -1, 2, 4, -4, 2, 4, -3, -5, -2, -5, 0,
+ -1, 0, 1, -4, -4, 0, -1, -1, -2, 4, 4, -4, 2, 0, 1, 1, -4, 3, 1, 0, 2, -4, 1, -3, -1, 4, -2, -2, -1,
+ 4, 1, 2, 4, 2, 2, 4, 1, 1, -2, 3, 4, -5, -4, 0, -2, -4, -1, -1, -1, -1, 4, -4, -1, -1, -5, -1, 3, -1,
+ 2, 4, 1, -4, 0, -2, -5, -3, -1, 0, 3, -5, -4, -1, 1, 0, -1, 1, 0, -5, 3, 4, 0, 2, -4, 1, 1, 2, 2,
+ 0, -3, 2, 3, -5, -3, -5, -4, -1, 0, 4, 0, 0, -1, 3, 1, -3, 1, 1, -5, -3, 3, 4, 2, 4, 2, 0, 2, -1,
+ -3, 4, 2, 1, 2, -1, 2, -1, -2, 3, -4, 0, 0, -5, 4, -4, 4, -5, -2, -5, 0, -3, 1, -5, -3, 3, -5, -4, 3,
+ -2, 2, -5, -3, -3, 3, -2, -4, -2, -1, -5, -5, 0, 2, 3, -3, 4, 4, -5, -1, 3, 3, 0, -4, 4, -5, -3, -3, 0,
+ -3, 2, -4, 0, 0, -5, -4, -2, -2, -1, 3, 4, -1, 3, 2, -3, -4, -1, 0, 3, 4, -5, -1, 3, 4, -1, 2, -4, -5,
+ -5, 1, -2, 4, 4, 3, 1, -5, -5, 3, 0, -2, -3, -2, -3, -2, 0, -3, 4, 1, 2, -3, 4, 3, 2, 0, -5, -1, -4,
+ -2, 0, -5, 2, -4, 0, -1, 4, 2, -5, -1, 2, 2, 4, -5, -3, 0, 4, 1, -1, 0, -3, 3, -2, 4, 4, 3, 0, 2,
+ 4, 3, 2, 4, 3, 3, 0, 2, 4, -2, 2, -1, 3, 0, 2, -5, 4, -5, -4, -2, 1, 2, -4, -5, -1, 0, 3, -3, 0,
+ 2, 3, -1, 3, -4, -2, 3, 0, -4, 2, 1, 2, 0, 2, -2, -1, -4, -2, -5, 3, 3, 1, 3, -3, -2, -3, -3, 4, -5,
+ 3, 1, 0, 4, 1, 1, 0, 0, 1, 1, -5, -4, -1, 3, 3, -5, 0, -5, 4, -3, 2, 1, 0, 1, -5, 2, 0, 1, -5,
+ -4, 4, -1, 4, 0, -2, 0, 3, 3, 4, -3, 0, 2, 2, -2, 0, 0, 0, -3, 2, 3, 4, -3, 1, -4, 1, 2, -4, -4,
+ 2, 2, 3, 3, 3, -2, -4, -3, 0, 3, 1, -1, -5, -1, 4, -4, 2, 1, -1, -1, -3, -2, 3, -4, -4, -1, 0, -4, 0,
+ -2, -3, -2, 3, -2, 3, -5, 3, 0, -2, 0, 4, -2, 2, -2, 2, 4, 3, -2, -1, 4, 3, -5, -2, -3, 1, -2, 0, -1,
+ 3, -5, -3, 4, -2, 4, -4, -5, 0, 1, -2, 4, 2, -5, 3, -5, 4, -2, -1, 2, -3, -1, 3, 1, -5, 2, 2, 4, -3,
+ -5, 4, -4, 0, -3, 3, 3, -2, 4, -5, -2, 1, 0, 2, 0, 2, 2, -1, 0, -2, 1, -5, 1, 3, 3, -3, 1, 4, 0,
+ 3, 2, 1, 4, 1, -4, -2, 4, 1, -1, -1, 4, -4, 0, 1, -1, 3, 3, -3, 0, -2, -4, -5, -5, -4, -1, -5, -2, -3,
+ 3, 2, -4, 4, -1, 3, 3, 4, 4, 3, 3, 0, 0, 0, -2, 2, -2, -5, -5, 3, -1, -5, 4, -3, 1, -4, 4, 1, -3,
+ 0, -3, 2, -4, -4, 4, -1, -4, -5, 4, -1, 1, 0, 2, 0, -1, -2, 1, -3, -5, -4, -1, 0, -1, -5, 1, -2, 3, -3,
+ -3, -4, 1, -1, 3, 2, 3, -3, 2, 2, -5, 1, 3, -1, 1, -3, 0, -2, 2, -3, -4, 1, 2, -1, 1, -3, -3, 4, -3,
+ 2, 2, 2, 4, -2, -4, -1, -2, 4, -1, -1, -4, 3, 0, -5, -2, -3, -4, -1, 1, -1, 4, 3, 2, -2, -2, -1, 4, 3,
+ -5, 0, -2, -4, 2, -2, -4, -2, -4, 0, 4, 4, 1, -5, 4, 4, -3, 1, 0, 2, -5, -1, -1, 1, -2, 2, -4, -5, -1,
+ 1, 3, -4, 3, -4, 3, -5, -4, -2, -4, -4, -3, -4, 3, -3, 0, 0, 1, -4, 3, 0, 4, -4, -3, 1, 2, 3, -3, 4,
+ 2, -3, -4, 0, 4, -5, 2, 4, 2, 4, -5, 4, -5, 3, -1, 2, -1, -5, 4, 3, 0, 1, 1, 1, -5, 1, 4, -3, -3,
+ -2, 4, 0, -4, -3, -4, 4, 1, 0, 1, 0, -4, -1, 0, 3, -4, -4, -2, 4, 4, -1, -2, 4, -4, 4, 3, -5, -3, 4,
+ 1, 2, -1, -3, 1, 1, -4, 1, -3, -2, 4, 0, 2, -3, 0, -3, -5, -5, -5, -2, 0, 3, 1, -1, 2, 2, -1, 2, -2,
+ 4, -2, 4, -1, -1, 3, -4, -1, -4, 4, -3, 4, -1, 3, 0, -1, -3, -3, 2, 1, 0, -2, 3, 1, 2, -4, 2, -1, 3,
+ 4, -5, 4, -5, 4, 4, 2, -1, 1, 3, -3, 1, -1, -1, 4, -2, -1, 1, 2, -5, 4, 2, -3, 0, -1, 0, 3, 2, -2,
+ -5, -2, 4, -5, -4, -4, -4, 4, -2, 4, -3, 0, 3, 2, -2, 2, 0, -1, -1, -4, 3, -4, -4, 0, -1, -5, -3, 3, 2,
+ -1, 3, -2, -5, 0, -1, 1, -5, -4, 2, -5, 1, 1, 3, 2, -1, -3, 0, -5, -4, -5, 2, -4, -3, 2, 1, -4, 2, -3,
+ -2, 0, 1, 3, 3, 4, -2, 2, -2, -3, 4, 4, -2, 0, 4, 4, 3, -1, -2, -4, 3, 3, 2, -1, 3, -2, 2, -2, 3,
+ 0, 0, 4, -5, 4, -5, -1, 2, -5, 3, 0, 1, 3, 0, -1, -2, -5, 2, 3, -1, 4, -2, 4, 4, -4, -2, -5, -5, -1,
+ 3, 0, -5, -2, 2, -2, 4, -4, -3, 0, 2, -1, 3, 2, -2, -1, -4, 2, -5, -2, 2, 2, 3, 4, 4, -5, -3, 4, -1,
+ 0, 4, 1, -3, -3, 2, 2, 2, 4, -2, -3, -4, 1, 3, -3, -5, 4, -1, -4, -1, -5, 4, -5, -2, 3, 3, 3, 1, 1,
+ 4, 3, 0, -4, 4, 2, -3, 3, -5, 4, -3, -2, -5, -1, 1, -2, -3, -3, -3, 4, 0, 2, -3, -3, 1, 2, -5, -2, 2,
+ 3, 2, 3, -4, 1, 2, 4, 1, 4, 3, -1, 0, 1, -2, -5, -1, -3, -2, 4, -3, -4, -1, -2, -4, -5, 0, -1, -5, -4,
+ -4, -1, 1, -5, -3, -1, 2, -1, 4, 1, 3, 3, -5, -4, 2, 2, -2, 0, -5, 1, -2, -1, 3, 1, -4, -3, 2, 4, 2,
+ -5, 2, -4, 3, -1, 0, 3, -5, 1, 4, 3, -2, 3, 3, -2, 3, -2, 1, 0, -5, 3, -4, -4, -4, 0, -5, 4, -5, -2,
+ -4, 4, -5, 0, 1, -4, -1, 0, 3, 3, -3, -1, 1, -3, -5, 4, -4, -4, -3, -3, 0, -4, -3, 3, -2, -4, 0, -3, -4,
+ -3, -1, -4, -2, -4, 4, -2, 4, -2, 3, 4, 2, -4, 2, -4, -5, 2, 2, 1, -5, 2, 0, 4, 4, 1, 0, 2, 3, -2,
+ 2, 1, -1, -1, 3, 1, 1, -3, 3, 2, -5, -1, 0, 3, -3, -2, -2, 4, 2, 4, -5, -4, 2, 3, 0, 4, 4, 1, -5,
+ 4, 4, -4, 2, -4, 1, 4, -5, -3, -5, -2, -1, -1, -3, -4, 2, -2, 0, 0, -3, 3, 0, 1, 4, -4, -5, -4, -2, 0,
+ -2, 4, 2, 3, -1, 3, -5, 3, -2, -3, 3, 4, 3, -4, -3, -3, -2, 3, 4, -2, 2, -3, 1, 3, 2, -3, 2, 4, -1,
+ 3, 0, 2, 3, 1, 2, 3, -5, 4, 3, 3, -2, 2, -2, -2, -4, 3, 0, -4, -3, 4, 1, 2, 2, -3, 0, 4, -3, -2,
+ -3, -4, -4, -2, 0, 3, -2, 2, -5, -4, 0, 4, 3, 3, 0, -5, -4, -2, -1, -3, 2, 3, -3, -3, 1, -3, -4, -5, 2,
+ 1, 1, -3, 1, -5, 3, 4, 1, -2, 1, 2, 0, -2, -2, -4, -3, -5, -3, -5, 3, -4, 1, 2, -4, -4, 1, 4, -5, 4,
+ -5, 3, -5, -5, -3, -2, -3, 0, -1, 4, 0, -3, -4, 1, -1, -3, -1, 2, 2, -3, 4, -5, -1, -1, -2, -3, -3, 4, 1,
+ -2, 2, -1, -3, -4, 3, -3, 2, -2, 1, -5, 0, 4, -3, -4, 1, -4, -3, -4, 0, -4, 3, 4, 3, -5, 0, -4, 1, -2,
+ 4, -4, -3, -4, -4, -1, 1, 4, -4, -4, -5, -3, 1, -3, 3, -3, 2, -3, 0, -4, -1, 1, 2, 0, -4, 4, 3, 4, 1,
+ -1, 1, 2, 0, -3, 1, -4, -3, -5, -5, 0, 1, 2, -4, -2, 3, -1, 4, 3, 1, 3, -3, -5, 1, -2, 1, -5, -3, -3,
+ -4, 0, -2, -3, 3, 0, 4, -1, 4, -4, 1, -4, 3, -4, 3, -3, 3, -1, -1, -3, -4, -2, -1, 4, 3, -3, 2, -2, 4,
+ -5, -2, -4, -4, -3, 3, -2, -1, -2, 2, 3, 3, -1, 3, 4, 3, 1, -5, 4, -2, 3, -2, 0, 2, 2, -5, -4, 1, -1,
+ -2, 2, 0, -1, -2, -2, 3, 2, -3, -2, 3, 2, -2, -3, 3, 1, 2, -4, 4, 2, 3, -4, -3, 0, -4, 3, 0, 2, -4,
+ -1, -4, -2, -2, 0, -2, -1, 4, 2, 1, -3, 1, 2, -1, 2, -3, -1, 4, -5, 0, 1, -3, 4, 2, -5, -2, -4, 3, -4,
