Skip to content
This repository has been archived by the owner on Jul 12, 2022. It is now read-only.

Latest commit

 

History

History
201 lines (162 loc) · 7.09 KB

README.md

File metadata and controls

201 lines (162 loc) · 7.09 KB

🚨🚨⚠️⚠️ THIS REPO HAS MOVED TO: JSON Stack Models ⚠️⚠️🚨🚨

TensorScript - Machine Learning and Neural Networks with Tensorflow

Coverage Status Build Status

Introduction

This library is a compilation of model building modules with a consistent API for quickly implementing Tensorflow at edge(browser) or any JavaScript environment (Node JS / GPU).

List of Tensorflow models

Classification

Regression

Artificial neural networks (ANN)

LSTM Time Series

Basic Usage

TensorScript is and ECMA Script module designed to be used in an ES2015+ environment, if you need compiled modules for older versions of node use the compiled modules in the bundle folder.

Please read more on tensorflow configuration options, specifying epochs, and using custom layers in configuration.

Regression Examples

import { MultipleLinearRegression, DeepLearningRegression, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const independentVariables = [ 'sqft', 'bedrooms',];
  const dependentVariables = [ 'price', ];
  const housingdataCSV = await ms.csv.loadCSV('./test/mock/data/portland_housing_data.csv');
  const DataSet = new ms.DataSet(housingdataCSV);
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const y_matrix = DataSet.columnMatrix(dependentVariables);
  const MLR = new MultipleLinearRegression();
  await MLR.train(x_matrix, y_matrix);
  const DLR = new DeepLearningRegression();
  await DLR.train(x_matrix, y_matrix);
  //1600 sqft, 3 bedrooms
  await MLR.predict([1650,3]); //=>[293081.46]
  await DLR.predict([1650,3]); //=>[293081.46]
}
main();

Classification Examples

import { DeepLearningClassification, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const independentVariables = [
    'sepal_length_cm',
    'sepal_width_cm',
    'petal_length_cm',
    'petal_width_cm',
  ];
  const dependentVariables = [
    'plant_Iris-setosa',
    'plant_Iris-versicolor',
    'plant_Iris-virginica',
  ];
  const housingdataCSV = await ms.csv.loadCSV('./test/mock/data/iris_data.csv');
  const DataSet = new ms.DataSet(housingdataCSV).fitColumns({ columns: {plant:'onehot'}, });
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const y_matrix = DataSet.columnMatrix(dependentVariables);
  const nnClassification = new DeepLearningClassification();
  await nnClassification.train(x_matrix, y_matrix);
  const input_x = [
    [5.1, 3.5, 1.4, 0.2, ],
    [6.3, 3.3, 6.0, 2.5, ],
    [5.6, 3.0, 4.5, 1.5, ],
    [5.0, 3.2, 1.2, 0.2, ],
    [4.5, 2.3, 1.3, 0.3, ],
  ];
  const predictions = await nnClassification.predict(input_x); 
  const answers = await nnClassification.predict(input_x, { probability:false, });
  /*
    predictions = [
      [ 0.989512026309967, 0.010471616871654987, 0.00001649192017794121, ],
      [ 0.0000016141033256644732, 0.054614484310150146, 0.9453839063644409, ],
      [ 0.001930746017023921, 0.6456733345985413, 0.3523959517478943, ],
      [ 0.9875779747962952, 0.01239941269159317, 0.00002274810685776174, ],
      [ 0.9545140862464905, 0.04520365223288536, 0.0002823179238475859, ],
    ];
    answers = [
      [ 1, 0, 0, ], //setosa
      [ 0, 0, 1, ], //virginica
      [ 0, 1, 0, ], //versicolor
      [ 1, 0, 0, ], //setosa
      [ 1, 0, 0, ], //setosa
    ];
   */
}
main();
import { LogisticRegression, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const independentVariables = [
    'Age',
    'EstimatedSalary',
  ];
  const dependentVariables = [
    'Purchased',
  ];
  const housingdataCSV = await ms.csv.loadCSV('./test/mock/data/social_network_ads.csv');
  const DataSet = new ms.DataSet(housingdataCSV).fitColumns({ columns: {Age:['scale','standard'],
  EstimatedSalary:['scale','standard'],}, });
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const y_matrix = DataSet.columnMatrix(dependentVariables);
  const LR = new LogisticRegression();
  await LR.train(x_matrix, y_matrix);
  const input_x = [
    [-0.062482849427819266, 0.30083326827486173,], //0
    [0.7960601198093905, -1.1069168538010206,], //1
    [0.7960601198093905, 0.12486450301537644,], //0
    [0.4144854668150751, -0.49102617539282206,], //0
    [0.3190918035664962, 0.5061301610775946,], //1
  ];
  const predictions = await LR.predict(input_x); // => [ [ 0 ], [ 0 ], [ 1 ], [ 0 ], [ 1 ] ];
}
main();

Time Series Example

import { LSTMTimeSeries, } from 'tensorscript';
import ms from 'modelscript';

async function main(){
  const dependentVariables = [
    'Passengers',
  ];
  const airlineCSV = await ms.csv.loadCSV('./test/mock/data/airline-sales.csv');
  const DataSet = new ms.DataSet(airlineCSV);
  const x_matrix = DataSet.columnMatrix(independentVariables);
  const TS = new LSTMTimeSeries();
  await TS.train(x_matrix);
  const forecastData = TS.getTimeseriesDataSet([ [100 ], [200], [300], ])
  await TS.predict(forecastData.x_matrix); //=>[200,300,400]
}
main();

Testing

$ npm i
$ npm test

Contributing

Fork, write tests and create a pull request!

Misc

As of Node 8, ES modules are still used behind a flag, when running natively as an ES module

$ node --experimental-modules manual/examples/ex_regression-boston.mjs
# Also there are native bindings that require Python 2.x, make sure if you're using Anaconda, you build with your Python 2.x bin
$ npm i --python=/usr/bin/python

Special Thanks

License

MIT