Un ejemplo de un web server escrito con Node el cual responde con 'Hola Mundo':
var http = require('http');
http.createServer(function (request, response) {
response.writeHead(200, {'Content-Type': 'text/plain'});
response.end('Hola mundo\n');
}).listen(8124);
console.log('Server corriendo en http://127.0.0.1:8124/');
Para correr el server, copie el código dentro de un archivo llamado ejemplo.js
y ejecútelo con el programa node
> node ejemplo.js
Server corriendo en http://127.0.0.1:8124/
Todos los ejemplos en esta documentación puede ser corridos en forma similar.
Node viene con un número de módulos que se compilan en el proceso, mayoría de los cuales se documentan a continuación.
La manera más común para usar estos módulos es con require('name')
y luego asignar el valor devuelto a una variable local con el mismo nombre que el módulo.
Ejemplo: var sys = require('sys');
Es posible extender node con otros módulos. Ver 'Modulos'
Javascript es un Unicode amigable pero no es agradable para datos binarios. Cuando se trata de streams TCP o de un sistema de archivos es necesario manejar bytes. Node tiene muchas estrategias para manipular, crear y consumir bytes.
Los datos en bruto se almacenan en instancias de la clase Buffer
.
Un Buffer
es similar a un array de enteros pero se corresponde a una asignación de memoria en bruto fuera de la pila de V8.
Un Buffer
no pude ser redimensionado.
NdT: octect streams ~= streams de octetos ~= bytes
El Buffer
es un objeto global.
La conversión entre Buffers y objetos string de javascript requiere un método explícito de codificación. Aquí están las diferentes codificaciones de strings;
-
'ascii'
- sólo para 7 bit de datos ASCII. Este método de codificación es muy rápido y se desechará el bit más alto si es seteado. -
'utf8'
- caracteres Unicode. Muchas páginas webs y otros formatos de documentos utilizan UTF-8. -
'base64'
- codificacion de cadena en Base64. -
'binary'
- Una manera de codificar un dato binario en bruto dentro de strings es utilizando sólo los primeros 8 bits de cada caracter. Este método de codificación es despreciado y debería ser evitado a favor de los objectosBuffer
cuando sea posible. Esta codificación será removida en futuras versiones de Node.
Asigna un nuevo buffer de tamaño size
de octetos/bytes.
Asigna un nuevo buffer utilizando un array
de octetos/bytes.
Asigna un nuevo buffer asignando el str
dado.
Escribe un string
en el buffer con offset
utilizando la codificación dada.
Retorna el número de bytes escritos. Si buffer
no contiene espacio suficiente para que entre el string completo escribirá una cantidad parcial del string.
En el caso de codificación utf8
, el método escribirña caracteres parciales.
Ejemplo: escribe una cadena utf8 dentro de un bufer, luego lo imprime
buf = new Buffer(256);
len = buf.write('\u00bd + \u00bc = \u00be', 0);
console.log(len + " bytes: " + buf.toString('utf8', 0, len));
// 12 bytes: ½ + ¼ = ¾
Decodifica y retorna un string desde los datos del buffer codificando con encoding
comenzando en start
y finalizando en end
.
Ver arriba el ejemplo buffer.write()
.
Toma y setea el byte en index
. Los valores se refieren a los bytes individuales, por lo que el rango permitido es entre 0x00
y 0xFF
en hexa o 0
y 255
.
Ejemplo: copia un string ASCII dentro del buffer, un byte a la vez.
str = "node.js";
buf = new Buffer(str.length);
for (var i = 0; i < str.length ; i++) {
buf[i] = str.charCodeAt(i);
}
console.log(buf);
// node.js
Da la real longitud del byte de un string.
No es lo mismo que String.prototype.length
ya que retorna el número de caracteres en un string.
Ejemplo:
str = '\u00bd + \u00bc = \u00be';
console.log(str + ": " + str.length + " characters, " +
Buffer.byteLength(str, 'utf8') + " bytes");
// ½ + ¼ = ¾: 9 characters, 12 bytes
El tamaño del buffer en bytes. Note que esto no es necesariemente el tamaño del contenido.
length
se refiere a la cantidad de memoria asignada para el objeto buffer.
Este no cambia cuando el contenido del buffer cambia.
Ejemplo:
buf = new Buffer(1234);
console.log(buf.length);
buf.write("some string", "ascii", 0);
console.log(buf.length);
// 1234
// 1234
Realiza un memcpy() entre buffers.
Ejemplo: crear dos Buffers, luego copiar buf1
desde el byte 16 a hasta el byte 19 dentro de buf2
, comenzando en el octavo byte en buf2
.
buf1 = new Buffer(26);
buf2 = new Buffer(26);
for (var i = 0 ; i < 26 ; i++) {
buf1[i] = i + 97; // 97 is ASCII a
buf2[i] = 33; // ASCII !
}
buf1.copy(buf2, 8, 16, 20);
console.log(buf2.toString('ascii', 0, 25));
// !!!!!!!!qrst!!!!!!!!!!!!!
Retorna un nuevo buffer el cual referencia la misma memoria que el original, pero desplaza y copia a través de los índices start
y end
.
Modificando el slice del nuevo buffer modificará la memoria en el buffer original ! Ejemplo: crear un Buffer con el alfabeto en ASCII, hacer un slice, luego modificar un byte desde el Buffer original.
var buf1 = new Buffer(26);
for (var i = 0 ; i < 26 ; i++) {
buf1[i] = i + 97; // 97 es 'a' en ASCII
}
var buf2 = buf1.slice(0, 3);
console.log(buf2.toString('ascii', 0, buf2.length));
buf1[0] = 33;
console.log(buf2.toString('ascii', 0, buf2.length));
// abc
// !bc
Muchos objetos en Node emiten eventos: un servidor TCP emite un evento
cada vez que hay un stream, un proceso hijo emite un evento al salir.
Todos los objetos que emiten eventos son instancias de events.EventEmitter
.
Los eventos se representan mediante una cadena con estilo camel case. Algunos
ejemplos podrían ser:
'stream'
, 'data'
, 'messageBegin'
.
De esta manera, podemos agregar funciones a los objetos, para ser ejecutadas cuando un evento es emitido. Estas funciones son llamadas listeners.
require('events').EventEmitter
para acceder a la clase EventEmitter
.
Todos los emisores de eventos (EventEmitters) emiten el evento 'newListener'
al ser agregadas nuevas funciones listeners.
Cuando un EventEmitter
encuentra un error, la acción usual a tomar es emitir
un evento 'error'
. Los eventos de error son especiales--si no hay un handler
para ellos, mostrarán un stack trace y detendrán el programa.
function (event, listener) { }
Este evento se emite al ser agregado un nuevo listener.
function (exception) { }
Este evento es emitido al ser encontrado un error. Este evento es especial - cuando no existen funciones listeners que reciban el error, Node terminará la ejecución y presentará el stack trace de las excepciones.
Agrega una función listener al final del arreglo de funciones listeners para el evento especificado.
server.on('stream', function (stream) {
console.log('someone connected!');
});
Elimina una función listener del arreglo de funciones listeners para el evento especificado. Precaucíón: esto modifica los índices del array en el arreglo de listeners detrás del listener.
var callback = function(stream) {
console.log('someone connected!');
};
server.on('stream', callback);
// ...
server.removeListener('stream', callback);
Elimina todos los listeners del arreglo de listeners para el evento especificado.
Devuelve un arreglo de listeners para el evento especificado. Este arreglo puede ser modificado. Ej.: para eliminar listeners.
server.on('stream', function (stream) {
console.log('someone connected!');
});
console.log(sys.inspect(server.listeners('stream'));
// [ [Function] ]
Ejecuta cada uno de los listeners de acuerdo al orden de los argumentos.
Un stream es una interface abstracta implementada por varios objetos en Node.
Por ejemplo, una solicitud a un servidor HTTP es un stream, como lo es stdout.
Los streams son de escritura, lectura o ambos. Todos los streams son instancias
de EventEmitter
.
Un Stream de lectura
tiene los siguientes métodos, miembros y eventos.
function (data) { }
El evento 'data'
emite un Buffer
(predeterminado) o una cadena si fue utilizado
setEncoding()
.
function () { }
Es emitido cuando el stream ha recibido un EOF (FIN en terminología TCP).
Indica que no habrán más eventos 'data'
. En caso que el stream sea de escritura,
se podrá continuar escribiendo.
function (exception) { }
Es emitido si hubo un error al recibir datos.
function () { }
Es emitido cuando el descriptor de archivos subyacente debe ser cerrado. No
todos los streams lo emitirán. Por ejemplo, una solicitud HTTP no emitirá
'close'
.
function (fd) { }
Es emitido cuando el archivo descriptor es recibido en el stream. Solo streams de Unix soportan esta funcionalidad; los demás, simplemente nunca emitirán este evento.
A boolean that is true
by default, but turns false
after an 'error'
occured, the stream came to an 'end'
, or destroy()
was called.
Makes the data event emit a string instead of a Buffer
. encoding
can be
'utf8'
, 'ascii'
, or 'base64'
.
Pauses the incoming 'data'
events.
Resumes the incoming 'data'
events after a pause()
.
Closes the underlying file descriptor. Stream will not emit any more events.
A Writable Stream
has the following methods, members, and events.
function () { }
Emitted after a write()
method was called that returned false
to
indicate that it is safe to write again.
function (exception) { }
Emitted on error with the exception exception
.
function () { }
Emitted when the underlying file descriptor has been closed.
A boolean that is true
by default, but turns false
after an 'error'
occurred or end()
/ destroy()
was called.