+ -4, 3, -4, 3, 2, 0, 3, -1, 2, 4, -4, -5, -5, -5, -4, -4, -4, 3, -2, 4, -1, 4, 0, -4, 1, 3, -3, 2, -4,
+ 1, -5, -2, -4, 4, 2, -3, -4, -4, -4, 2, -1, 4, -4, -2, 1, -4, 4, 4, 3, -3, 3, 3, 4, -3, 4, -4, 0, 4,
+ 2, 0, 2, -4, 1, 4, 2, 4, 2, 4, -4, -4, 0, -3, 0, 3, -4, -5, 2, 3, -3, 1, 1, 1, 4, -5, -5, -4, -4,
+ 1, -5, -1, 1, 0, -1, -4, -2, -3, 0, 4, 4, -2, 1, -3, 3, 0, -5, -4, -5, -2, 4, 1, 2, 0, -2, -5, 2, 4,
+ 4, 0, -4, 1, -3, 2, 3, -5, 2, 3, -4, -2, 4, -4, -1, -5, 0, -4, -4, -4, 3, -1, -2, -3, -4, -1, 1, -3, 2,
+ -4, -2, 3, -4, 0, 0, 4, 2, 2, -2, 0, -4, 1, -3, 3, 0, 1, -3, 4, -5, 1, -5, -2, -1, 4, 2, -2, 0, -5,
+ -1, -2, 0, -4, -1, 1, -4, 0, -5, -4, -4, -4, -4, -5, -1, 4, 3, -2, -4, -2, -2, -4, -5, -5, -1, -4, 3, 4, -4,
+ -3, 2, -3, 2, -5, -4, 3, 4, -3, 2, 2, -3, -1, -4, 2, 2, 1, 4, 1, -5, 4, -3, -3, 2, 2, -3, -2, 4, -1,
+ -3, -5, 0, -1, -4, 3, -4, 0, 3, -2, 4, -3, 0, -4, 4, 2, 4, -4, 1, 0, 0, -1, -2, 2, 3, -5, 1, 4, -4,
+ 3, 1, 4, 4, -1, -1, -2, -4, 0, 4, 3, 0, -3, -2, -5, 1, 2, 2, -2, -2, 1, -4, -5, 3, -3, -1, 1, -5, -3,
+ 3, -2, -4, -1, -2, -2, -2, -3, -5, 0, -2, 0, -4, 1, -3, -2, 2, -3, 1, 1, 4, 3, 2, 0, 1, -1, -2, 2, -3,
+ -5, 4, 3, -3, 4, -5, -3, -3, 2, 4, -1, -2, 1, -5, 2, -2, 2, 2, 1, -2, 0, 2, -3, -5, 4, 4, 0, 1, -5,
+ 1, -1, -3, -5, 0, 2, 3, 2, -2, 2, -4, 4, 2, 0, -1, 1, -1, 0, -2, 3, 2, -1, -5, -1, -1, -2, 0, 2, 4,
+ -1, 2, -1, -2, 4, 1, 2, -5, -1, -2, 2, -2, -1, 4, -4, 3, -5, -3, -3, -3, 1, -4, -3, 2, -2, -5, 0, 2, -2,
+ 0, 1, 0, -3, -4, 1, -5, -5, -4, -4, -4, 0, -1, -4, -2, -2, 1, -2, -5, 3, 2, -4, 1, 1, -1, 0, 3, -1, -3,
+ 3, -1, 2, 2, 3, 4, -3, -2, -2, 2, 1, -3, -2, -2, 0, 2, -3, 2, -1, 0, -1, 1, 1, 1, 1, -4, 0, 2, 4,
+ -3, -4, -2, 1, -1, -1, 4, -1, -1, -1, 4, -4, -5, 1, 1, -4, -3, 2, 1, 2, -2, 3, 3, -1, 3, -5, 3, 1, -1,
+ -1, 4, 3, -4, -5, -1, 1, 4, -4, -3, -5, -2, -4, 3, -1, 1, -1, 2, -5, -1, -2, 3, 1, -4, -5, -5, 2, -1, -5,
+ -4, 1, -5, -2, -1, -1, 0, -5, -2, -4, 2, 2, -4, 0, 4, -2, -5, 1, 0, -4, 4, 1, 1, 3, -5, -5, 2, -5, 2,
+ -1, -1, -5, 2, 0, 2, -5, 1, -1, 3, -3, 0, -1, -4, 4, -1, -4, -1, 3, 1, 4, 4, 1, 2, -1, 0, -3, 1, -5,
+ 3, 3, 3, -3, -4, 4, -3, 4, 1, 2, -3, -1, 1, -1, 1, -5, -5, -4, 4, -3, -2, 4, -1, 3, 0, 4, -5, -3, 3,
+ -2, -4, 0, -1, 0, 4, -5, -4, 2, 4, -3, 2, 2, -5, -4, 0, -4, -2, 1, -3, 0, 1, 4, 0, -1, -1, -4, 1, 0,
+ 3, 4, -4, -3, 1, 4, -4, 1, 4, 1, 3, 3, -2, 1, 0, 4, 0, -5, 2, 3, -2, 4, 0, 2, -5, -1, -5, -5, -1,
+ -1, 2, -5, -2, 2, -3, -5, 3, -1, 4, 2, 2, -5, -4, -2, -2, -3, 4, 3, 2, -2, 3, -2, 0, -5, -2, 3, 4, 0,
+ 0, 1, -5, -1, 2, 4, -3, -1, -5, -5, -1, 0, 2, 4, 0, 4, -5, 1, -4, 2, 2, 3, 3, 4, -2, 3, 2, -1, 1,
+ 2, -5, 4, 3, -1, 3, 3, -4, 0, -1, -1, -5, 0, -5, 4, 1, 2, 0, -2, -4, -4, 0, 2, -5, -2, 4, -2, 3, -5,
+ -5, 1, -3, 0, 3, -4, 2, 3, 4, -2, 1, 1, -1, -4, 0, 4, -2, 2, 3, -3, -3, -3, -5, -1, -4, 0, 1, 4, 1,
+ -3, 4, -2, 3, 2, 0, 0, 1, -1, 0, 2, 2, -2, 1, 3, 2, -1, -5, 2, -5, -5, -5, -1, -4, -2, 4, -4, -4, -5,
+ 3, 4, 2, 2, 4, 1, 0, 2, -2, 4, 2, -2, -1, -1, -5, -2, -5, -5, 4, -3, 4, 2, 4, -2, -4, -3, -5, -5, -5,
+ 1, 3, -2, 0, 4, 4, -2, 3, -3, -5, 1, -4, -4, 1, -5, -4, -3, 1, 0, -2, -5, -1, -3, -3, 0, 1, 1, 0, 2,
+ 0, 2, -1, -2, -5, -4, -4, 2, -5, -3, -5, 2, -3, 4, -1, 2, -4, 1, 4, -3, -3, -1, -5, 4, 1, 0, 3, 3, 4,
+ -1, -3, 4, -5, -3, -5, -3, -4, -2, -2, 3, -5, -2, -2, -3, 3, 1, 2, 3, 4, -3, 0, 1, 4, -5, -2, -4, 0, 0,
+ 1, -4, 3, -5, 0, -3, 1, -3, -5, 1, 1, 4, -5, 2, 3, 3, 3, -5, 3, 1, 3, 0, -5, -2, 2, 4, -1, -3, -4,
+ -3, -2, -2, 2, 0, -2, 0, -2, 1, -3, -3, -1, -1, -5, -4, -2, -4, 3, 3, 0, 3, -1, -1, 2, 3, 2, 4, -5, 4,
+ -2, -3, 3, -5, 4, 1, -2, 2, 2, -5, -4, -4, 3, 4, -3, -1, -4, -5, 1, 4, -1, 2, 3, 1, 3, -5, 3, 4, -5,
+ 0, 2, -3, -3, -4, 0, 2, 3, -4, -5, 4, 3, -5, -4, -4, 2, 0, 0, -5, -3, -5, 0, 4, 1, -2, 0, -5, 1, -2,
+ -5, -3, -3, -3, -5, -2, -2, 1, -1, 0, 3, -2, -4, -2, 0, 2, -5, -2, -5, -4, 4, 4, -3, 0, 3, -4, -1, -4, 4,
+ 3, -1, -4, -1, -4, 2, 1, -2, -1, -5, -5, -5, -4, -5, 0, 0, -3, -3, -1, 1, -3, 1, -3, 1, 4, 3, 4, 0, -2,
+ 3, 2, -4, -4, -1, 3, 0, 3, -5, -5, -2, 4, -5, -2, 2, -5, -4, -5, -4, 3, 2, -5, -3, 4, 1, 2, 2, 3, 3,
+ -1, -1, -1, 2, -4, -1, -5, 1, 3, 0, 1, 4, -2, 0, 2, -5, -5, 1, -3, 0, 3, 2, -1, 1, 0, -2, 1, -2, -2,
+ 3, -2, 0, -4, 2, -2, -2, 0, 0, -1, 4, -4, 2, -2, 3, 1, -4, -3, -5, 0, -2, -3, -1, -2, 2, 1, -5, 1, -1,
+ 0, 2, -1, 2, 0, -2, 4, 0, -2, 1, -3, -5, 4, -2, -1, -3, 1, 2, -4, -1, 0, -3, 0, -2, -1, 0, 3, 2, 3,
+ -5, -4, 0, 4, -4, -2, -1, -5, -4, 2, 1, -1, 1, 0, 4, -2, 2, -4, 0, 4, 2, -3, 0, 4, 2, 0, 1, -4, -4,
+ -1, -5, 0, -3, 2, -5, 3, 0, -2, 1, 0, -2, 0, -1, -2, 4, -3, -4, -1, 1, 2, 2, -3, -4, -3, -2, -5, 0, 4,
+ 4, -4, -5, 2, -1, -4, -2, 0, -2, 4, 0, 1, -3, -2, -1, 4, -1, -2, -4, 3, 1, 3, 3, 0, 0, 0, -2, -1, 2,
+ -4, -2, 1, 4, -4, -3, 3, -2, 0, -5, -2, -1, -2, 2, -4, 2, -4, 0, -5, -1, 0, 0, -3, 1, 2, 1, 0, -3, 1,
+ 3, 0, -3, 2, 2, -1, -1, 3, -4, -4, -4, 0, -5, -4, 3, 1, 4, 0, -4, -3, -5, 4, -5, -2, 3, -2, -2, -1, -1,
+ -4, -1, -5, 4, 4, -3, -4, -1, -3, -4, -2, -2, 2, -1, -1, -1, 1, -1, 4, -5, 0, 4, -3, 1, -1, 0, -1, 4, -4,
+ 0, 0, -3, 4, -5, -5, 2, 4, -2, 0, -5, -4, -2, 2, 0, -5, 1, 2, -2, -1, -1, 0, -3, -3, -2, -2, 1, 1, -1,
+ -3, 4, -1, -4, 0, -4, 4, 4, -5, -4, 1, 4, 4, 4, -3, -3, 0, 4, 1, -2, 3, -4, -3, 3, 4, -1, 1, -2, -1,
+ 2, 2, -3, -3, -1, -4, 1, -4, -1, 3, -5, -2, 4, -2, 3, -2, -5, -1, 1, -5, 3, 2, 1, -4, -4, -4, -5, -2, -1,
+ -5, 1, 1, -1, -1, -5, -2, 2, -1, -3, 0, 1, -4, 1, 1, -5, 4, 2, 0, 2, -3, -4, -4, 2, 2, -1, 2, 2, -2,
+ 2, -1, -4, -4, -4, -3, 2, -2, 4, -3, -5, 2, 3, 2, -4, -4, 1, -1, 4, 4, 2, 4, 1, -5, 4, 2, -2, 3, 3,
+ -2, 1, 3, -5, 4, 2, 2, -1, 2, -5, 1, -3, -5, -2, 0, 2, 0, -5, -4, -3, 2, 4, 3, 3, -4, 1, -5, -2, -4,
