-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
107 lines (85 loc) · 3.99 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import sklearn.neighbors
import os
import time
import subprocess
from dataset import get_dataset
from nearestneighbors import c_nearest_neighbors, py_nearest_neighbors, nearest_neighbors
from cost import Costdata, measure_costs
import argparse
def git_clone(tag):
# delete temp directory
subprocess.run(['rm', '-rf','tmp'])
# clone repo
subprocess.run(['git', 'clone', 'git@gitlab.inf.ethz.ch:COURSE-ASL2020/team052.git', 'tmp'])
# set tag
subprocess.run(['git', 'checkout', tag], cwd='tmp')
def save_data(fname, n, simi_evals, runtime_s, runtime_cycles, cycles_std, flops):
X = np.array([n, simi_evals, runtime_s, runtime_cycles, cycles_std, flops]).transpose()
np.savetxt(os.path.join('benchmarking', fname), X)
def benchmark(dataset_name, dim, path, k, metric, repetitions, n_start, n_end, n_res, prefix):
inputs = []
cycles = []
cycles_std = []
runtimes = []
sim_evals = []
for n in np.logspace(n_start, n_end, num=n_res*(n_end-n_start+1), dtype=int, base=2):
dataset = get_dataset(dataset_name, n,dim)
inputs.append(dataset.N)
nn_list, timing_data = c_nearest_neighbors(path, dataset, k, metric, repetitions)
# append median or avg?
cycles.append(timing_data.median_cycle)
cycles_std.append(timing_data.std_cycle)
runtimes.append(timing_data.median_runtime)
cost_data = measure_costs(path, dataset, k, metric)
sim_evals.append(cost_data.metric_calls)
print(sim_evals)
# for L2 norm:
# d operations for a[i]-b[i]
# d operations for squaring each component
# d-1 operations for summing up the squares
# so 3d flops per sim evaluation
flops = np.array(sim_evals)*dataset.D*(3-1)
save_data('{}_{}_dim{}_logn{}to{}_k{}'.format(prefix, dataset_name,dim, n_start, n_end, k), inputs, sim_evals, runtimes, cycles, cycles_std, flops)
def benchmark_dim(dataset_name, n, path, k, metric, repetitions, dim_start, dim_end, dim_step, prefix):
inputs = []
cycles = []
cycles_std = []
runtimes = []
sim_evals = []
flops = []
for dim in np.arange(dim_start, dim_end, dim_step):
inputs.append(dim)
dataset = get_dataset(dataset_name, n,dim)
nn_list, timing_data = c_nearest_neighbors(path, dataset, k, metric, repetitions)
# append median or avg?
cycles.append(timing_data.median_cycle)
cycles_std.append(timing_data.std_cycle)
runtimes.append(timing_data.median_runtime)
cost_data = measure_costs(path, dataset, k, metric)
sim_evals.append(cost_data.metric_calls)
flops.append(cost_data.metric_calls*dataset.D*(3-1))
print("Dim: ",dim,", flops:",flops[len(flops)-1]/cycles[len(cycles)-1])
# for L2 norm:
# d operations for a[i]-b[i]
# d operations for squaring each component
# d-1 operations for summing up the squares
# so 3d flops per sim evaluation
save_data('{}_{}_n{}_dim{}to{}_k{}'.format(prefix, dataset_name, n, dim_start, dim_end, k), inputs, sim_evals, runtimes, cycles, cycles_std, flops)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p','--path', required=True, help='path to a.out executable')
parser.add_argument('-r','--repetitions', help='repetitions', default=1, type=int)
parser.add_argument('-k', help='k', default=20, type=int)
parser.add_argument('-dim', help='dimension of space', default=100, type=int)
parser.add_argument('-m', '--metric', help='l2', default='l2')
parser.add_argument('-d', '--dataset', help='audio or gaussian', default='gaussian')
parser.add_argument('-ns', '--nstart', help='logn start', default=8, type=int)
parser.add_argument('-ne', '--nend', help='logn end', default=18, type=int)
parser.add_argument('-nr', '--nres', help='logn resolution', default=1, type=int)
args = parser.parse_args()
START = 10
END = 10
RESOLUTION = 1
print(args)
benchmark(args.dataset, args.dim, args.path, args.k, args.metric, args.repetitions, args.nstart, args.nend, args.nres, '')