Writes string
with the given encoding
to the stream. Returns true
if
the string has been flushed to the kernel buffer. Returns false
to
indicate that the kernel buffer is full, and the data will be sent out in
the future. The 'drain'
event will indicate when the kernel buffer is
empty again. The encoding
defaults to 'utf8'
.
If the optional fd
parameter is specified, it is interpreted as an integral
file descriptor to be sent over the stream. This is only supported for UNIX
streams, and is silently ignored otherwise. When writing a file descriptor in
this manner, closing the descriptor before the stream drains risks sending an
invalid (closed) FD.
Same as the above except with a raw buffer.
Terminates the stream with EOF or FIN.
Sends string
with the given encoding
and terminates the stream with EOF
or FIN. This is useful to reduce the number of packets sent.
Same as above but with a buffer
.
Closes the underlying file descriptor. Stream will not emit any more events.
These object are available in the global scope and can be accessed from anywhere.
The global namespace object.
The process object. See the 'process object'
section.
To require modules. See the 'Modules'
section.
An array of search paths for require()
. This array can be modified to add custom paths.
Example: add a new path to the beginning of the search list
require.paths.unshift('/usr/local/node');
console.log(require.paths);
// /usr/local/node,/Users/mjr/.node_libraries
The filename of the script being executed. This is the absolute path, and not necessarily the same filename passed in as a command line argument.
Example: running node example.js
from /Users/mjr
console.log(__filename);
// /Users/mjr/example.js
The dirname of the script being executed.
Example: running node example.js
from /Users/mjr
console.log(__dirname);
// /Users/mjr
A reference to the current module (of type process.Module
). In particular
module.exports
is the same as the exports
object. See src/process.js
for more information.
The process
object is a global object and can be accessed from anywhere.
It is an instance of EventEmitter
.
function () {}
Emitted when the process is about to exit. This is a good hook to perform constant time checks of the module's state (like for unit tests). The main event loop will no longer be run after the 'exit' callback finishes, so timers may not be scheduled.
Example of listening for exit
:
process.on('exit', function () {
process.nextTick(function () {
console.log('This will not run');
});
console.log('About to exit.');
});
function (err) { }
Emitted when an exception bubbles all the way back to the event loop. If a listener is added for this exception, the default action (which is to print a stack trace and exit) will not occur.
Example of listening for uncaughtException
:
process.on('uncaughtException', function (err) {
console.log('Caught exception: ' + err);
});
setTimeout(function () {
console.log('This will still run.');
}, 500);
// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');
Note that uncaughtException
is a very crude mechanism for exception
handling. Using try / catch in your program will give you more control over
your program's flow. Especially for server programs that are designed to
stay running forever, uncaughtException
can be a useful safety mechanism.
function () {}
Emitted when the processes receives a signal. See sigaction(2) for a list of standard POSIX signal names such as SIGINT, SIGUSR1, etc.
Example of listening for SIGINT
:
var stdin = process.openStdin();
process.on('SIGINT', function () {
console.log('Got SIGINT. Press Control-D to exit.');
});
An easy way to send the SIGINT
signal is with Control-C
in most terminal
programs.
A Writable Stream
to stdout
.
Example: the definition of console.log
console.log = function (d) {
process.stdout.write(d + '\n');
};
Opens the standard input stream, returns a Readable Stream
.
Example of opening standard input and listening for both events:
var stdin = process.openStdin();
stdin.setEncoding('utf8');
stdin.on('data', function (chunk) {
process.stdout.write('data: ' + chunk);
});
stdin.on('end', function () {
process.stdout.write('end');
});
An array containing the command line arguments. The first element will be 'node', the second element will be the name of the JavaScript file. The next elements will be any additional command line arguments.
// print process.argv
process.argv.forEach(function (val, index, array) {
console.log(index + ': ' + val);
});
This will generate:
$ node process-2.js one two=three four
0: node
1: /Users/mjr/work/node/process-2.js
2: one
3: two=three
4: four
This is the absolute pathname of the executable that started the process.
Example:
/usr/local/bin/node
Changes the current working directory of the process or throws an exception if that fails.
console.log('Starting directory: ' + process.cwd());
try {
process.chdir('/tmp');
console.log('New directory: ' + process.cwd());
}
catch (err) {
console.log('chdir: ' + err);
}
Similar to eval
except that you can specify a filename
for better
error reporting and the code
cannot see the local scope. The value of filename
will be used as a filename if a stack trace is generated by the compiled code.
Example of using process.compile
and eval
to run the same code:
var localVar = 123,
compiled, evaled;
compiled = process.compile('localVar = 1;', 'myfile.js');
console.log('localVar: ' + localVar + ', compiled: ' + compiled);
evaled = eval('localVar = 1;');
console.log('localVar: ' + localVar + ', evaled: ' + evaled);
// localVar: 123, compiled: 1
// localVar: 1, evaled: 1
process.compile
does not have access to the local scope, so localVar
is unchanged.
eval
does have access to the local scope, so localVar
is changed.
In case of syntax error in code
, process.compile
exits node.
See also: Script
Returns the current working directory of the process.
console.log('Current directory: ' + process.cwd());
An object containing the user environment. See environ(7).
Ends the process with the specified code
. If omitted, exit uses the
'success' code 0
.
To exit with a 'failure' code:
process.exit(1);
The shell that executed node should see the exit code as 1.
Gets the group identity of the process. (See getgid(2).) This is the numerical group id, not the group name.
console.log('Current gid: ' + process.getgid());
Sets the group identity of the process. (See setgid(2).) This accepts either a numerical ID or a groupname string. If a groupname is specified, this method blocks while resolving it to a numerical ID.
console.log('Current gid: ' + process.getgid());
try {
process.setgid(501);
console.log('New gid: ' + process.getgid());
}
catch (err) {
console.log('Failed to set gid: ' + err);
}
Gets the user identity of the process. (See getuid(2).) This is the numerical userid, not the username.
console.log('Current uid: ' + process.getuid());
Sets the user identity of the process. (See setuid(2).) This accepts either a numerical ID or a username string. If a username is specified, this method blocks while resolving it to a numerical ID.
console.log('Current uid: ' + process.getuid());
try {
process.setuid(501);
console.log('New uid: ' + process.getuid());
}
catch (err) {
console.log('Failed to set uid: ' + err);
}
A compiled-in property that exposes NODE_VERSION
.
console.log('Version: ' + process.version);
A compiled-in property that exposes NODE_PREFIX
.
console.log('Prefix: ' + process.installPrefix);
Send a signal to a process. pid
is the process id and signal
is the
string describing the signal to send. Signal names are strings like
'SIGINT' or 'SIGUSR1'. If omitted, the signal will be 'SIGINT'.
See kill(2) for more information.
Note that just because the name of this function is process.kill
, it is
really just a signal sender, like the kill
system call. The signal sent
may do something other than kill the target process.
Example of sending a signal to yourself:
process.on('SIGHUP', function () {
console.log('Got SIGHUP signal.');
});
setTimeout(function () {
console.log('Exiting.');
process.exit(0);
}, 100);
process.kill(process.pid, 'SIGHUP');
The PID of the process.
console.log('This process is pid ' + process.pid);
Getter/setter to set what is displayed in 'ps'.
What platform you're running on. 'linux2'
, 'darwin'
, etc.
console.log('This platform is ' + process.platform);
Returns an object describing the memory usage of the Node process.
var sys = require('sys');
console.log(sys.inspect(process.memoryUsage()));
This will generate:
{ rss: 4935680
, vsize: 41893888
, heapTotal: 1826816
, heapUsed: 650472
}
heapTotal
and heapUsed
refer to V8's memory usage.
On the next loop around the event loop call this callback.
This is not a simple alias to setTimeout(fn, 0)
, it's much more
efficient.
process.nextTick(function () {
console.log('nextTick callback');
});
Sets or reads the process's file mode creation mask. Child processes inherit
the mask from the parent process. Returns the old mask if mask
argument is
given, otherwise returns the current mask.
var oldmask, newmask = 0644;
oldmask = process.umask(newmask);
console.log('Changed umask from: ' + oldmask.toString(8) +
' to ' + newmask.toString(8));
These functions are in the module 'sys'
. Use require('sys')
to access
them.
Like console.log()
but without the trailing newline.
require('sys').print('String with no newline');
A synchronous output function. Will block the process and
output string
immediately to stderr
.
require('sys').debug('message on stderr');
Output with timestamp on stdout
.
require('sys').log('Timestmaped message.');
sys.inspect(object, showHidden=false, depth=2)
Return a string representation of object
, which is useful for debugging.
If showHidden
is true
, then the object's non-enumerable properties will be
shown too.
If depth
is provided, it tells inspect
how many times to recurse while
formatting the object. This is useful for inspecting large complicated objects.
The default is to only recurse twice. To make it recurse indefinitely, pass
in null
for depth
.
Example of inspecting all properties of the sys
object:
var sys = require('sys');
console.log(sys.inspect(sys, true, null));
Experimental
Read the data from readableStream
and send it to the writableStream
.
When writeableStream.write(data)
returns false
readableStream
will be
paused until the drain
event occurs on the writableStream
. callback
gets
an error as its only argument and is called when writableStream
is closed or
when an error occurs.
To schedule execution of callback
after delay
milliseconds. Returns a
timeoutId
for possible use with clearTimeout()
. Optionally, you can
also pass arguments to the callback.
Prevents a timeout from triggering.
To schedule the repeated execution of callback
every delay
milliseconds.
Returns a intervalId
for possible use with clearInterval()
. Optionally,
you can also pass arguments to the callback.
Stops a interval from triggering.
Node provides a tri-directional popen(3)
facility through the ChildProcess
class.
It is possible to stream data through the child's stdin
, stdout
, and
stderr
in a fully non-blocking way.
To create a child process use require('child_process').spawn()
.