+ -3, 3, 0, 3, -3, -3, 1, 1, 2, 4, -4, -3, -1, -4, 2, 1, 3, 3, 3, -5, 3, 0, -5, 1, 3, -2, -1, -4, -5,
+ -2, -5, 3, 0, 2, -2, 1, 4, -2, -1, -3, 2, -4, -1, -3, 1, -5, 3, -2, 1, 3, 4, -3, -5, 0, 1, 3, 3, 1,
+ 2, 1, -2, 4, -3, -2, -3, -5, -1, -2, 2, -5, -1, 0, 4, 3, -3, 0, 2, 0, -5, 1, -5, 4, 4, 2, -3, 2, 3,
+ 1, -4, -1, 3, -2, -3, -4, -2, -5, -1, 4, -3, -4, -1, 1, -2, 2, -1, 3, 1, -3, -2, -5, -3, 0, -4, -3, -1, 4,
+ 4, -4, 1, 4, -4, 1, -3, 2, -5, -2, 0, -1, -2, -5, 3, 3, 0, 0, -3, 3, -4, 1, 1, -3, -4, 1, -2, -4, 3,
+ -4, 3, -3, 4, -4, -5, -5, 4, -4, 4, 1, -1, -1, -5, -2, 4, 4, 2, -3, 4, -5, -2, 1, 2, 3, 2, 1, -5, -4,
+ 0, 4, -4, 0, -3, -2, -4, -3, -4, 2, 0, -5, -1, -5, -5, -5, 3, 4, 0, 1, -3, -3, 3, 2, 1, 4, 3, 2, -3,
+ -2, -5, -1, -1, 4, -2, -3, -2, -3, -2, -5, -1, -1, -5, -2, 4, -1, -5, -5, -4, -5, -3, 1, 0, -1, -5, -5, -4, -4,
+ -5, 0, -4, 0, 1, 2, 0, -1, 3, 4, -5, -4, 3, 4, -4, -4, 2, -2, 1, -5, -2, -2, -1, -5, 1, 2, -4, 1, 2,
+ -3, -2, 2, 3, 1, -2, 2, -2, 1, -2, -3, 0, 0, 2, 4, 0, -2, -1, 3, 3, -1, 2, 4, 1, 2, 0, 1, 2, 0,
+ 0, -4, -4, 4, -5, -3, -3, 2, 4, -3, 1, 3, 3, 3, 3, -1, 3, -1, 1, -2, -4, -1, -4, -5, -4, 2, -2, -3, 4,
+ 4, -3, 2, -4, -3, 3, -2, 4, -1, 4, -1, 1, 1, -2, -5, -2, 3, 2, -4, 1, 3, -2, -5, 1, -3, -1, -1, -2, -3,
+ 1, -1, -3, -1, 3, -2, -4, 3, 0, 0, -1, 2, 0, 2, 3, -1, 3, 0, -1, 1, -2, 3, 2, 4, -1, -5, 0, -2, -2,
+ 3, -2, -5, -2, -4, 4, -5, 0, 2, 4, -4, -4, 4, -4, -4, 0, 3, 3, -1, -2, 0, 2, 3, -3, -1, -4, 3, -2, 4,
+ 4, -3, 0, -2, 4, -4, -2, -5, 0, -5, -5, 4, 0, -1, -2, -3, 2, 2, 4, -5, 0, -5, 3, -3, -5, 1, 2, -2, -5,
+ -1, 1, -1, 3, 2, 4, -5, -3, 0, -5, 0, -2, -1, -2, 4, -1, -1, 2, 0, -3, 2, -2, -1, 4, -3, -2, -3, -4, 3,
+ -3, -2, -1, -2, 0, -2, 1, 2, 3, -3, -2, -2, -5, -4, -1, 3, 4, -1, 3, 0, 3, -2, 3, 4, 1, 1, 3, -1, -4,
+ 4, -3, -4, -5, -2, 0, -5, -2, 4, -4, 2, -4, -5, 4, -1, -2, 0, 2, -1, 1, 3, 4, -4, -2, 2, 3, -2, -5, 4,
+ 0, -4, 2, -3, 0, 0, 4, 0, -3, 0, -1, -4, -2, -1, -1, 4, 3, -4, -5, -2, -2, -4, 4, 2, -5, -1, 4, -2, 0,
+ 3, -2, -4, 1, -2, -4, -3, -1, 3, -3, -2, 2, -4, -5, 1, 1, 4, 4, 1, 3, 1, 2, -2, -4, 0, -2, -3, -4, -2,
+ -2, 1, -1, -2, -5, -1, 0, -5, 3, -1, -3, -2, 1, -5, -4, 4, -3, -4, -1, 2, 0, -3, 2, 3, -2, 0, 2, -5, 1,
+ 3, -3, 2, 3, 0, -5, -4, -3, -3, 4, 4, -2, -3, -3, 4, -3, -1, -1, 2, -1, -4, 0, 1, 3, -1, 1, 0, -4, 1,
+ 0, -5, -1, -5, -3, -1, -1, -2, 2, 3, -1, -4, -3, 2, 0, -1, 3, 1, 1, 3, -4, 0, 1, -1, 4, 0, -5, -4, -2,
+ -1, -2, -2, -2, -3, -2, -3, 1, 0, -5, -4, 3, -4, 1, -3, -5, -2, -3, 0, 3, -3, 4, 2, -5, 1, 4, 3, -3, -5,
+ 2, -2, -1, 1, -2, 4, 4, 4, 4, 0, -5, 3, 0, 0, 2, -3, -5, -5, -5, -2, -4, -1, 4, 4, 1, -1, 3, -4, -1,
+ -5, 0, 2, 2, -5, -1, 1, -3, -5, -2, -2, -1, -4, 0, 0, 3, 0, -1, 3, 0, -2, 4, -1, 0, 1, 3, 0, 0, 3,
+ 0, 3, 0, 1, -3, -2, -5, 1, 4, 4, 0, -2, 0, 1, -2, 1, -4, 0, 0, 4, -2, 2, -5, 0, 1, -2, 4, 3, 2,
+ 4, -4, 0, 1, 1, -2, 2, -4, 2, -3, -3, -1, 0, 2, -3, 1, -3, 2, -1, -1, 1, -5, -3, -1, -1, -3, 0, 3, 1,
+ 1, -2, 2, -2, -2, -2, -1, -1, -4, -3, -3, -4, 1, 4, -4, -4, -3, -1, -5, -2, -2, 3, -1, -1, 3, -5, 4, -3, 1,
+ 3, -4, -1, 4, -5, -1, -2, -3, -4, -4, -5, -5, -3, 1, 4, -1, -4, -3, 2, -3, 0, -3, 1, 2, -1, -2, -5, -5, -2,
+ 3, -1, -1, -4, -4, 3, 1, 1, -5, -2, -3, -1, -3, -1, 2, -2, -5, -5, 0, 2, -1, -1, 3, -1, -3, 3, 3, -2, -1,
+ 1, -2, 4, 2, 2, 0, -5, 4, 4, 1, 3, 1, 3, 1, -2, -5, -3, 3, 3, 3, -3, -4, 1, -5, -4, 0, 2, -1, 0,
+ -1, -4, 3, 4, -5, -5, 3, -5, 4, 4, 0, -2, 2, 2, -5, -1, 1, 3, 3, 3, 3, -2, 0, 0, -4, -2, 1, -3, 2,
+ 0, -2, 3, -5, -4, -1, 2, -5, -1, 0, 4, -3, -2, 2, -4, -3, 0, -1, 0, 2, -1, -3, -2, 4, 3, 0, -3, -2, -5,
+ -2, 2, 4, 3, -5, -2, -5, 3, -4, 4, 0, -5, 2, 4, 1, -2, -5, -1, 0, 0, -5, 0, -4, 1, 3, 0, 1, 0, -3,
+ -4, -5, -3, 2, 0, -5, 1, -2, -2, -2, 1, -4, 0, -2, 3, 3, 2, -2, 2, -5, -3, -4, 0, -1, -4, -5, 2, 1, 0,
+ -1, 1, -3, -5, -4, 0, 4, 3, -3, 0, -1, 1, -5, 3, -2, -2, 4, -4, -5, 4, -2, -4, 0, 2, 2, 4, 0, -4, -2,
+ 2, 2, -3, -5, 2, -3, -1, 4, 2, -5, 0, -1, 2, 0, -4, 4, 3, -2, -1, 1, 0, -4, 1, -2, -2, 0, -1, -3, -3,
+ -2, -2, -4, -4, -3, 1, -3, -5, 0, -4, 2, 4, 3, 3, 2, 4, -3, -5, 1, -1, 0, -3, -2, 2, 1, -1, 2, -5, 2,
+ -3, -2, -2, -3, 3, -3, -1, 0, 0, 2, -4, -3, -5, 1, 1, 4, -2, -2, -1, -5, 2, -1, 2, 4, -1, 4, -4, 3, -5,
+ -1, -3, -1, 0, 3, 2, 0, -2, 1, 3, 1, -2, -2, 4, 3, -3, 0, -4, 3, 4, -1, 2, 0, -2, 1, -2, -4, -1, 3,
+ 2, 3, -4, 2, -3, 0, -4, -2, -1, 3, 0, 4, 1, -4, -5, 4, 4, -1, -3, 0, -5, -5, 0, 2, 4, -2, 3, -4, 2,
+ 0, -3, -1, -2, 2, 0, -1, -5, 3, -3, -5, -3, 1, -3, -4, -4, -5, -5, 1, -1, 4, -2, 2, -3, 0, 0, 2, 0, 0,
+ -5, 4, 4, 0, 3, -2, 3, -1, 0, 0, -2, 2, 3, -3, -2, -1, -2, -1, 4, 2, -3, -2, -3, -4, -4, -4, 3, -3, 0,
+ 2, -5, 4, -1, 3, -4, 4, -3, 4, -2, -2, 4, 4, -2, -2, 2, 2, -1, 0, 1, -2, -4, -4, -2, 4, 2, -4, -5, -2,
+ 3, -4, -3, 3, 0, 1, 1, -3, 3, -4, 3, 2, 1, 2, 0, -3, 0, 0, -3, 2, -3, 2, 0, 4, -4, -2, 3, -5, -5,
+ 0, -3, 3, -3, 3, -1, -5, 3, 4, -2, 0, -1, 0, 2, 4, -5, -4, 1, -2, 2, 3, 1, -5, -5, -2, -1, -5, 4, 0,
+ 3, 2, 4, 2, 2, 3, -4, 2, -4, 4, 3, 0, -3, -3, -1, -5, 4, -5, 0, -1, -1, 3, 0, -5, 3, 4, -2, -3, 2,
+ 2, 2, 1, 1, 3, 1, 4, -5, -1, 4, 3, -3, -1, -2, 3, -4, -2, -2, -1, 0, 0, -4, 4, -3, 0, 4, 3, 3, 2,
+ 2, -1, 0, 3, -2, 0, 4, 3, -1, -4, -1, 2, -5, 0, 0, 3, -2, 0, -3, 4, 3, -5, 2, -5, -4, 1, 0, -1, -5,
+ -4, 3, -2, -5, 1, -2, 3, 1, 4, -3, -2, -1, 3, 4, 0, 1, -4, -3, -5, -5, 4, -4, -1, 1, -5, -3, 0, -3, 2,
+ 3, -3, 1, 2, -2, 3, 2, -2, -4, -2, 2, 3, -2, -5, 3, 3, 0, 4, -3, 2, -5, 3, -2, -2, -4, 3, -3, -4, -1,
+ 4, 3, -4, -1, -5, 2, 4, 2, -5, 1, 2, 3, 3, -4, 1, -3, 4, -1, -1, 2, 2, 0, -1, 2, -1, 3, -5, 4, -1,
+ -1, -5, -5, -1, -2, 2, -4, 0, -4, 4, -2, 0, -1, 0, -3, -1, 3, 4, 1, 1, -1, -3, -5, 0, 2, -4, 2, 4, -1,
+ 0, -3, -4, -4, 2, 2, -1, 2, -2, 3, 4, 3, 0, -4, -4, -3, 4, 1, 3, -3, 3, 3, -1, 2, 2, 0, 2, 1, -1,
