-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnearestneighbors.py
127 lines (97 loc) · 4.31 KB
/
nearestneighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import subprocess
import sklearn
import os
import time
from timing import parse_output, Timingdata
from numba import set_num_threads
set_num_threads(1)
from pynndescent import NNDescent
class NearestNeighbors:
# initialization with either a file
# or 2d numpy array
def __init__(self, NN=None, metric='l2', filename=None, stdout=""):
if filename is None:
self.NN = NN
else:
self.load(filename)
self.N = self.NN.shape[0]
self.K = self.NN.shape[1]
self.metric = metric
self.stdout = stdout
# calculates recall (assuming one of the datasets
# represents the ground truth)
def recall(self, other):
if self.NN.shape != other.NN.shape:
raise ValueError('dimensions of nearest neighbors dont match')
if self.metric != other.metric:
raise ValueError('metrics dont match')
common_neighbors =list(map(lambda row1,row2:
len(np.intersect1d(row1,row2)),
self.NN,
other.NN))
return float(np.sum(common_neighbors))/(self.K*self.N)
def load(self, filename):
self.NN = np.loadtxt(filename)
# performs brute-force KNN on dataset
def nearest_neighbors(dataset, K, metric):
if metric == 'l2':
scikit_metric = 'minkowski'
scikit_p = 2
else:
raise ValueError(metric + ' not implemented')
# calculates K nearest neighbors for given dataset
nbrs = sklearn.neighbors.NearestNeighbors(n_neighbors=K, algorithm='brute', metric=scikit_metric, p=scikit_p).fit(dataset.X)
# gives back k nearest neighbors of training data
# points can't be their own nn
nbrs_indices = nbrs.kneighbors(return_distance=False)
return NearestNeighbors(nbrs_indices, metric)
# performs reference knndescent on dataset
# returns nearestneighbors and timing
def c_nearest_neighbors(directory, dataset, K, metric, repetition, stdout=False, gprof_compile=False):
# calls reference implementation for NN
files = ['knnd.c', 'knnd_test.c', 'vec.c']
# was only added in recent commits, should remain backwards compatible
if os.path.isfile(os.path.join(directory, 'bruteforce.c')):
files.append('bruteforce.c')
flags = ['-lm','-O3','-ffast-math','-march=native']
if gprof_compile:
process = subprocess.run(['gcc'] + files + flags + ['-pg', '-DINSTR=true'], check=True, stdout=subprocess.PIPE, universal_newlines=True, cwd=directory)
else:
process = subprocess.run(['gcc'] + files + flags + ['-flto', '-DCALIBRATE'], check=True, stdout=subprocess.PIPE, universal_newlines=True, cwd=directory)
if metric != 'l2':
raise ValueError(metric + ' not implemented')
dataset.save('data')
path = os.path.join(directory, "a.out")
cycles = np.zeros(repetition)
runtime = np.zeros(repetition)
nn_list = []
for i in range(repetition):
process = subprocess.run([path,'data','output', str(dataset.N), str(dataset.D), str(K)], check=True, stdout=subprocess.PIPE, universal_newlines=True)
if stdout: print(process.stdout)
c,t = parse_output(process.stdout.splitlines())
nn_data = NearestNeighbors(filename='output', stdout=process.stdout)
cycles[i] = c
runtime[i] = t
nn_list.append(nn_data)
return nn_list, Timingdata(cycles,runtime, directory)
def py_nearest_neighbors(dataset, K, metric, repetition):
# (try) to enforce pynndescent using only a single thread:
# a point is his own NN
# thats why we query K+1 and remove afterwards
runtime = np.zeros(repetition+1)
nn_list = []
for i in range(repetition+1):
start = time.perf_counter()
index = NNDescent(dataset.X,
n_neighbors=(K+1),
# verbose=True,
tree_init=False, # some fancy init
n_jobs=1)
elapsed = time.perf_counter()-start
runtime[i] = elapsed
nn_arr = index._neighbor_graph[0]
assert((nn_arr[:,0] == np.array(range(dataset.N))).all())
nn_list.append(NearestNeighbors(nn_arr[:,1:], metric))
# skip first repetition, since JIT does a lot of work then...
return nn_list[1:], Timingdata(None, runtime[1:], "pynndescent")