Child processes always have three streams associated with them. child.stdin
,
child.stdout
, and child.stderr
.
ChildProcess
is an EventEmitter
.
function (code, signal) {}
This event is emitted after the child process ends. If the process terminated
normally, code
is the final exit code of the process, otherwise null
. If
the process terminated due to receipt of a signal, signal
is the string name
of the signal, otherwise null
.
After this event is emitted, the 'output'
and 'error'
callbacks will no
longer be made.
See waitpid(2)
.
A Writable Stream
that represents the child process's stdin
.
Closing this stream via end()
often causes the child process to terminate.
A Readable Stream
that represents the child process's stdout
.
A Readable Stream
that represents the child process's stderr
.
The PID of the child process.
Example:
var spawn = require('child_process').spawn,
grep = spawn('grep', ['ssh']);
console.log('Spawned child pid: ' + grep.pid);
grep.stdin.end();
Launches a new process with the given command
, with command line arguments in args
.
If omitted, args
defaults to an empty Array.
The third argument is used to specify additional options, which defaults to:
{ cwd: undefined
, env: process.env,
, customFds: [-1, -1, -1]
}
cwd
allows you to specify the working directory from which the process is spawned.
Use env
to specify environment variables that will be visible to the new process.
With customFds
it is possible to hook up the new process' [stdin, stout, stderr] to
existing streams; -1
means that a new stream should be created.
Example of running ls -lh /usr
, capturing stdout
, stderr
, and the exit code:
var sys = require('sys'),
spawn = require('child_process').spawn,
ls = spawn('ls', ['-lh', '/usr']);
ls.stdout.on('data', function (data) {
sys.print('stdout: ' + data);
});
ls.stderr.on('data', function (data) {
sys.print('stderr: ' + data);
});
ls.on('exit', function (code) {
console.log('child process exited with code ' + code);
});
Example: A very elaborate way to run 'ps ax | grep ssh'
var sys = require('sys'),
spawn = require('child_process').spawn,
ps = spawn('ps', ['ax']),
grep = spawn('grep', ['ssh']);
ps.stdout.on('data', function (data) {
grep.stdin.write(data);
});
ps.stderr.on('data', function (data) {
sys.print('ps stderr: ' + data);
});
ps.on('exit', function (code) {
if (code !== 0) {
console.log('ps process exited with code ' + code);
}
grep.stdin.end();
});
grep.stdout.on('data', function (data) {
sys.print(data);
});
grep.stderr.on('data', function (data) {
sys.print('grep stderr: ' + data);
});
grep.on('exit', function (code) {
if (code !== 0) {
console.log('grep process exited with code ' + code);
}
});
Example of checking for failed exec:
var spawn = require('child_process').spawn,
child = spawn('bad_command');
child.stderr.on('data', function (data) {
if (/^execvp\(\)/.test(data.asciiSlice(0,data.length))) {
console.log('Failed to start child process.');
}
});
See also: child_process.exec()
High-level way to execute a command as a child process, buffer the output, and return it all in a callback.
var sys = require('sys'),
exec = require('child_process').exec,
child;
child = exec('cat *.js bad_file | wc -l',
function (error, stdout, stderr) {
sys.print('stdout: ' + stdout);
sys.print('stderr: ' + stderr);
if (error !== null) {
console.log('exec error: ' + error);
}
});
The callback gets the arguments (error, stdout, stderr)
. On success, error
will be null
. On error, error
will be an instance of Error
and err.code
will be the exit code of the child process, and err.signal
will be set to the
signal that terminated the process.
There is a second optional argument to specify several options. The default options are
{ encoding: 'utf8'
, timeout: 0
, maxBuffer: 200*1024
, killSignal: 'SIGKILL'
, cwd: null
, env: null
}
If timeout
is greater than 0, then it will kill the child process
if it runs longer than timeout
milliseconds. The child process is killed with
killSignal
(default: 'SIGKILL'
). maxBuffer
specifies the largest
amount of data allowed on stdout or stderr - if this value is exceeded then
the child process is killed.
Send a signal to the child process. If no argument is given, the process will
be sent 'SIGTERM'
. See signal(7)
for a list of available signals.
var spawn = require('child_process').spawn,
grep = spawn('grep', ['ssh']);
grep.on('exit', function (code, signal) {
console.log('child process terminated due to receipt of signal '+signal);
});
// send SIGHUP to process
grep.kill('SIGHUP');
Note that while the function is called kill
, the signal delivered to the child
process may not actually kill it. kill
really just sends a signal to a process.
See kill(2)
Script
class compiles and runs JavaScript code. You can access this class with:
var Script = process.binding('evals').Script;
New JavaScript code can be compiled and run immediately or compiled, saved, and run later.
Similar to process.compile
. Script.runInThisContext
compiles code
as if it were loaded from filename
,
runs it and returns the result. Running code does not have access to local scope. filename
is optional.
Example of using Script.runInThisContext
and eval
to run the same code:
var localVar = 123,
usingscript, evaled,
Script = process.binding('evals').Script;
usingscript = Script.runInThisContext('localVar = 1;',
'myfile.js');
console.log('localVar: ' + localVar + ', usingscript: ' +
usingscript);
evaled = eval('localVar = 1;');
console.log('localVar: ' + localVar + ', evaled: ' +
evaled);
// localVar: 123, usingscript: 1
// localVar: 1, evaled: 1
Script.runInThisContext
does not have access to the local scope, so localVar
is unchanged.
eval
does have access to the local scope, so localVar
is changed.
In case of syntax error in code
, Script.runInThisContext
emits the syntax error to stderr
and throws.an exception.
Script.runInNewContext
compiles code
to run in sandbox
as if it were loaded from filename
,
then runs it and returns the result. Running code does not have access to local scope and
the object sandbox
will be used as the global object for code
.
sandbox
and filename
are optional.
Example: compile and execute code that increments a global variable and sets a new one. These globals are contained in the sandbox.
var sys = require('sys'),
Script = process.binding('evals').Script,
sandbox = {
animal: 'cat',
count: 2
};
Script.runInNewContext(
'count += 1; name = "kitty"', sandbox, 'myfile.js');
console.log(sys.inspect(sandbox));
// { animal: 'cat', count: 3, name: 'kitty' }
Note that running untrusted code is a tricky business requiring great care. To prevent accidental
global variable leakage, Script.runInNewContext
is quite useful, but safely running untrusted code
requires a separate process.
In case of syntax error in code
, Script.runInThisContext
emits the syntax error to stderr
and throws an exception.
new Script
compiles code
as if it were loaded from filename
,
but does not run it. Instead, it returns a Script
object representing this compiled code.
This script can be run later many times using methods below.
The returned script is not bound to any global object.
It is bound before each run, just for that run. filename
is optional.
In case of syntax error in code
, new Script
emits the syntax error to stderr
and throws an exception.
Similar to Script.runInThisContext
(note capital 'S'), but now being a method of a precompiled Script object.
script.runInThisContext
runs the code of script
and returns the result.
Running code does not have access to local scope, but does have access to the global
object
(v8: in actual context).
Example of using script.runInThisContext
to compile code once and run it multiple times:
var Script = process.binding('evals').Script,
scriptObj, i;
globalVar = 0;
scriptObj = new Script('globalVar += 1', 'myfile.js');
for (i = 0; i < 1000 ; i += 1) {
scriptObj.runInThisContext();
}
console.log(globalVar);
// 1000
Similar to Script.runInNewContext
(note capital 'S'), but now being a method of a precompiled Script object.
script.runInNewContext
runs the code of script
with sandbox
as the global object and returns the result.
Running code does not have access to local scope. sandbox
is optional.
Example: compile code that increments a global variable and sets one, then execute this code multiple times. These globals are contained in the sandbox.
var sys = require('sys'),
Script = process.binding('evals').Script,
scriptObj, i,
sandbox = {
animal: 'cat',
count: 2
};
scriptObj = new Script(
'count += 1; name = "kitty"', 'myfile.js');
for (i = 0; i < 10 ; i += 1) {
scriptObj.runInNewContext(sandbox);
}
console.log(sys.inspect(sandbox));
// { animal: 'cat', count: 12, name: 'kitty' }
Note that running untrusted code is a tricky business requiring great care. To prevent accidental
global variable leakage, script.runInNewContext
is quite useful, but safely running untrusted code
requires a separate process.
File I/O is provided by simple wrappers around standard POSIX functions. To
use this module do require('fs')
. All the methods have asynchronous and
synchronous forms.
The asynchronous form always take a completion callback as its last argument.
The arguments passed to the completion callback depend on the method, but the
first argument is always reserved for an exception. If the operation was
completed successfully, then the first argument will be null
or undefined
.
Here is an example of the asynchronous version:
var fs = require('fs');
fs.unlink('/tmp/hello', function (err) {
if (err) throw err;
console.log('successfully deleted /tmp/hello');
});
Here is the synchronous version:
var fs = require('fs');
fs.unlinkSync('/tmp/hello')
console.log('successfully deleted /tmp/hello');
With the asynchronous methods there is no guaranteed ordering. So the following is prone to error:
fs.rename('/tmp/hello', '/tmp/world', function (err) {
if (err) throw err;
console.log('renamed complete');
});
fs.stat('/tmp/world', function (err, stats) {
if (err) throw err;
console.log('stats: ' + JSON.stringify(stats));
});
It could be that fs.stat
is executed before fs.rename
.
The correct way to do this is to chain the callbacks.
fs.rename('/tmp/hello', '/tmp/world', function (err) {
if (err) throw err;
fs.stat('/tmp/world', function (err, stats) {
if (err) throw err;
console.log('stats: ' + JSON.stringify(stats));
});
});
In busy processes, the programmer is strongly encouraged to use the asynchronous versions of these calls. The synchronous versions will block the entire process until they complete--halting all connections.