+ 0, 4, -5, 0, 2, -3, 2, 3, 4, 0, -5, 3, 1, 0, 2, 3, 1, -3, 4, 3, -2, 4, 2, 4, -3, -3, 4, 2, -5,
+ -3, 1, 1, 2, 3, 4, -3, -4, 2, 2, 3, 4, -4, -1, -3, -4, 3, 3, 3, 2, -4, -2, -2, -5, -3, -2, 2, 0, 4,
+ 0, -3, 4, -2, 4, 4, -3, -5, 4, -4, 0, -4, -5, 4, -2, -5, 0, -5, 3, -3, -1, 3, -5, -2, -4, 4, 0, 2, -4,
+ 4, -3, -4, -3, -2, -5, -3, -2, 3, -4, 0, -5, 1, 3, -5, 0, -2, 0, -4, -1, -5, 0, -3, -5, -5, -3, -4, 3, -5,
+ 1, -1, 2, 3, 3, 2, -1, -1, -1, 2, -1, -2, -1, -4, 2, 2, -5, 1, -3, -3, 2, 0, 0, -2, 2, -2, 1, 3, 3,
+ 1, -1, -2, -2, -3, 2, 1, 3, -5, -4, -4, 3, -2, -5, -1, 4, -2, 1, -2, -3, 2, 3, -4, -4, 1, -4, -1, 3, 2,
+ -2, 3, -3, -3, 1, 3, 4, 1, -1, -4, -4, 0, -1, -1, -2, 3, 3, -1, -1, -1, -3, -1, -1, -2, -2, 1, -5, 1, 2,
+ 3, 3, 4, -5, 3, -4, 2, 2, -2, -4, -4, -4, -5, -5, -4, 1, -5, 2, 3, 2, -1, -3, -3, -5, 0, 2, -1, 0, -4,
+ 1, -3, -3, 3, 2, 4, -3, -4, 1, -4, 1, 0, -5, -5, -2, 3, -1, -5, 1, -5, -5, -2, 2, -4, 2, -4, 1, -2, -2,
+ -3, -5, -3, -5, 0, 0, -1, 4, -4, -5, 0, -1, 3, -1, 0, -5, 3, 0, -4, 3, 2, 1, 0, 2, 1, -4, 3, -2, -1,
+ 0, 4, 0, -4, -3, -3, -3, -3, 4, 3, 0, 1, 0, -3, -4, -5, 2, -5, -3, -4, -3, -2, -3, -4, -5, -4, 2, -1, -1,
+ 2, -2, -1, 1, -1, 4, -3, 0, 3, -5, -2, 3, -3, -5, -2, 3, -4, -1, 4, -5, -5, -1, -3, 1, -1, 2, -5, 1, -4,
+ 0, 0, -5, -1, -5, 4, -1, -3, -1, -4, -3, 4, 3, -4, 1, -4, -4, -2, -4, 4, 1, 1, -3, 1, 4, -2, 2, 4, 2,
+ -4, 2, 4, 1, -2, 3, -3, -5, 1, 2, -5, 0, 1, 4, 2, -2, -5, 4, -2, 3, 0, -2, -3, -1, 1, 4, 0, 1, 1,
+ 4, -5, 2, 4, -5, -5, 0, 4, -5, -5, -4, -3, 2, -1, 3, -2, 2, 4, 1, -1, -5, 3, -4, -1, -1, 4, 0, 3, 2,
+ 3, 2, -1, 4, -5, -2, -3, 1, -3, 0, 2, -3, -3, -3, 0, 2, -2, -4, 4, 3, 3, -3, 2, -2, 1, 0, -3, 4, -1,
+ -5, -4, -2, 1, 3, -4, 3, 2, 2, 1, 4, 2, 4, -4, -1, -4, 0, 1, 3, -3, -1, -1, -3, 3, 3, 2, 0, 2, 0,
+ 4, -4, 4, -5, -2, 1, 2, 2, 0, -1, -1, 0, 2, -4, -4, 2, 4, 3, -1, -1, 0, -1, -1, -2, -5, 0, -4, 4, -2,
+ 1, -1, 2, -5, -5, -1, 0, -5, -4, -3, 1, 3, 3, 4, 2, -3, 4, -2, 4, -2, 4, -3, -2, 1, -5, 0, 1, 3, -5,
+ 4, 3, -3, -2, -2, 2, -3, -5, 2, 4, -2, 1, 3, -1, 4, 3, -4, -3, 3, 1, -3, -3, 2, 4, 1, -1, -3, 0, 0,
+ -2, 0, -5, 4, 4, -4, -2, 4, -2, -3, 0, -2, -1, -3, -5, 2, -3, 2, -4, 1, 4, 1, -5, -1, -1, -4, -4, 0, -2,
+ -5, 1, 4, -1, -3, -1, -5, -5, 2, 3, 1, -4, 0, -5, 1, 4, -3, -5, 2, 3, 1, -3, -3, 1, -5, -3, -1, 1, -5,
+ 0, 0, 3, -4, -2, -3, 4, -1, -2, -2, -2, -1, -1, -1, -3, -4, 1, -5, -5, 2, -4, -1, -1, -2, 1, 1, 4, -4, 4,
+ -5, 2, -5, -4, -3, -5, -2, -5, -4, -2, 4, 3, -2, -3, 3, -2, 0, 0, -3, -1, 1, 3, -2, -1, -1, -4, -3, 2, 0,
+ -2, 2, 3, -5, 2, -2, 1, 1, -3, -2, 2, 1, -3, 0, 1, 4, -1, -1, -3, 0, -5, 3, 2, 2, 3, -1, -4, 3, -1,
+ 3, 3, 3, 4, -3, -5, 1, 1, -4, 0, 2, 2, -3, 4, 3, 2, 0, 3, 0, 1, -1, 0, -2, -4, -2, 3, 0, 0, 3,
+ 0, 2, 0, 3, -4, 4, 0, -2, 0, 4, -5, -1, -4, -1, -2, 2, -5, 0, 3, -2, -1, 3, 0, 3, 2, 2, 3, -1, 1,
+ 0, 3, -3, 3, -2, 3, 1, -4, -1, -2, 4, 1, -3, 4, 1, -5, -3, 2, 2, -5, -4, 4, -5, -4, 4, 3, -5, 0, -2,
+ 4, -2, -2, 4, 0, 1, -2, -3, 3, -3, 3, -2, -2, 4, -3, 1, -3, 4, 2, 4, -1, -4, 1, 1, -3, 2, -3, 2, -5,
+ 3, -3, -5, -5, 1, 1, -5, 4, -1, -3, -4, 1, 1, -1, -3, -2, 4, -4, 3, -3, -3, 1, 3, 4, -4, 2, 3, -4, 1,
+ 2, 0, 1, 1, -5, -1, -5, -3, -2, 2, 1, 4, 4, 3, 1, -1, -1, 2, -4, 2, -3, -3, -3, -3, -4, -3, -2, -4, 3,
+ 3, -1, 3, -2, 2, -2, -1, -2, -5, 0, -3, -5, -4, 3, 3, 0, 2, -4, 3, 2, -3, -1, -5, 2, 2, -2, -2, 2, -2,
+ -2, 3, -1, 1, 3, 2, -1, -1, -1, 4, -4, 4, -3, -3, 4, -5, -2, -1, -4, 3, 1, 4, -2, 3, 1, -3, 4, -5, 1,
+ 2, -3, -5, 2, -3, 1, -3, 3, 2, 0, -4, 1, 4, -4, 2, 1, 1, 1, -4, 1, 3, -5, 0, -2, 3, -3, -4, -4, -3,
+ -4, -2, -1, -2, -5, -4, -1, -5, -4, -2, -3, 1, -1, -3, -3, 4, 1, 0, 1, 3, -3, -2, -3, 4, -3, 3, 2, -2, 4,
+ 2, -5, 0, 1, -3, 3, -5, 0, -4, -2, 2, 3, -5, 4, -5, 0, 4, -1, 0, -4, 4, 2, -1, 3, -1, 4, -2, 1, -3,
+ 0, -4, -3, -1, 2, 3, 1, -1, -2, -5, 2, 2, 0, -5, -3, -4, 4, -4, -2, -3, 3, 1, -4, -4, 4, -5, 3, 0, 4,
+ -4, -5, 4, -3, -2, -5, -1, -5, -3, 3, -1, 1, -5, -1, -5, -3, 1, -1, 2, -5, -4, 0, -5, -1, -5, -1, 3, -5, 2,
+ -2, -3, -2, 2, 0, -2, -1, -4, -1, -5, -1, 4, 3, -1, -1, -3, -3, -3, 2, 0, 0, 2, -3, -3, -5, 1, 0, -1, -5,
+ -3, 3, -1, 3, 1, 2, 3, 4, -2, 4, -4, 0, -4, 3, -2, 2, -1, 2, 0, -3, -4, 0, 0, -1, 0, 4, -1, -4, 3,
+ 1, 3, 3, -5, 4, 3, 2, 4, 3, 0, 1, 4, 1, 0, -5, 2, -3, -3, -3, 4, 2, 2, -2, 0, -2, -3, -2, 0, 2,
+ 3, 2, -2, -5, 2, 3, -5, -4, -2, -4, 2, 1, -2, -4, 0, 0, 2, -2, -1, -5, 3, 1, 3, -1, 0, 0, -4, -1, -5,
+ 2, -5, 4, -4, -2, -4, 4, 0, -5, 3, 1, -3, -4, -2, 0, -3, -4, 1, -5, -5, 3, 0, 2, 2, 4, 3, -5, -1, -5,
+ -4, 0, -2, 0, 2, -1, 4, -4, -4, 4, -5, 4, 3, 0, -2, -5, 0, 2, -4, -3, -4, 2, 0, -2, -1, 4, -2, 1, 0,
+ 4, -5, -2, 4, 4, -4, 4, 1, 3, 4, -1, -1, 1, -1, -1, -2, -4, -3, 4, 0, 2, 0, 1, -4, -2, 0, 4, -3, 3,
+ 4, -5, -3, -4, -5, 2, 0, 3, -5, -2, -2, -3, 4, -2, 1, -1, -4, -2, -1, -3, 1, -4, 0, -1, -4, -3, -2, 3, 1,
+ -5, 2, -2, 1, -4, -5, 4, -1, -5, -4, 1, -1, -4, -1, -3, -4, 2, 1, 4, -2, -5, 1, 0, -4, 0, -5, -3, -3, 4,
+ -1, 0, -2, 1, -1, -3, -1, -2, -3, -3, -1, -1, -1, -4, -4, -2, 0, -1, -2, -5, 2, -4, 4, -4, 0, 4, 1, 1, -4,
+ 3, -5, -1, -5, 2, 0, 3, -4, -1, -4, -2, -1, 0, -3, 2, 3, -5, -5, 4, 4, -2, 4, -1, 0, -2, 2, -2, 2, -3,
+ -1, -1, 1, 0, -5, -3, -3, 0, -5, 2, -5, -1, 2, -3, 3, 4, 2, -5, 4, 2, 1, 1, -1, -4, -5, 1, -4, 1, 1,
+ -4, 4, -1, 0, 3, -1, -3, 1, 0, 0, 3, 3, -3, 1, -1, 3, -5, -2, 0, 3, -2, 2, 0, -4, -3, -2, -3, 1, 3,
+ -2, -4, -3, 2, -3, -1, 0, -2, 2, -2, -3, 4, 2, -5, -5, 1, -1, -5, -4, 0, -5, -3, -5, -1, 4, -1, 1, 2, 1,
+ -2, 2, 3, 0, 0, 1, 3, -1, 4, -5, 1, 4, 2, -2, -2, 1, 4, -5, 0, 4, -4, 2, -5, 4, -1, 2, 1, 1, 1,
+ -1, 0, 3, 2, 4, -5, 0, -3, 3, -3, -2, -1, -2, -2, -2, 1, 4, -2, -1, -4, 3, -1, 1, -1, 0, 0, 3, -2, 1,