Asynchronous rename(2). No arguments other than a possible exception are given to the completion callback.
Synchronous rename(2).
Asynchronous ftruncate(2). No arguments other than a possible exception are given to the completion callback.
Synchronous ftruncate(2).
Asynchronous chmod(2). No arguments other than a possible exception are given to the completion callback.
Synchronous chmod(2).
Asynchronous stat(2). The callback gets two arguments (err, stats)
where stats
is a fs.Stats
object. It looks like this:
{ dev: 2049
, ino: 305352
, mode: 16877
, nlink: 12
, uid: 1000
, gid: 1000
, rdev: 0
, size: 4096
, blksize: 4096
, blocks: 8
, atime: '2009-06-29T11:11:55Z'
, mtime: '2009-06-29T11:11:40Z'
, ctime: '2009-06-29T11:11:40Z'
}
See the fs.Stats
section below for more information.
Asynchronous lstat(2). The callback gets two arguments (err, stats)
where stats
is a fs.Stats
object.
Asynchronous fstat(2). The callback gets two arguments (err, stats)
where stats
is a fs.Stats
object.
Synchronous stat(2). Returns an instance of fs.Stats
.
Synchronous lstat(2). Returns an instance of fs.Stats
.
Synchronous fstat(2). Returns an instance of fs.Stats
.
Asynchronous link(2). No arguments other than a possible exception are given to the completion callback.
Synchronous link(2).
Asynchronous symlink(2). No arguments other than a possible exception are given to the completion callback.
Synchronous symlink(2).
Asynchronous readlink(2). The callback gets two arguments (err, resolvedPath)
.
Synchronous readlink(2). Returns the resolved path.
Asynchronous realpath(2). The callback gets two arguments (err, resolvedPath)
.
Synchronous realpath(2). Returns the resolved path.
Asynchronous unlink(2). No arguments other than a possible exception are given to the completion callback.
Synchronous unlink(2).
Asynchronous rmdir(2). No arguments other than a possible exception are given to the completion callback.
Synchronous rmdir(2).
Asynchronous mkdir(2). No arguments other than a possible exception are given to the completion callback.
Synchronous mkdir(2).
Asynchronous readdir(3). Reads the contents of a directory.
The callback gets two arguments (err, files)
where files
is an array of
the names of the files in the directory excluding '.'
and '..'
.
Synchronous readdir(3). Returns an array of filenames excluding '.'
and
'..'
.
Asynchronous close(2). No arguments other than a possible exception are given to the completion callback.
Synchronous close(2).
Asynchronous file open. See open(2). Flags can be 'r', 'r+', 'w', 'w+', 'a',
or 'a+'. The callback gets two arguments (err, fd)
.
Synchronous open(2).
Write buffer
to the file specified by fd
.
offset
and length
determine the part of the buffer to be written.
position
refers to the offset from the beginning of the file where this data
should be written. If position
is null
, the data will be written at the
current position.
See pwrite(2).
The callback will be given two arguments (err, written)
where written
specifies how many bytes were written.
Write the entire string str
using the given encoding
to the file specified
by fd
.
position
refers to the offset from the beginning of the file where this data
should be written. If position
is null
, the data will be written at the
current position.
See pwrite(2).
The callback will be given two arguments (err, written)
where written
specifies how many bytes were written.
Synchronous version of buffer-based fs.write()
. Returns the number of bytes written.
Synchronous version of string-based fs.write()
. Returns the number of bytes written.
Read data from the file specified by fd
.
buffer
is the buffer that the data will be written to.
offset
is offset within the buffer where writing will start.
length
is an integer specifying the number of bytes to read.
position
is an integer specifying where to begin reading from in the file.
If position
is null
, data will be read from the current file position.
The callback is given the two arguments, (err, bytesRead)
.
Read data from the file specified by fd
.
length
is an integer specifying the number of bytes to read.
position
is an integer specifying where to begin reading from in the file.
If position
is null
, data will be read from the current file position.
encoding
is the desired encoding of the string of data read in from fd
.
The callback is given the three arguments, (err, str, bytesRead)
.
Synchronous version of buffer-based fs.read
. Returns the number of bytesRead
.
Synchronous version of string-based fs.read
. Returns the number of bytesRead
.
Asynchronously reads the entire contents of a file. Example:
fs.readFile('/etc/passwd', function (err, data) {
if (err) throw err;
console.log(data);
});
The callback is passed two arguments (err, data)
, where data
is the
contents of the file.
If no encoding is specified, then the raw buffer is returned.
Synchronous version of fs.readFile
. Returns the contents of the filename
.
If encoding
is specified then this function returns a string. Otherwise it
returns a buffer.
Asynchronously writes data to a file. data
can be a string or a buffer.
Example:
fs.writeFile('message.txt', 'Hello Node', function (err) {
if (err) throw err;
console.log('It\'s saved!');
});
The synchronous version of fs.writeFile
.
Watch for changes on filename
. The callback listener
will be called each
time the file changes.
The second argument is optional. The options
if provided should be an object
containing two members a boolean, persistent
, and interval
, a polling
value in milliseconds. The default is {persistent: true, interval: 0}
.
The listener
gets two arguments the current stat object and the previous
stat object:
fs.watchFile(f, function (curr, prev) {
console.log('the current mtime is: ' + curr.mtime);
console.log('the previous mtime was: ' + prev.mtime);
});
These stat objects are instances of fs.Stat
.
Stop watching for changes on filename
.
Objects returned from fs.stat()
and fs.lstat()
are of this type.
stats.isFile()
stats.isDirectory()
stats.isBlockDevice()
stats.isCharacterDevice()
stats.isSymbolicLink()
(only valid withfs.lstat()
)stats.isFIFO()
stats.isSocket()
ReadStream
is a Readable Stream
.
Returns a new ReadStream object (See Readable Stream
).
options
is an object with the following defaults:
{ 'flags': 'r'
, 'encoding': null
, 'mode': 0666
, 'bufferSize': 4 * 1024
}
options
can include start
and end
values to read a range of bytes from
the file instead of the entire file. Both start
and end
are inclusive and
start at 0. When used, both the limits must be specified always.
An example to read the last 10 bytes of a file which is 100 bytes long:
fs.createReadStream('sample.txt', {start: 90, end: 99});
WriteStream
is a Writable Stream
.
function (fd) { }
fd
is the file descriptor used by the WriteStream.
Returns a new WriteStream object (See Writable Stream
).
options
is an object with the following defaults:
{ 'flags': 'w'
, 'encoding': null
, 'mode': 0666
}
Para usar HTTP server y client debemos utilizar require('http')
.
Las interfaces HTTP en Node están diseñadas para soportar características del protocolo que han sido tradicionalmente difíciles de utilizar. En particular mensajes enormes; posiblemente utilizando chunk-encoded. La interfaz es cuidadosa de nunca buffear (NdT) todos los requests o responses--el usuario puede acceder a los streams de datos.
NdT: Buffear se interpreta como 'almacenar en memoria'
Los headers del mensaje HTML están representados por un objeto como este:
{ 'content-length': '123'
, 'content-type': 'text/plain'
, 'stream': 'keep-alive'
, 'accept': '*/*'
}
las claves están en minúsculas. Los valores no son modificados.
A fin de soportar todo el espectro de posibles aplicaciones HTTP, la API HTTP de Node es de muy bajo nivel. Se ocupa solamente de manipulación de stream y parsing de mensajes. Parsea un mensaje dentro de los headers y el body, pero no parsea el body o los headers reales. HTTPS es soportado si OpenSSL está disponible en la plataforma subyacente.
This is an EventEmitter
with the following events:
function (request, response) { }
request
is an instance of http.ServerRequest
and response
is
an instance of http.ServerResponse
function (stream) { }
When a new TCP stream is established. stream
is an object of type
net.Stream
. Usually users will not want to access this event. The
stream
can also be accessed at request.connection
.
function (errno) { }
Emitted when the server closes.
function (request, response) {}
Emitted each time there is request. Note that there may be multiple requests per connection (in the case of keep-alive connections).
function (request, socket, head)
Emitted each time a client requests a http upgrade. If this event isn't listened for, then clients requesting an upgrade will have their connections closed.
request
is the arguments for the http request, as it is in the request event.socket
is the network socket between the server and client.head
is an instance of Buffer, the first packet of the upgraded stream, this may be empty.
After this event is emitted, the request's socket will not have a data
event listener, meaning you will need to bind to it in order to handle data
sent to the server on that socket.
function (exception) {}
If a client connection emits an 'error' event - it will forwarded here.
Returns a new web server object.
The requestListener
is a function which is automatically
added to the 'request'
event.
Begin accepting connections on the specified port and hostname. If the
hostname is omitted, the server will accept connections directed to any
IPv4 address (INADDR_ANY
).
To listen to a unix socket, supply a filename instead of port and hostname.
This function is asynchronous. The last parameter callback
will be called
when the server has been bound to the port.
Start a UNIX socket server listening for connections on the given path
.
This function is asynchronous. The last parameter callback
will be called
when the server has been bound.
Enables HTTPS support for the server, with the crypto module credentials specifying the private key and certificate of the server, and optionally the CA certificates for use in client authentication.
If the credentials hold one or more CA certificates, then the server will request for the client to submit a client certificate as part of the HTTPS connection handshake. The validity and content of this can be accessed via verifyPeer() and getPeerCertificate() from the server's request.connection.
Stops the server from accepting new connections.
This object is created internally by a HTTP server--not by
the user--and passed as the first argument to a 'request'
listener.
This is an EventEmitter
with the following events:
function (chunk) { }
Emitted when a piece of the message body is received.
Example: A chunk of the body is given as the single
argument. The transfer-encoding has been decoded. The
body chunk is a string. The body encoding is set with
request.setBodyEncoding()
.
function () { }
Emitted exactly once for each message. No arguments. After emitted no other events will be emitted on the request.
The request method as a string. Read only. Example:
'GET'
, 'DELETE'
.
Request URL string. This contains only the URL that is present in the actual HTTP request. If the request is:
GET /status?name=ryan HTTP/1.1\r\n
Accept: text/plain\r\n
\r\n
Then request.url
will be:
'/status?name=ryan'
If you would like to parse the URL into its parts, you can use
require('url').parse(request.url)
. Example:
node> require('url').parse('/status?name=ryan')
{ href: '/status?name=ryan'
, search: '?name=ryan'
, query: 'name=ryan'
, pathname: '/status'
}
If you would like to extract the params from the query string,
you can use the require('querystring').parse
function, or pass
true
as the second argument to require('url').parse
. Example:
node> require('url').parse('/status?name=ryan', true)
{ href: '/status?name=ryan'
, search: '?name=ryan'
, query: { name: 'ryan' }
, pathname: '/status'
}
Read only.
The HTTP protocol version as a string. Read only. Examples:
'1.1'
, '1.0'
.
Also request.httpVersionMajor
is the first integer and
request.httpVersionMinor
is the second.
Set the encoding for the request body. Either 'utf8'
or 'binary'
. Defaults
to null
, which means that the 'data'
event will emit a Buffer
object..
Pauses request from emitting events. Useful to throttle back an upload.
Resumes a paused request.
The net.Stream
object associated with the connection.
With HTTPS support, use request.connection.verifyPeer() and request.connection.getPeerCertificate() to obtain the client's authentication details.
This object is created internally by a HTTP server--not by the user. It is
passed as the second parameter to the 'request'
event. It is a Writable Stream
.
Sends a response header to the request. The status code is a 3-digit HTTP
status code, like 404
. The last argument, headers
, are the response headers.
Optionally one can give a human-readable reasonPhrase
as the second
argument.
Example:
var body = 'hello world';
response.writeHead(200, {
'Content-Length': body.length,
'Content-Type': 'text/plain'
});
This method must only be called once on a message and it must
be called before response.end()
is called.
This method must be called after writeHead
was
called. It sends a chunk of the response body. This method may
be called multiple times to provide successive parts of the body.
chunk
can be a string or a buffer. If chunk
is a string,
the second parameter specifies how to encode it into a byte stream.
By default the encoding
is 'utf8'
.
Note: This is the raw HTTP body and has nothing to do with higher-level multi-part body encodings that may be used.
The first time response.write()
is called, it will send the buffered
header information and the first body to the client. The second time
response.write()
is called, Node assumes you're going to be streaming
data, and sends that separately. That is, the response is buffered up to the
first chunk of body.
This method signals to the server that all of the response headers and body
has been sent; that server should consider this message complete.
The method, response.end()
, MUST be called on each
response.
If data
is specified, it is equivalent to calling response.write(data, encoding)
followed by response.end()
.
Un cliente HTTP es construído con una dirección del servidor como argumento, el handle devuelto es luego usado para hacer una o más peticiones. En función del servidor al cual se conecta, el cliente puede pipeline(segmentar) las peticiones o reestablecer el stream después de cada stream. Actualmente la implementación no solicita el pipeline.
Ejemplo de conexión a google.com
:
var http = require('http');
var google = http.createClient(80, 'www.google.com');
var request = google.request('GET', '/',
{'host': 'www.google.com'});
request.end();
request.on('response', function (response) {
console.log('STATUS: ' + response.statusCode);
console.log('HEADERS: ' + JSON.stringify(response.headers));
response.setEncoding('utf8');
response.on('data', function (chunk) {
console.log('BODY: ' + chunk);
});
});
Hay unos pocos headers especiales a tener en cuenta.
-
El header
Host
no es agregado por Node, y por lo general es requerido por el sitio web. -
Enviando una 'Connection: keep-alive' notificará a Node que la conexión al servidor debe ser persistente en la próxima petición.
-
Enviando un header 'Content-length' deshabilitará chunked encoding (habilitado por defecto).
function (request, socket, head)
Se emite cada vez que el servidor responde a una petición con un upgrade. Si este evento no está siendo escuchado, los clientes que esten recibiendo un 'upgrade header' van a tener sus conexiones cerradas.
Ver la descripción del evento upgrade
de http.Server
para más detalle.
Crea un nuevo cliente HTTP. port
y host
se refieren al servidor al cual se realiza la conexión.
Un stream no se establece hasta que la petición es emitida.
secure
es un flag booleano opcional para habilitar el soporte https
y credentials
es un objeto de credenciales opcional del módulo crypto,
que podrá proceder a la clave privada del cliente, certificado, y una lista de certificados CA confiables.
Si la conexión es segura pero no es explícita los certificados CA son pasados a las credenciales, y luedo node.js seteará por defecto la lista pública de confianza de los certificados CA, como figura en http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt
Emite un request, si es necesario establece un stream. Devuelve una instancia de http.ClientRequest
.
method
es opcional y por defecto es 'GET'.
request_headers
es opcional.
Algunos headers adicionales del request pueden ser añadidos internamente por Node. Devuelve un objeto ClientRequest
.
Recuerda incluir el header Content-Length
si planeas el envío completo de un body.
Si la idea es el streaming del body, tal vez debas setear Transfer-Encoding: chunked
.
NOTA: el request no está completo. Este método sólo envía el header de un request.
Uno debe llamar request.end()
para finalizar el request y obtener la respuesta.
(suena complicado pero otorga al usuario la oportunidad de modificar el stream de un body del servidor con request.write()
.)
Devuelve true o false dependiendo de la validez del certificado del servidor en el contexto de lo definido; o los valores por defecto de la lista de confianza de certificados CA.
Devuelve una estructura JSON detallando el certificado del servidor, conteniendo un diccionario con claves para el certificado de 'subject', 'issuer', 'valid_from' and 'valid_to'
Este objeto es creado internamente y devuelto desde el método request()
de un http.Client
.
Representa una petición in-progress cuya cabecera ya se ha enviado.
Para obtener la respuesta, agregar un listener response
al objeto request.
'response'
será emitido desde el objeto request cuando los headers de la respuesta hayan sido recibidos.
El evento 'response'
es ejecutado con un argumento el cual es una instancia de http.ClientResponse
.
Durante el evento 'response'
, uno puede agregar listeners al objeto response; en particual para escuchar el evento 'data'
.
Tenga en cuenta que el evento 'response'
es llamado antes de que cualquier parte de la respuesta del body sea recibida,
por lo que no hay necesidad de preocuparce para correr a capturar la primer parte del body.
Mientras un listener 'data'
es agregado durante el evento 'response'
, el body completo podrá ser capturado.
// Bien
request.on('response', function (response) {
response.on('data', function (chunk) {
console.log('BODY: ' + chunk);
});
});
// Mal - se pierde todo o parte del body
request.on('response', function (response) {
setTimeout(function () {
response.on('data', function (chunk) {
console.log('BODY: ' + chunk);
});
}, 10);
});
Este es un Writable Stream
.
Este es un EventEmitter
con los siguientes eventos:
function (response) { }
Se emite cuando una respuesta es recibida para esta petición. Este evento es emitido solo una vez.
El argumento response
sera una intancia de http.ClientResponse
.
Envía un chunk al body. Al llamar al método muchas veces, el usuario puede modificar el stream de un body del request a un servidor--
en este caso se sugiere usar la linea ['Transfer-Encoding', 'chunked']
en el header al crear la petición.
El parámetro chunk
debería ser un array de enteros o un string.
El parámetro enconding
es opcional y sólo se aplica cuando chunk
es un string.
Finaliza el envío de una petición. Si alguna parte del body no es envidada,
lo meterá dentro del stream. Si una petición es chunkeada, esta enviará la terminación '0\r\n\r\n'
.
Si se especifica un data
, es equivalente a llamar request.write(data, encoding)
seguido por request.end()
.
Este objeto se crea al hacer una petición con http.Client
.
Es pasado al evento 'response'
del objeto request.
La respuesta implementa la interface Readable Stream
.
function (chunk) {}
Se emite cuando una parte del cuerpo (body) del mensaje es recibida.
Ejemplo: Un chunk del body como un único argumento.
La codificación de transferencia ha sido decodificada.
El body chunckea un string. La codificación del body se establece con `response.setBodyEncoding()`.
function () {}
Se emite exactamente una vez por cada mensaje. Sin Argumentos. Despues de ser emitido, ningun otro evento será emitido en la respuesta.
El códido de 3-digitos del estado de la respuesta. P.E. 404
.
La versión HTTP del servidor conectado. Provablemente '1.1'
or '1.0'
.
También response.httpVersionMajor
es el primer entero y
response.httpVersionMinor
es el segundo.
El objeto headers de la respuesta.
Establece la codificación de la respuesta del body. 'utf8'
, 'ascii'
, o 'base64'
.
Por defecto es null
, lo cual significa que el evento 'data'
emitirá un objeto 'Buffer'
.
Hace una pausa en la respuesta desde la emisión de eventos. Útil para moderar la marcha de una descarga.
Reanuna una pausa en la respuesta.
Una referencia al http.Client
a la cual pertenecea la respuesta.
This class is used to create a TCP or UNIX server.
Here is an example of a echo server which listens for connections on port 8124:
var net = require('net');
var server = net.createServer(function (stream) {
stream.setEncoding('utf8');
stream.on('connect', function () {
stream.write('hello\r\n');
});
stream.on('data', function (data) {
stream.write(data);
});
stream.on('end', function () {
stream.write('goodbye\r\n');
stream.end();
});
});
server.listen(8124, 'localhost');
To listen on the socket '/tmp/echo.sock'
, the last line would just be
changed to
server.listen('/tmp/echo.sock');
This is an EventEmitter
with the following events:
function (stream) {}
Emitted when a new connection is made. stream
is an instance of
net.Stream
.
function () {}
Emitted when the server closes.