+ 1, -3, -4, -1, -2, -5, -1, -1, 0, 0, 4, 2, 4, 3, 2, 0, 0, -1, 1, -1, 1, -2, 3, 3, -3, -5, 1, -4, 0,
+ -3, 2, 0, -2, 2, 3, 1, 0, -3, 4, -5, 1, 2, -1, 2, 1, 3, -1, -2, -4, -2, -1, 4, 1, 0, -3, -4, 1, 2,
+ -4, -3, -5, 3, -4, -2, -1, -3, 2, -3, -2, 0, 0, 2, -1, -4, -5, 1, 3, 2, -5, 4, -3, 1, -2, 4, -1, -5, -1,
+ 4, -2, -4, -1, -3, -2, -5, 4, 2, 0, 4, 1, 3, -4, -2, 1, 2, 4, 2, -1, -5, -3, 0, 1, -4, -4, -2, 0, -3,
+ 4, 1, -3, 1, -1, -2, -4, -4, 0, -4, -5, 4, 0, 0, 1, -5, -4, -5, -2, -1, -2, -4, 0, -1, 2, -1, -4, 2, 2,
+ 1, -2, 2, 3, 1, -4, -4, -3, 2, -1, -1, 1, -2, -3, -5, -1, 3, 1, -1, 4, -3, -5, 0, 0, 2, 1, 2, -2, 0,
+ -5, -5, -2, 2, 1, 4, -1, -1, -1, -5, 2, 2, -1, -3, -3, 2, -4, 0, -1, -1, 1, 0, 0, 3, -5, -2, 0, -3, 3,
+ -4, 2, -1, 4, -3, 2, 1, 4, 2, -1, 3, -5, 4, -5, -4, 3, 4, -4, -5, -3, -2, 0, 1, -5, 4, -2, -2, -2, 4,
+ 0, -3, 0, 4, -2, 2, -1, 4, -3, 3, -5, -2, -3, -5, -3, 4, 3, 2, -1, -1, -1, 2, 1, -3, -3, 0, -4, -4, -4,
+ -3, -1, 4, 0, 4, -4, -3, -1, 4, -2, 1, -1, -1, -4, -5, 2, -3, -5, -3, 2, -1, -2, -5, -2, 3, 0, -2, 2, -1,
+ -2, -5, -4, 2, 0, -1, 2, 4, -5, -1, -1, -4, 2, 2, -2, -1, -5, -3, -5, 2, 2, 4, 2, 4, 4, 3, 1, -5, 1,
+ 1, -1, 1, -4, -2, 0, -3, -4, -4, -1, -3, -5, 4, 0, -2, -2, -4, -1, 3, -4, -2, -4, 2, 1, 1, -3, -2, -2, 1,
+ -5, -3, -5, 3, -5, 2, -4, -2, -1, 0, 1, 2, 0, 3, -5, 3, 0, -5, -2, 2, -3, 1, -2, 3, 3, -4, -5, -5, 1,
+ 3, -2, -3, -2, -3, -2, 1, 4, -4, 4, 2, 4, 3, -2, -2, -3, 2, 1, 0, 0, -2, -1, 2, -4, -3, 2, 2, -3, -1,
+ -2, -2, -5, -4, -5, 2, 2, 4, -3, 1, 3, -3, -2, 1, -2, 0, -3, -1, 3, -2, -4, 1, 3, 2, -1, -3, 1, 0, 2,
+ -5, -3, 4, 1, -2, -3, 4, 4, 2, -4, -1, -4, -4, -5, 2, -2, -3, -5, -1, -4, -4, 0, 0, 3, -1, -1, 0, -4, -2,
+ 1, 0, -3, 4, 2, 4, 2, -2, -2, -4, -1, 0, 0, -5, -3, 0, 3, -2, -4, 2, -4, -3, 3, 3, 0, 3, 1, 2, -1,
+ -4, 4, -1, -1, -4, 3, 0, 2, 3, 1, -3, -3, 1, -3, -4, 4, -5, 1, -2, 1, 1, 2, -2, -3, -1, 0, -3, -3, -5,
+ 3, -4, 0, 0, -4, 3, -2, -5, -3, -1, -3, -1, -2, 1, 2, 1, -4, -3, 2, 4, -4, -1, -2, 1, -5, 1, 4, -1, 4,
+ 1, 0, -4, 2, 2, 3, -3, 3, -2, -5, -5, 3, 0, 4, -5, -1, -2, -2, 3, 2, 2, -1, 0, 2, 1, 1, 4, -1, -5,
+ 2, 2, -2, 2, 0, -3, -3, 1, -4, -5, -2, -3, -3, -2, -1, 3, -3, 2, -1, -3, -5, -4, 3, -2, -1, -4, 2, 3, -3,
+ -1, 2, 2, -4, 4, -2, -4, 2, -3, -4, -1, -3, -3, 0, -3};
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/biases_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/biases_data.h
new file mode 100644
index 0000000..a4a87a4
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/biases_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const int64_t int16xint8_biases[4] = {-260092, -1040368, -780276, -520184};
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/config_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/config_data.h
new file mode 100644
index 0000000..79f7e52
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/config_data.h
@@ -0,0 +1,39 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#define INT16XINT8_OUT_CH 4
+#define INT16XINT8_IN_CH 3
+#define INT16XINT8_INPUT_W 7
+#define INT16XINT8_INPUT_H 8
+#define INT16XINT8_DST_SIZE 48
+#define INT16XINT8_INPUT_SIZE 168
+#define INT16XINT8_OUT_ACTIVATION_MIN -32768
+#define INT16XINT8_OUT_ACTIVATION_MAX 32767
+#define INT16XINT8_INPUT_BATCHES 1
+#define INT16XINT8_INPUT_OFFSET 0
+#define INT16XINT8_OUTPUT_OFFSET 0
+#define INT16XINT8_FILTER_X 2
+#define INT16XINT8_FILTER_Y 4
+#define INT16XINT8_STRIDE_X 2
+#define INT16XINT8_STRIDE_Y 3
+#define INT16XINT8_PAD_X 0
+#define INT16XINT8_PAD_Y 1
+#define INT16XINT8_OUTPUT_W 4
+#define INT16XINT8_OUTPUT_H 3
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/input_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/input_data.h
new file mode 100644
index 0000000..abd5bd6
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/input_data.h
@@ -0,0 +1,35 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const q15_t int16xint8_input[168] = {
+ 0, -16384, 16384, -16384, -16384, -8192, 8192, 0, -32768, 0, -32768, -16384, 0, -32768,
+ -16384, -32768, 8192, 0, 0, -24576, 8192, -8192, -16384, 16384, -32768, 8192, -16384, -8192,
+ 8192, -16384, 16384, -8192, 16384, -32768, -24576, -8192, -24576, -8192, -16384, -32768, 0, -8192,
+ -24576, 24576, -16384, 16384, 24576, 8192, -32768, -24576, -8192, 8192, 24576, 8192, -24576, -16384,
+ -32768, 0, 0, 8192, 8192, 24576, -8192, -16384, -16384, -24576, 0, 16384, 24576, -32768,
+ 24576, 8192, 0, -32768, -24576, 0, -8192, -24576, -16384, -16384, -8192, 16384, 8192, -16384,
+ 24576, -24576, -32768, 24576, 0, -32768, -16384, 0, 24576, 16384, 0, -16384, 8192, 8192,
+ 24576, 16384, 8192, -8192, -24576, -8192, 8192, 24576, -24576, 16384, 8192, 0, -16384, -16384,
+ 0, -8192, -32768, 0, -24576, -8192, 24576, -8192, 8192, -16384, 0, -16384, -24576, 24576,
+ 8192, 24576, -24576, -32768, -24576, 0, -8192, 16384, 0, -32768, 16384, 8192, -24576, 8192,
+ 0, 8192, -16384, -32768, 24576, -8192, -32768, 16384, 16384, -32768, 0, 8192, 8192, 0,
+ -16384, -32768, 0, -32768, 8192, -24576, 8192, 16384, 16384, 0, 16384, 0, 8192, 16384};
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/output_mult_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/output_mult_data.h
new file mode 100644
index 0000000..41ef7d7
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/output_mult_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const int32_t int16xint8_output_mult[4] = {1082212997, 1082212997, 1082212997, 1082212997};
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/output_ref_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/output_ref_data.h
new file mode 100644
index 0000000..a3fc92c
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/output_ref_data.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const q15_t int16xint8_output_ref[48] = {0, -9, -6, -47, 2, 7, 15, 23, 27, 11, 1, -13, 24, -5, -8, -6,
+ -36, 12, -1, 20, 5, 47, 62, 33, 26, 24, 39, 2, 0, -32, -11, 37,
+ 14, -6, 6, -6, -3, 14, 20, -10, -11, 0, -17, 33, 45, -6, 22, 7};
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/output_shift_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/output_shift_data.h
new file mode 100644
index 0000000..d5e9299
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/output_shift_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const int32_t int16xint8_output_shift[4] = {-17, -17, -17, -17};
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/test_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/test_data.h
new file mode 100644
index 0000000..1af706c
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/test_data.h
@@ -0,0 +1,26 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#include "biases_data.h"
+#include "config_data.h"
+#include "input_data.h"
+#include "output_mult_data.h"
+#include "output_ref_data.h"
+#include "output_shift_data.h"
+#include "weights_data.h"
diff --git a/features/cmsis_nn_sample_code/test-includes/int16xint8/weights_data.h b/features/cmsis_nn_sample_code/test-includes/int16xint8/weights_data.h
new file mode 100644
index 0000000..2b6e3a1
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/int16xint8/weights_data.h
@@ -0,0 +1,28 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const q7_t int16xint8_weights[96] = {
+ 32, -127, 64, -95, 0, 0, 95, -64, -127, 0, -64, -64, -127, 32, 32, -32, -95, -95, 64, 64,
+ 0, 0, -127, 0, -95, -95, -127, -32, 0, 0, -95, 0, -64, 95, -127, -32, 32, 0, -64, -95,
+ -127, -64, 64, -32, -127, -64, -64, 0, -32, -95, 0, -127, 64, 32, 64, 64, -95, 32, -64, -64,
+ 32, -64, 0, 95, -127, -127, -95, 95, -64, -64, -64, -127, -64, 95, 32, 95, 95, 95, 0, 64,
+ -64, -32, -127, 64, -127, 32, 64, 95, -127, 64, 64, -95, 95, -64, -95, 95};
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/biases_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/biases_data.h
new file mode 100644
index 0000000..b4c6a1e
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/biases_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const int64_t requantize_s64_biases[2] = {2147483647, 2147483647};
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/config_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/config_data.h
new file mode 100644
index 0000000..525b810
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/config_data.h
@@ -0,0 +1,39 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#define REQUANTIZE_S64_OUT_CH 2
+#define REQUANTIZE_S64_IN_CH 2
+#define REQUANTIZE_S64_INPUT_W 3
+#define REQUANTIZE_S64_INPUT_H 2
+#define REQUANTIZE_S64_DST_SIZE 4
+#define REQUANTIZE_S64_INPUT_SIZE 12
+#define REQUANTIZE_S64_OUT_ACTIVATION_MIN -32768
+#define REQUANTIZE_S64_OUT_ACTIVATION_MAX 32767
+#define REQUANTIZE_S64_INPUT_BATCHES 1
+#define REQUANTIZE_S64_INPUT_OFFSET 0
+#define REQUANTIZE_S64_OUTPUT_OFFSET 0
+#define REQUANTIZE_S64_FILTER_X 2
+#define REQUANTIZE_S64_FILTER_Y 2
+#define REQUANTIZE_S64_STRIDE_X 1
+#define REQUANTIZE_S64_STRIDE_Y 1
+#define REQUANTIZE_S64_PAD_X 0
+#define REQUANTIZE_S64_PAD_Y 0
+#define REQUANTIZE_S64_OUTPUT_W 2
+#define REQUANTIZE_S64_OUTPUT_H 1
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/input_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/input_data.h
new file mode 100644
index 0000000..7a47dba
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/input_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const q15_t requantize_s64_input[12] = {-14, 10, -14, -12, -6, 14, -6, -8, 4, 8, 10, -14};
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_mult_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_mult_data.h
new file mode 100644
index 0000000..74a3970
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_mult_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const int32_t requantize_s64_output_mult[2] = {1082196484, 1623294726};
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_ref_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_ref_data.h
new file mode 100644
index 0000000..3db6f0c
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_ref_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const q15_t requantize_s64_output_ref[4] = {32767, 32767, 32767, 32767};
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_shift_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_shift_data.h
new file mode 100644
index 0000000..c9332d5
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/output_shift_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const int32_t requantize_s64_output_shift[2] = {-5, -5};
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/test_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/test_data.h
new file mode 100644
index 0000000..1af706c
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/test_data.h
@@ -0,0 +1,26 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#include "biases_data.h"
+#include "config_data.h"
+#include "input_data.h"
+#include "output_mult_data.h"
+#include "output_ref_data.h"
+#include "output_shift_data.h"
+#include "weights_data.h"
diff --git a/features/cmsis_nn_sample_code/test-includes/requantize_s64/weights_data.h b/features/cmsis_nn_sample_code/test-includes/requantize_s64/weights_data.h
new file mode 100644
index 0000000..d59cb47
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/requantize_s64/weights_data.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Generated by generate_test_data.py using TFL version 2.4.1 as reference.