Creates a new TCP server. The connectionListener
argument is
automatically set as a listener for the 'connection'
event.
Begin accepting connections on the specified port
and host
. If the
host
is omitted, the server will accept connections directed to any
IPv4 address (INADDR_ANY
).
This function is asynchronous. The last parameter callback
will be called
when the server has been bound.
Start a UNIX socket server listening for connections on the given path
.
This function is asynchronous. The last parameter callback
will be called
when the server has been bound.
Start a server listening for connections on the given file descriptor.
This file descriptor must have already had the bind(2)
and listen(2)
system
calls invoked on it.
Stops the server from accepting new connections. This function is
asynchronous, the server is finally closed when the server emits a 'close'
event.
Set this property to reject connections when the server's connection count gets high.
The number of concurrent connections on the server.
This object is an abstraction of of a TCP or UNIX socket. net.Stream
instance implement a duplex stream interface. They can be created by the
user and used as a client (with connect()
) or they can be created by Node
and passed to the user through the 'connection'
event of a server.
net.Stream
instances are EventEmitters with the following events:
function () { }
Emitted when a stream connection successfully is established.
See connect()
.
function () { }
Emitted when a stream connection successfully establishes an SSL handshake with its peer.
function (data) { }
Emitted when data is received. The argument data
will be a Buffer
or
String
. Encoding of data is set by stream.setEncoding()
.
(See the section on Readable Stream
for more information.)
function () { }
Emitted when the other end of the stream sends a FIN packet. After this is
emitted the readyState
will be 'writeOnly'
. One should probably just
call stream.end()
when this event is emitted.
function () { }
Emitted if the stream times out from inactivity. This is only to notify that the stream has been idle. The user must manually close the connection.
See also: stream.setTimeout()
function () { }
Emitted when the write buffer becomes empty. Can be used to throttle uploads.
function (exception) { }
Emitted when an error occurs. The 'close'
event will be called directly
following this event.
function (had_error) { }
Emitted once the stream is fully closed. The argument had_error
is a boolean which says if
the stream was closed due to a transmission
error.
Construct a new stream object and opens a stream to the specified port
and host
. If the second parameter is omitted, localhost is assumed.
When the stream is established the 'connect'
event will be emitted.
Opens a stream to the specified port
and host
. createConnection()
also opens a stream; normally this method is not needed. Use this only if
a stream is closed and you want to reuse the object to connect to another
server.
This function is asynchronous. When the 'connect'
event is emitted the
stream is established. If there is a problem connecting, the 'connect'
event will not be emitted, the 'error'
event will be emitted with
the exception.
The string representation of the remote IP address. For example,
'74.125.127.100'
or '2001:4860:a005::68'
.
This member is only present in server-side connections.
Either 'closed'
, 'open'
, 'opening'
, 'readOnly'
, or 'writeOnly'
.
Sets the encoding (either 'ascii'
, 'utf8'
, or 'base64'
) for data that is
received.
Enables SSL support for the stream, with the crypto module credentials specifying the private key and certificate of the stream, and optionally the CA certificates for use in peer authentication.
If the credentials hold one ore more CA certificates, then the stream will request for the peer to submit a client certificate as part of the SSL connection handshake. The validity and content of this can be accessed via verifyPeer() and getPeerCertificate().
Returns true or false depending on the validity of the peers's certificate in the context of the defined or default list of trusted CA certificates.
Returns a JSON structure detailing the peer's certificate, containing a dictionary with keys for the certificate 'subject', 'issuer', 'valid_from' and 'valid_to'
Sends data on the stream. The second parameter specifies the encoding in the case of a string--it defaults to ASCII because encoding to UTF8 is rather slow.
Returns true
if the entire data was flushed successfully to the kernel
buffer. Returns false
if all or part of the data was queued in user memory.
'drain'
will be emitted when the buffer is again free.
Half-closes the stream. I.E., it sends a FIN packet. It is possible the
server will still send some data. After calling this readyState
will be
'readOnly'
.
If data
is specified, it is equivalent to calling stream.write(data, encoding)
followed by stream.end()
.
Ensures that no more I/O activity happens on this stream. Only necessary in case of errors (parse error or so).
Pauses the reading of data. That is, 'data'
events will not be emitted.
Useful to throttle back an upload.
Resumes reading after a call to pause()
.
Sets the stream to timeout after timeout
milliseconds of inactivity on
the stream. By default net.Stream
do not have a timeout.
When an idle timeout is triggered the stream will receive a 'timeout'
event but the connection will not be severed. The user must manually end()
or destroy()
the stream.
If timeout
is 0, then the existing idle timeout is disabled.
Disables the Nagle algorithm. By default TCP connections use the Nagle
algorithm, they buffer data before sending it off. Setting noDelay
will
immediately fire off data each time stream.write()
is called.
Enable/disable keep-alive functionality, and optionally set the initial
delay before the first keepalive probe is sent on an idle stream.
Set initialDelay
(in milliseconds) to set the delay between the last
data packet received and the first keepalive probe. Setting 0 for
initialDelay will leave the value unchanged from the default
(or previous) setting.
Use require('crypto')
to access this module.
The crypto module requires OpenSSL to be available on the underlying platform. It offers a way of encapsulating secure credentials to be used as part of a secure HTTPS net or http connection.
It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.
Creates a credentials object, with the optional details being a dictionary with keys:
key
: a string holding the PEM encoded private key
cert
: a string holding the PEM encoded certificate
ca
: either a string or list of strings of PEM encoded CA certificates to trust.
If no 'ca' details are given, then node.js will use the default publicly trusted list of CAs as given in http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt
Creates and returns a hash object, a cryptographic hash with the given algorithm which can be used to generate hash digests.
algorithm
is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are sha1, md5, sha256, sha512, etc. On recent releases, openssl list-message-digest-algorithms
will display the available digest algorithms.
Updates the hash content with the given data
. This can be called many times with new data as it is streamed.
Calculates the digest of all of the passed data to be hashed. The encoding
can be 'hex', 'binary' or 'base64'.
Creates and returns a hmac object, a cryptographic hmac with the given algorithm and key.
algorithm
is dependent on the available algorithms supported by OpenSSL - see createHash above.
key
is the hmac key to be used.
Update the hmac content with the given data
. This can be called many times with new data as it is streamed.
Calculates the digest of all of the passed data to the hmac. The encoding
can be 'hex', 'binary' or 'base64'.
Creates and returns a cipher object, with the given algorithm and key.
algorithm
is dependent on OpenSSL, examples are aes192, etc. On recent releases, openssl list-cipher-algorithms
will display the available cipher algorithms.
Updates the cipher with data
, the encoding of which is given in input_encoding
and can be 'utf8', 'ascii' or 'binary'. The output_encoding
specifies the output format of the enciphered data, and can be 'binary', 'base64' or 'hex'.
Returns the enciphered contents, and can be called many times with new data as it is streamed.
Returns any remaining enciphered contents, with output_encoding
being one of: 'binary', 'ascii' or 'utf8'.
Creates and returns a decipher object, with the given algorithm and key. This is the mirror of the cipher object above.
Updates the decipher with data
, which is encoded in 'binary', 'base64' or 'hex'. The output_decoding
specifies in what format to return the deciphered plaintext - either 'binary', 'ascii' or 'utf8'.
Returns any remaining plaintext which is deciphered, with `output_encoding' being one of: 'binary', 'ascii' or 'utf8'.
Creates and returns a signing object, with the given algorithm. On recent OpenSSL releases, openssl list-public-key-algorithms
will display the available signing algorithms. Examples are 'RSA-SHA256'.
Updates the signer object with data. This can be called many times with new data as it is streamed.
Calculates the signature on all the updated data passed through the signer. private_key
is a string containing the PEM encoded private key for signing.
Returns the signature in output_format
which can be 'binary', 'hex' or 'base64'
Creates and returns a verification object, with the given algorithm. This is the mirror of the signing object above.
Updates the verifyer object with data. This can be called many times with new data as it is streamed.
Verifies the signed data by using the public_key
which is a string containing the PEM encoded public key, and signature
, which is the previously calculates signature for the data, in the signature_format
which can be 'binary', 'hex' or 'base64'.
Returns true or false depending on the validity of the signature for the data and public key.
Use require('dns')
to access this module.
Here is an example which resolves 'www.google.com'
then reverse
resolves the IP addresses which are returned.
var dns = require('dns');
dns.resolve4('www.google.com', function (err, addresses) {
if (err) throw err;
console.log('addresses: ' + JSON.stringify(addresses));
addresses.forEach(function (a) {
dns.reverse(a, function (err, domains) {
if (err) {
console.log('reverse for ' + a + ' failed: ' +
err.message);
} else {
console.log('reverse for ' + a + ': ' +
JSON.stringify(domains));
}
});
});
});
Resolves a domain (e.g. 'google.com'
) into the first found A (IPv4) or
AAAA (IPv6) record.
The callback has arguments (err, address, family)
. The address
argument
is a string representation of a IP v4 or v6 address. The family
argument
is either the integer 4 or 6 and denotes the family of address
(not
neccessarily the value initially passed to lookup
).
Resolves a domain (e.g. 'google.com'
) into an array of the record types
specified by rrtype. Valid rrtypes are A
(IPV4 addresses), AAAA
(IPV6
addresses), MX
(mail exchange records), TXT
(text records), SRV
(SRV
records), and PTR
(used for reverse IP lookups).
The callback has arguments (err, addresses)
. The type of each item
in addresses
is determined by the record type, and described in the
documentation for the corresponding lookup methods below.
On error, err
would be an instanceof Error
object, where err.errno
is
one of the error codes listed below and err.message
is a string describing
the error in English.
The same as dns.resolve()
, but only for IPv4 queries (A
records).
addresses
is an array of IPv4 addresses (e.g.
['74.125.79.104', '74.125.79.105', '74.125.79.106']
).
The same as dns.resolve4()
except for IPv6 queries (an AAAA
query).
The same as dns.resolve()
, but only for mail exchange queries (MX
records).
addresses
is an array of MX records, each with a priority and an exchange
attribute (e.g. [{'priority': 10, 'exchange': 'mx.example.com'},...]
).
The same as dns.resolve()
, but only for text queries (TXT
records).
addresses
is an array of the text records available for domain
(e.g.,
['v=spf1 ip4:0.0.0.0 ~all']
).
The same as dns.resolve()
, but only for service records (SRV
records).
addresses
is an array of the SRV records available for domain
. Properties
of SRV records are priority, weight, port, and name (e.g.,
[{'priority': 10, {'weight': 5, 'port': 21223, 'name': 'service.example.com'}, ...]
).
Reverse resolves an ip address to an array of domain names.
The callback has arguments (err, domains)
.
If there an an error, err
will be non-null and an instanceof the Error
object.
Each DNS query can return an error code.
dns.TEMPFAIL
: timeout, SERVFAIL or similar.dns.PROTOCOL
: got garbled reply.dns.NXDOMAIN
: domain does not exists.dns.NODATA
: domain exists but no data of reqd type.dns.NOMEM
: out of memory while processing.dns.BADQUERY
: the query is malformed.
Datagram sockets are available through require('dgram')
. Datagrams are most commonly
handled as IP/UDP messages, but they can also be used over Unix domain sockets.
function (msg, rinfo) { }
Emitted when a new datagram is available on a socket. msg
is a Buffer
and rinfo
is
an object with the sender's address information and the number of bytes in the datagram.
function () { }
Emitted when a socket starts listening for datagrams. This happens as soon as UDP sockets
are created. Unix domain sockets do not start listening until calling bind()
on them.
function () { }
Emitted when a socket is closed with close()
. No new message
events will be emitted
on this socket.
Creates a datagram socket of the specified types. Valid types are:
udp4
, udp6
, and unix_dgram
.
Takes an optional callback which is added as a listener for message
events.
For Unix domain datagram sockets, the destination address is a pathname in the filesystem.
An optional callback may be supplied that is invoked after the sendto
call is completed
by the OS. It is not safe to re-use buf
until the callback is invoked. Note that
unless the socket is bound to a pathname with bind()
there is no way to receive messages
on this socket.
Example of sending a message to syslogd on OSX via Unix domain socket /var/run/syslog
:
var dgram = require('dgram');
var message = new Buffer("A message to log.");
var client = dgram.createSocket("unix_dgram");
client.send(message, 0, message.length, "/var/run/syslog",
function (err, bytes) {
if (err) {
throw err;
}
console.log("Wrote " + bytes + " bytes to socket.");
});
For UDP sockets, the destination port and IP address must be specified. A string
may be supplied for the address
parameter, and it will be resolved with DNS. An
optional callback may be specified to detect any DNS errors and when buf
may be
re-used. Note that DNS lookups will delay the time that a send takes place, at
least until the next tick. The only way to know for sure that a send has taken place
is to use the callback.
Example of sending a UDP packet to a random port on localhost
;
var dgram = require('dgram');
var message = new Buffer("Some bytes");
var client = dgram.createSocket("udp4");
client.send(message, 0, message.length, 41234, "localhost");
client.close();
For Unix domain datagram sockets, start listening for incoming datagrams on a
socket specified by path
. Note that clients may send()
without bind()
,
but no datagrams will be received without a bind()
.
Example of a Unix domain datagram server that echoes back all messages it receives:
var dgram = require("dgram");
var serverPath = "/tmp/dgram_server_sock";
var server = dgram.createSocket("unix_dgram");
server.on("message", function (msg, rinfo) {
console.log("got: " + msg + " from " + rinfo.address);
server.send(msg, 0, msg.length, rinfo.address);
});
server.on("listening", function () {
console.log("server listening " + server.address().address);
})
server.bind(serverPath);
Example of a Unix domain datagram client that talks to this server:
var dgram = require("dgram");
var serverPath = "/tmp/dgram_server_sock";
var clientPath = "/tmp/dgram_client_sock";
var message = new Buffer("A message at " + (new Date()));
var client = dgram.createSocket("unix_dgram");
client.on("message", function (msg, rinfo) {
console.log("got: " + msg + " from " + rinfo.address);
});
client.on("listening", function () {
console.log("client listening " + client.address().address);
client.send(message, 0, message.length, serverPath);
});
client.bind(clientPath);
For UDP sockets, listen for datagrams on a named port
and optional address
. If
address
is not specified, the OS will try to listen on all addresses.
Example of a UDP server listening on port 41234:
var dgram = require("dgram");
var server = dgram.createSocket("udp4");
var messageToSend = new Buffer("A message to send");
server.on("message", function (msg, rinfo) {
console.log("server got: " + msg + " from " +
rinfo.address + ":" + rinfo.port);
});
server.on("listening", function () {
var address = server.address();
console.log("server listening " +
address.address + ":" + address.port);
});
server.bind(41234);
// server listening 0.0.0.0:41234
Close the underlying socket and stop listening for data on it. UDP sockets
automatically listen for messages, even if they did not call bind()
.
Returns an object containing the address information for a socket. For UDP sockets,
this object will contain address
and port
. For Unix domain sockets, it will contain
only address
.
Sets or clears the SO_BROADCAST
socket option. When this option is set, UDP packets
may be sent to a local interface's broadcast address.
Sets the IP_TTL
socket option. TTL stands for "Time to Live," but in this context it
specifies the number of IP hops that a packet is allowed to go through. Each router or
gateway that forwards a packet decrements the TTL. If the TTL is decremented to 0 by a
router, it will not be forwarded. Changing TTL values is typically done for network
probes or when multicasting.
The argument to setTTL()
is a number of hops between 1 and 255. The default on most
systems is 64.
This module is used for writing unit tests for your applications, you can
access it with require('assert')
.
Tests if actual
is equal to expected
using the operator provided.
Tests if value is a true
value, it is equivalent to assert.equal(true, value, message);
Tests shallow, coercive equality with the equal comparison operator ( ==
).
Tests shallow, coercive non-equality with the not equal comparison operator ( !=
).
Tests for deep equality.
Tests for any deep inequality.
Tests strict equality, as determined by the strict equality operator ( ===
)
Tests strict non-equality, as determined by the strict not equal operator ( !==
)
Expects block
to throw an error.
Expects block
not to throw an error.
Tests if value is not a false value, throws if it is a true value. Useful when testing the first argument, error
in callbacks.
This module contains utilities for dealing with file paths. Use
require('path')
to use it. It provides the following methods:
Join all arguments together and resolve the resulting path.
Example:
node> require('path').join(
... '/foo', 'bar', 'baz/asdf', 'quux', '..')
'/foo/bar/baz/asdf'
Normalize an array of path parts, taking care of '..'
and '.'
parts.
Example:
path.normalizeArray(['',
'foo', 'bar', 'baz', 'asdf', 'quux', '..'])
// returns
[ '', 'foo', 'bar', 'baz', 'asdf' ]
Normalize a string path, taking care of '..'
and '.'
parts.
Example:
path.normalize('/foo/bar/baz/asdf/quux/..')
// returns
'/foo/bar/baz/asdf'
Return the directory name of a path. Similar to the Unix dirname
command.
Example:
path.dirname('/foo/bar/baz/asdf/quux')
// returns
'/foo/bar/baz/asdf'
Return the last portion of a path. Similar to the Unix basename
command.
Example:
path.basename('/foo/bar/baz/asdf/quux.html')
// returns
'quux.html'
path.basename('/foo/bar/baz/asdf/quux.html', '.html')
// returns
'quux'
Return the extension of the path. Everything after the last '.' in the last portion of the path. If there is no '.' in the last portion of the path or the only '.' is the first character, then it returns an empty string. Examples:
path.extname('index.html')
// returns
'.html'
path.extname('index')
// returns
''
Test whether or not the given path exists. Then, call the callback
argument with either true or false. Example:
path.exists('/etc/passwd', function (exists) {
sys.debug(exists ? "it's there" : "no passwd!");
});
This module has utilities for URL resolution and parsing.
Call require('url')
to use it.
Parsed URL objects have some or all of the following fields, depending on whether or not they exist in the URL string. Any parts that are not in the URL string will not be in the parsed object. Examples are shown for the URL
'http://user:pass@host.com:8080/p/a/t/h?query=string#hash'
-
href
The full URL that was originally parsed. Example:
'http://user:pass@host.com:8080/p/a/t/h?query=string#hash'
-
protocol
The request protocol. Example:
'http:'
-
host
The full host portion of the URL, including port and authentication information. Example:
'user:pass@host.com:8080'
-
auth
The authentication information portion of a URL. Example:
'user:pass'
-
hostname
Just the hostname portion of the host. Example:
'host.com'
-
port
The port number portion of the host. Example:
'8080'
-
pathname
The path section of the URL, that comes after the host and before the query, including the initial slash if present. Example:
'/p/a/t/h'
-
search
The 'query string' portion of the URL, including the leading question mark. Example:
'?query=string'
-
query
Either the 'params' portion of the query string, or a querystring-parsed object. Example:
'query=string'
or{'query':'string'}
-
hash
The 'fragment' portion of the URL including the pound-sign. Example:
'#hash'
The following methods are provided by the URL module:
Take a URL string, and return an object. Pass true
as the second argument to also parse
the query string using the querystring
module.