+#pragma once
+#include
+
+const q7_t requantize_s64_weights[16] = {-127, 32, 32, 0, 95, 32, 95, -95, -42, -85, -127, -106, 0, -64, 0, 106};
diff --git a/features/cmsis_nn_sample_code/test-includes/test_arm_convolve_fast_s16.h b/features/cmsis_nn_sample_code/test-includes/test_arm_convolve_fast_s16.h
new file mode 100644
index 0000000..168c01c
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/test_arm_convolve_fast_s16.h
@@ -0,0 +1,6 @@
+
+#ifndef INC_TEST_ARM_CONVOLVE_FAST_S16_H
+#define INC_TEST_ARM_CONVOLVE_FAST_S16_H
+int int16xint8_arm_convolve_fast_s16(void);
+int requantize_s64_arm_convolve_fast_s16(void);
+#endif
diff --git a/features/cmsis_nn_sample_code/test-includes/test_arm_fully_connected_s16.h b/features/cmsis_nn_sample_code/test-includes/test_arm_fully_connected_s16.h
new file mode 100644
index 0000000..c204ea2
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/test_arm_fully_connected_s16.h
@@ -0,0 +1,6 @@
+
+#ifndef INC_TEST_ARM_FULLY_CONNECTED_S16_H
+#define INC_TEST_ARM_FULLY_CONNECTED_S16_H
+int fully_connected_int16_arm_fully_connected_s16(void);
+int fully_connected_int16_big_arm_fully_connected_s16(void);
+#endif
diff --git a/features/cmsis_nn_sample_code/test-includes/validate.h b/features/cmsis_nn_sample_code/test-includes/validate.h
new file mode 100644
index 0000000..e72a5cf
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test-includes/validate.h
@@ -0,0 +1,80 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+#include
+#include
+#include
+
+static inline int validate(int8_t *act, const int8_t *ref, int size)
+{
+ int test_passed = true;
+ int count = 0;
+ int total = 0;
+
+ for (int i = 0; i < size; ++i)
+ {
+ total++;
+ if (act[i] != ref[i])
+ {
+ count++;
+ printf("ERROR at pos %d: Act: %d Ref: %d\r\n", i, act[i], ref[i]);
+ test_passed = false;
+ }
+ else
+ {
+ // printf("PASS at pos %d: %d\r\n", i, act[i]);
+ }
+ }
+
+ if (!test_passed)
+ {
+ printf("%d of %d failed\r\n", count, total);
+ }
+
+ return test_passed;
+}
+
+static inline int validate_s16(int16_t *act, const int16_t *ref, int size)
+{
+ int test_passed = true;
+ int count = 0;
+ int total = 0;
+
+ for (int i = 0; i < size; ++i)
+ {
+ total++;
+ if (act[i] != ref[i])
+ {
+ count++;
+ printf("ERROR at pos %d: Act: %d Ref: %d\r\n", i, act[i], ref[i]);
+ test_passed = false;
+ }
+ else
+ {
+ //printf("PASS at pos %d: %d\r\n", i, act[i]);
+ }
+ }
+
+ if (!test_passed)
+ {
+ printf("%d of %d failed\r\n", count, total);
+ }
+
+ return test_passed;
+}
diff --git a/features/cmsis_nn_sample_code/test_arm_convolve_fast_s16.c b/features/cmsis_nn_sample_code/test_arm_convolve_fast_s16.c
new file mode 100644
index 0000000..da41933
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test_arm_convolve_fast_s16.c
@@ -0,0 +1,196 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include
+
+#include
+
+#include "int16xint8/test_data.h"
+#include "requantize_s64/test_data.h"
+#include "validate.h"
+
+int int16xint8_arm_convolve_fast_s16(void)
+{
+ q15_t output[INT16XINT8_DST_SIZE] = {0};
+ int ret_value = true;
+
+ cmsis_nn_context ctx;
+ cmsis_nn_conv_params conv_params;
+ cmsis_nn_per_channel_quant_params quant_params;
+ cmsis_nn_dims input_dims;
+ cmsis_nn_dims filter_dims;
+ cmsis_nn_dims bias_dims;
+ cmsis_nn_dims output_dims;
+
+ const q63_t *bias_data = int16xint8_biases;
+ const q7_t *kernel_data = int16xint8_weights;
+ const q15_t *input_data = int16xint8_input;
+ const q15_t *output_ref = int16xint8_output_ref;
+ const int32_t output_ref_size = INT16XINT8_DST_SIZE;
+
+ input_dims.n = INT16XINT8_INPUT_BATCHES;
+ input_dims.w = INT16XINT8_INPUT_W;
+ input_dims.h = INT16XINT8_INPUT_H;
+ input_dims.c = INT16XINT8_IN_CH;
+ filter_dims.w = INT16XINT8_FILTER_X;
+ filter_dims.h = INT16XINT8_FILTER_Y;
+ output_dims.w = INT16XINT8_OUTPUT_W;
+ output_dims.h = INT16XINT8_OUTPUT_H;
+ output_dims.c = INT16XINT8_OUT_CH;
+
+ conv_params.padding.w = INT16XINT8_PAD_X;
+ conv_params.padding.h = INT16XINT8_PAD_Y;
+ conv_params.stride.w = INT16XINT8_STRIDE_X;
+ conv_params.stride.h = INT16XINT8_STRIDE_Y;
+
+ conv_params.input_offset = 0;
+ conv_params.output_offset = 0;
+ conv_params.activation.min = INT16XINT8_OUT_ACTIVATION_MIN;
+ conv_params.activation.max = INT16XINT8_OUT_ACTIVATION_MAX;
+ quant_params.multiplier = (int32_t *)int16xint8_output_mult;
+ quant_params.shift = (int32_t *)int16xint8_output_shift;
+
+ int buf_size = arm_convolve_wrapper_s16_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
+ ctx.buf = malloc(buf_size);
+
+ arm_status result = arm_convolve_wrapper_s16(&ctx,
+ &conv_params,
+ &quant_params,
+ &input_dims,
+ input_data,
+ &filter_dims,
+ kernel_data,
+ &bias_dims,
+ bias_data,
+ &output_dims,
+ output);
+ free(ctx.buf);
+
+ arm_status result_desired = ARM_MATH_SUCCESS;
+ ret_value &= validate(&result, &result_desired, 1);
+ ret_value &= validate_s16(output, output_ref, output_ref_size);
+
+ buf_size = arm_convolve_fast_s16_get_buffer_size(&input_dims, &filter_dims);
+ ctx.buf = malloc(buf_size);
+
+ result = arm_convolve_fast_s16(&ctx,
+ &conv_params,
+ &quant_params,
+ &input_dims,
+ input_data,
+ &filter_dims,
+ kernel_data,
+ &bias_dims,
+ bias_data,
+ &output_dims,
+ output);
+ free(ctx.buf);
+#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
+ ret_value &= validate(&result, &result_desired, 1);
+ ret_value &= validate_s16(output, output_ref, output_ref_size);
+#else
+ TEST_ASSERT_EQUAL(ARM_MATH_ARGUMENT_ERROR, result);
+#endif
+ return ret_value;
+}
+
+int requantize_s64_arm_convolve_fast_s16(void)
+{
+ q15_t output[REQUANTIZE_S64_DST_SIZE] = {0};
+ int ret_value = true;
+
+ cmsis_nn_context ctx;
+ cmsis_nn_conv_params conv_params;
+ cmsis_nn_per_channel_quant_params quant_params;
+ cmsis_nn_dims input_dims;
+ cmsis_nn_dims filter_dims;
+ cmsis_nn_dims bias_dims;
+ cmsis_nn_dims output_dims;
+
+ const q63_t *bias_data = requantize_s64_biases;
+ const q7_t *kernel_data = requantize_s64_weights;
+ const q15_t *input_data = requantize_s64_input;
+ const q15_t *output_ref = requantize_s64_output_ref;
+ const int32_t output_ref_size = REQUANTIZE_S64_DST_SIZE;
+
+ input_dims.n = REQUANTIZE_S64_INPUT_BATCHES;
+ input_dims.w = REQUANTIZE_S64_INPUT_W;
+ input_dims.h = REQUANTIZE_S64_INPUT_H;
+ input_dims.c = REQUANTIZE_S64_IN_CH;
+ filter_dims.w = REQUANTIZE_S64_FILTER_X;
+ filter_dims.h = REQUANTIZE_S64_FILTER_Y;
+ output_dims.w = REQUANTIZE_S64_OUTPUT_W;
+ output_dims.h = REQUANTIZE_S64_OUTPUT_H;