Take a parsed URL object, and return a formatted URL string.
Take a base URL, and a href URL, and resolve them as a browser would for an anchor tag.
This module provides utilities for dealing with query strings. It provides the following methods:
Serialize an object to a query string. Optionally override the default separator and assignment characters. Example:
querystring.stringify({foo: 'bar'})
// returns
'foo=bar'
querystring.stringify({foo: 'bar', baz: 'bob'}, ';', ':')
// returns
'foo:bar;baz:bob'
By default, this function will perform PHP/Rails-style parameter munging for arrays and objects used as
values within obj
.
Example:
querystring.stringify({foo: ['bar', 'baz', 'boz']})
// returns
'foo%5B%5D=bar&foo%5B%5D=baz&foo%5B%5D=boz'
querystring.stringify({foo: {bar: 'baz'}})
// returns
'foo%5Bbar%5D=baz'
If you wish to disable the array munging (e.g. when generating parameters for a Java servlet), you
can set the munge
argument to false
.
Example:
querystring.stringify({foo: ['bar', 'baz', 'boz']}, '&', '=', false)
// returns
'foo=bar&foo=baz&foo=boz'
Note that when munge
is false
, parameter names with object values will still be munged.
Deserialize a query string to an object. Optionally override the default separator and assignment characters.
querystring.parse('a=b&b=c')
// returns
{ 'a': 'b'
, 'b': 'c'
}
This function can parse both munged and unmunged query strings (see stringify
for details).
The escape function used by querystring.stringify
, provided so that it could be overridden if necessary.
The unescape function used by querystring.parse
, provided so that it could be overridden if necessary.
A Read-Eval-Print-Loop (REPL) is available both as a standalone program and easily includable in other programs. REPL provides a way to interactively run JavaScript and see the results. It can be used for debugging, testing, or just trying things out.
By executing node
without any arguments from the command-line you will be
dropped into the REPL. It has simplistic emacs line-editing.
mjr:~$ node
Type '.help' for options.
node> a = [ 1, 2, 3];
[ 1, 2, 3 ]
node> a.forEach(function (v) {
... console.log(v);
... });
1
2
3
For advanced line-editors, start node with the environmental variable NODE_NO_READLINE=1
.
This will start the REPL in canonical terminal settings which will allow you to use with rlwrap
.
For example, you could add this to your bashrc file:
alias node="env NODE_NO_READLINE=1 rlwrap node"
Starts a REPL with prompt
as the prompt and stream
for all I/O. prompt
is optional and defaults to node>
. stream
is optional and defaults to
process.openStdin()
.
Multiple REPLs may be started against the same running instance of node. Each will share the same global object but will have unique I/O.
Here is an example that starts a REPL on stdin, a Unix socket, and a TCP socket:
var net = require("net"),
repl = require("repl");
connections = 0;
repl.start("node via stdin> ");
net.createServer(function (socket) {
connections += 1;
repl.start("node via Unix socket> ", socket);
}).listen("/tmp/node-repl-sock");
net.createServer(function (socket) {
connections += 1;
repl.start("node via TCP socket> ", socket);
}).listen(5001);
Running this program from the command line will start a REPL on stdin. Other
REPL clients may connect through the Unix socket or TCP socket. telnet
is useful
for connecting to TCP sockets, and socat
can be used to connect to both Unix and
TCP sockets.
By starting a REPL from a Unix socket-based server instead of stdin, you can connect to a long-running node process without restarting it.
Inside the REPL, Control+D will exit. Multi-line expressions can be input.
The special variable _
(underscore) contains the result of the last expression.
node> [ "a", "b", "c" ]
[ 'a', 'b', 'c' ]
node> _.length
3
node> _ += 1
4
The REPL provides access to any variables in the global scope. You can expose a variable
to the REPL explicitly by assigning it to the context
object associated with each
REPLServer
. For example:
// repl_test.js
var repl = require("repl"),
msg = "message";
repl.start().context.m = msg;
Things in the context
object appear as local within the REPL:
mjr:~$ node repl_test.js
node> m
'message'
There are a few special REPL commands:
-
.break
- While inputting a multi-line expression, sometimes you get lost or just don't care about completing it..break
will start over. -
.clear
- Resets thecontext
object to an empty object and clears any multi-line expression. -
.exit
- Close the I/O stream, which will cause the REPL to exit. -
.help
- Show this list of special commands.
Node utiliza el sistema de módulos de CommonJS.
Node tiene un sencillo sistema de carga de módulos. En Node, los archivos y módulos
tienen una correspondencia uno-a-uno. Por ejemplo, foo.js
carga el módulo
circle.js
en el mismo directorio.
El contenido de foo.js
:
var circle = require('./circle');
console.log( 'The area of a circle of radius 4 is '
+ circle.area(4));
El contenido de circle.js
:
var PI = 3.14;
exports.area = function (r) {
return PI * r * r;
};
exports.circumference = function (r) {
return 2 * PI * r;
};
El módulo circle.js
ha exportado las funciones area()
y circumference()
.
Para exportar un objeto, agregar el objeto especial exports
. (Alternativamente,
uno puede utilizar this
en lugar de exports
). Las variables locales del módulo serán privadas.
En este ejemplo la variable PI
es privada de circle.js
. La función puts()
viene desde el módulo 'sys'
,
que es un módulo incorporado. Lo módulos que no están precedidos por './'
son incorporados en el módulo- más sobre esto más adelante.
Un módulo iniciado con './'
es relativo al archivo llamado con require()
.
Es decir, circle.js
debe estar en el mismo directorio que foo.js
para que
require()
lo pueda encontrar.
Sin el apuntador './'
, como require('assert')
, el módulo es buscado dentro del array require.paths
.
En mi sistema require.paths
es el siguiente:
[ '/home/ryan/.node_libraries' ]
Es decir, cuando require('assert')
es llamado Node busca ...
- 1:
/home/ryan/.node_libraries/assert.js
- 2:
/home/ryan/.node_libraries/assert.node
- 3:
/home/ryan/.node_libraries/assert/index.js
- 4:
/home/ryan/.node_libraries/assert/index.node
... interrumpiendo una vez que el archivo es encontrado. Los archivos que finalizan con
'node'
son módulos binarios Addon. Ver 'Addons' abajo. 'index.js'
permite
empaquetar un módulo como una carpeta.
require.paths
puede ser modificado en tiempo de ejecución simplemente
unshifting (añadir al inicio de un array uno a más elementos) el nuevo path dentro de este,
o en el startup con le variable de entorno NODE_PATH
(la cual debe ser una lista de paths, separados por comas).
Addons are dynamically linked shared objects. They can provide glue to C and C++ libraries. The API (at the moment) is rather complex, involving knowledge of several libraries:
-
V8 JavaScript, a C++ library. Used for interfacing with JavaScript: creating objects, calling functions, etc. Documented mostly in the
v8.h
header file (deps/v8/include/v8.h
in the Node source tree). -
libev, C event loop library. Anytime one needs to wait for a file descriptor to become readable, wait for a timer, or wait for a signal to received one will need to interface with libev. That is, if you perform any I/O, libev will need to be used. Node uses the
EV_DEFAULT
event loop. Documentation can be found http:/cvs.schmorp.de/libev/ev.html[here]. -
libeio, C thread pool library. Used to execute blocking POSIX system calls asynchronously. Mostly wrappers already exist for such calls, in
src/file.cc
so you will probably not need to use it. If you do need it, look at the header filedeps/libeio/eio.h
. -
Internal Node libraries. Most importantly is the
node::ObjectWrap
class which you will likely want to derive from. -
Others. Look in
deps/
for what else is available.
Node statically compiles all its dependencies into the executable. When compiling your module, you don't need to worry about linking to any of these libraries.
To get started let's make a small Addon which does the following except in C++:
exports.hello = 'world';
To get started we create a file hello.cc
:
#include <v8.h>
using namespace v8;
extern "C" void
init (Handle<Object> target)
{
HandleScope scope;
target->Set(String::New("hello"), String::New("World"));
}
This source code needs to be built into hello.node
, the binary Addon. To
do this we create a file called wscript
which is python code and looks
like this:
srcdir = '.'
blddir = 'build'
VERSION = '0.0.1'
def set_options(opt):
opt.tool_options('compiler_cxx')
def configure(conf):
conf.check_tool('compiler_cxx')
conf.check_tool('node_addon')
def build(bld):
obj = bld.new_task_gen('cxx', 'shlib', 'node_addon')
obj.target = 'hello'
obj.source = 'hello.cc'
Running node-waf configure build
will create a file
build/default/hello.node
which is our Addon.
node-waf
is just http://code.google.com/p/waf/[WAF], the python-based build system. node-waf
is
provided for the ease of users.
All Node addons must export a function called init
with this signature:
extern 'C' void init (Handle<Object> target)
For the moment, that is all the documentation on addons. Please see http://github.com/ry/node_postgres for a real example.
There are many third party modules for Node. At the time of writing, August 2010, the master repository of modules is http://github.com/ry/node/wiki/modules[the wiki page].
This appendix is intended as a SMALL guide to new-comers to help them quickly find what are considered to be quality modules. It is not intended to be a complete list. There may be better more complete modules found elsewhere.
-
Module Installer: npm
-
HTTP Middleware: Connect
-
Web Framework: Express
-
Web Sockets: Socket.IO
-
HTML Parsing: HTML5
-
Serialization: msgpack
-
Scraping: Apricot
-
Debugger: ndb is a CLI debugger inspector is a web based tool.
-
Testing/TDD/BDD: vows, expresso, mjsunit.runner
Patches to this list are welcome.