+ output_dims.c = REQUANTIZE_S64_OUT_CH;
+
+ conv_params.padding.w = REQUANTIZE_S64_PAD_X;
+ conv_params.padding.h = REQUANTIZE_S64_PAD_Y;
+ conv_params.stride.w = REQUANTIZE_S64_STRIDE_X;
+ conv_params.stride.h = REQUANTIZE_S64_STRIDE_Y;
+
+ conv_params.input_offset = REQUANTIZE_S64_INPUT_OFFSET;
+ conv_params.output_offset = REQUANTIZE_S64_OUTPUT_OFFSET;
+ conv_params.activation.min = REQUANTIZE_S64_OUT_ACTIVATION_MIN;
+ conv_params.activation.max = REQUANTIZE_S64_OUT_ACTIVATION_MAX;
+ quant_params.multiplier = (int32_t *)requantize_s64_output_mult;
+ quant_params.shift = (int32_t *)requantize_s64_output_shift;
+
+ int buf_size = arm_convolve_wrapper_s16_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
+ ctx.buf = malloc(buf_size);
+
+ arm_status result = arm_convolve_wrapper_s16(&ctx,
+ &conv_params,
+ &quant_params,
+ &input_dims,
+ input_data,
+ &filter_dims,
+ kernel_data,
+ &bias_dims,
+ bias_data,
+ &output_dims,
+ output);
+
+ free(ctx.buf);
+
+ arm_status result_desired = ARM_MATH_SUCCESS;
+ ret_value &= validate(&result, &result_desired, 1);
+ ret_value &= validate_s16(output, output_ref, output_ref_size);
+
+ buf_size = arm_convolve_fast_s16_get_buffer_size(&input_dims, &filter_dims);
+ ctx.buf = malloc(buf_size);
+
+ result = arm_convolve_fast_s16(&ctx,
+ &conv_params,
+ &quant_params,
+ &input_dims,
+ input_data,
+ &filter_dims,
+ kernel_data,
+ &bias_dims,
+ bias_data,
+ &output_dims,
+ output);
+ free(ctx.buf);
+#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
+ ret_value &= validate(&result, &result_desired, 1);
+ ret_value &= validate_s16(output, output_ref, output_ref_size);
+#else
+ TEST_ASSERT_EQUAL(ARM_MATH_ARGUMENT_ERROR, result);
+#endif
+ return ret_value;
+}
diff --git a/features/cmsis_nn_sample_code/test_arm_fully_connected_s16.c b/features/cmsis_nn_sample_code/test_arm_fully_connected_s16.c
new file mode 100644
index 0000000..9593883
--- /dev/null
+++ b/features/cmsis_nn_sample_code/test_arm_fully_connected_s16.c
@@ -0,0 +1,149 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include
+#include
+//#include
+
+#include "fully_connected_int16/test_data.h"
+#include "fully_connected_int16_big/test_data.h"
+#include "validate.h"
+
+int fully_connected_int16_arm_fully_connected_s16(void)
+{
+ q15_t output[FULLY_CONNECTED_INT16_DST_SIZE] = {0};
+ int ret_value = true;
+
+ cmsis_nn_context ctx;
+ cmsis_nn_fc_params fc_params;
+ cmsis_nn_per_tensor_quant_params quant_params;
+ cmsis_nn_dims input_dims;
+ cmsis_nn_dims filter_dims;
+ cmsis_nn_dims bias_dims;
+ cmsis_nn_dims output_dims;
+
+ const q63_t *bias_data = fully_connected_int16_biases;
+ const q7_t *kernel_data = fully_connected_int16_weights;
+ const q15_t *input_data = fully_connected_int16_input;
+ const q15_t *output_ref = fully_connected_int16_output_ref;
+ const int32_t output_ref_size = FULLY_CONNECTED_INT16_DST_SIZE;
+
+ input_dims.n = FULLY_CONNECTED_INT16_INPUT_BATCHES;
+ input_dims.w = FULLY_CONNECTED_INT16_INPUT_W;
+ input_dims.h = FULLY_CONNECTED_INT16_INPUT_H;
+ input_dims.c = FULLY_CONNECTED_INT16_IN_CH;
+ filter_dims.n = FULLY_CONNECTED_INT16_ACCUMULATION_DEPTH;
+ filter_dims.c = FULLY_CONNECTED_INT16_OUT_CH;
+ filter_dims.h = FULLY_CONNECTED_INT16_INPUT_H;
+ filter_dims.w = FULLY_CONNECTED_INT16_INPUT_W;
+ output_dims.n = FULLY_CONNECTED_INT16_INPUT_BATCHES;
+ output_dims.c = FULLY_CONNECTED_INT16_OUT_CH;
+
+ fc_params.input_offset = 0;
+ fc_params.filter_offset = 0;
+ fc_params.output_offset = 0;
+ fc_params.activation.min = FULLY_CONNECTED_INT16_OUT_ACTIVATION_MIN;
+ fc_params.activation.max = FULLY_CONNECTED_INT16_OUT_ACTIVATION_MAX;
+
+ quant_params.multiplier = FULLY_CONNECTED_INT16_OUTPUT_MULTIPLIER;
+ quant_params.shift = FULLY_CONNECTED_INT16_OUTPUT_SHIFT;
+
+ int32_t buf_size = arm_fully_connected_s16_get_buffer_size(&filter_dims);
+ ctx.buf = malloc(buf_size);
+ ctx.size = buf_size;
+
+ arm_status result = arm_fully_connected_s16(&ctx,
+ &fc_params,
+ &quant_params,
+ &input_dims,
+ input_data,
+ &filter_dims,
+ kernel_data,
+ &bias_dims,
+ bias_data,
+ &output_dims,
+ output);
+
+ free(ctx.buf);
+ arm_status result_desired = ARM_MATH_SUCCESS;
+ ret_value &= validate(&result, &result_desired, 1);
+ ret_value &= validate_s16(output, output_ref, output_ref_size);
+ return ret_value;
+}
+
+int fully_connected_int16_big_arm_fully_connected_s16(void)
+{
+ q15_t output[FULLY_CONNECTED_INT16_BIG_DST_SIZE] = {0};
+ int ret_value = true;
+
+ cmsis_nn_context ctx;
+ cmsis_nn_fc_params fc_params;
+ cmsis_nn_per_tensor_quant_params quant_params;
+ cmsis_nn_dims input_dims;
+ cmsis_nn_dims filter_dims;
+ cmsis_nn_dims bias_dims;
+ cmsis_nn_dims output_dims;
+
+ const q63_t *bias_data = fully_connected_int16_big_biases;
+ const q7_t *kernel_data = fully_connected_int16_big_weights;
+ const q15_t *input_data = fully_connected_int16_big_input;
+ const q15_t *output_ref = fully_connected_int16_big_output_ref;
+ const int32_t output_ref_size = FULLY_CONNECTED_INT16_BIG_DST_SIZE;
+
+ input_dims.n = FULLY_CONNECTED_INT16_BIG_INPUT_BATCHES;
+ input_dims.w = FULLY_CONNECTED_INT16_BIG_INPUT_W;
+ input_dims.h = FULLY_CONNECTED_INT16_BIG_INPUT_H;
+ input_dims.c = FULLY_CONNECTED_INT16_BIG_IN_CH;
+ filter_dims.n = FULLY_CONNECTED_INT16_BIG_ACCUMULATION_DEPTH;
+ filter_dims.c = FULLY_CONNECTED_INT16_BIG_OUT_CH;
+ filter_dims.h = FULLY_CONNECTED_INT16_BIG_INPUT_H;
+ filter_dims.w = FULLY_CONNECTED_INT16_BIG_INPUT_W;
+ output_dims.n = FULLY_CONNECTED_INT16_BIG_INPUT_BATCHES;
+ output_dims.c = FULLY_CONNECTED_INT16_BIG_OUT_CH;
+
+ fc_params.input_offset = 0;
+ fc_params.filter_offset = 0;
+ fc_params.output_offset = 0;
+ fc_params.activation.min = FULLY_CONNECTED_INT16_BIG_OUT_ACTIVATION_MIN;
+ fc_params.activation.max = FULLY_CONNECTED_INT16_BIG_OUT_ACTIVATION_MAX;
+
+ quant_params.multiplier = FULLY_CONNECTED_INT16_BIG_OUTPUT_MULTIPLIER;
+ quant_params.shift = FULLY_CONNECTED_INT16_BIG_OUTPUT_SHIFT;
+
+ int32_t buf_size = arm_fully_connected_s16_get_buffer_size(&filter_dims);
+ ctx.buf = malloc(buf_size);
+ ctx.size = buf_size;
+
+ arm_status result = arm_fully_connected_s16(&ctx,
+ &fc_params,
+ &quant_params,
+ &input_dims,
+ input_data,
+ &filter_dims,
+ kernel_data,
+ &bias_dims,
+ bias_data,
+ &output_dims,
+ output);
+
+ free(ctx.buf);
+ arm_status result_desired = ARM_MATH_SUCCESS;
+ ret_value &= validate(&result, &result_desired, 1);
+ ret_value &= validate_s16(output, output_ref, output_ref_size);
+ return ret_value;
+}