-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
executable file
·382 lines (315 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import csv
import numpy as np
import os
import sys
import textwrap
import time
import tempfile
import wave
from deepspeech.model import Model
from queue import Queue
from threading import Thread
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtMultimedia import *
from PyQt5.QtWidgets import *
BEAM_WIDTH = 512
LM_BINARY_PATH = 'data/lm/lm.binary'
LM_TRIE_PATH = 'data/lm/trie'
ALPHABET_CONFIG_PATH = 'data/alphabet.txt'
LM_WEIGHT = 1.50
WORD_COUNT_WEIGHT = 1.00
VALID_WORD_COUNT_WEIGHT = 1.50
N_INPUT = 26
N_CONTEXT = 9
model_file = sys.argv[1]
if not os.path.exists(model_file):
print('Invalid model file {}'.format(model_file))
exit(1)
# check if this is a release model and adjust paths automagically
base = os.path.dirname(model_file)
if os.path.exists(os.path.join(base, 'lm.binary')):
LM_BINARY_PATH = os.path.join(base, 'lm.binary')
LM_TRIE_PATH = os.path.join(base, 'trie')
ALPHABET_CONFIG_PATH = os.path.join(base, 'alphabet.txt')
class Sample(QObject):
def __init__(self, wav_path, transcription, source, extra_text, color):
super().__init__()
self._wav_path = wav_path
self._transcription = transcription
self._source = source
self._extra_text = extra_text
self._color = color
self._button = None
@property
def wav_path(self):
return self._wav_path
@property
def transcription(self):
return self._transcription
@property
def source(self):
return self._source
@property
def extra_text(self):
return self._extra_text
@property
def color(self):
return self._color
def set_button(self, button):
self._button = button
@property
def button(self):
return self._button
def wav_length(wav_path):
file = wave.open(wav_path)
return file.getnframes() / file.getframerate()
class InferenceRunner(QObject):
inference_done = pyqtSignal(Sample, str)
def __init__(self):
super().__init__()
self._queue = Queue()
self._thread = Thread(target=self._worker_thread)
self._thread.daemon = True
self._thread.start()
def _worker_thread(self):
print('restoring from {}'.format(model_file))
model = Model(
model_file,
N_INPUT,
N_CONTEXT,
ALPHABET_CONFIG_PATH,
BEAM_WIDTH)
model.enableDecoderWithLM(
ALPHABET_CONFIG_PATH,
LM_BINARY_PATH,
LM_TRIE_PATH,
LM_WEIGHT,
WORD_COUNT_WEIGHT,
VALID_WORD_COUNT_WEIGHT)
while True:
cmd, *args = self._queue.get()
if cmd == 'sample':
sample = args[0]
file = wave.open(sample.wav_path)
audio = np.frombuffer(
file.readframes(
file.getnframes()),
dtype=np.int16)
fs = file.getframerate()
start = time.time()
result = model.stt(audio, fs)
inference_time = time.time() - start
wav_time = wav_length(sample.wav_path)
print('wav length: {}\ninference time: {}\nRTF: {:2f}'.format(
wav_time, inference_time, inference_time / wav_time))
self.inference_done.emit(sample, result)
elif cmd == 'stop':
break
sess.close()
def inference(self, sample):
self._queue.put(('sample', sample))
def stop(self):
self._queue.put(('stop', 'stop'))
class RichTextRadioButton(QRadioButton):
def __init__(self, richLabel):
# strip HTML from rich label
xml = QXmlStreamReader(richLabel)
plainLabel = ''
while not xml.atEnd():
if xml.readNext() == QXmlStreamReader.Characters:
plainLabel += xml.text()
super().__init__(plainLabel)
self._richLabel = richLabel
def paintEvent(self, event):
super().paintEvent(event)
rect = event.rect()
painter = QPainter(self)
painter.setRenderHint(QPainter.Antialiasing, True)
painter.eraseRect(
rect.topLeft().x() + 18,
rect.topLeft().y(),
rect.width() - 18,
rect.height())
painter.translate(QPointF(18, 0))
label = QTextDocument()
font = label.defaultFont()
font.setPixelSize(16)
label.setDefaultFont(font)
label.setHtml(self._richLabel)
label.drawContents(painter)
painter.end()
class MainWidget(QMainWindow):
def __init__(self):
super().__init__()
self._tasksInProgress = 0
self._recording = False
audioFormat = QAudioFormat()
audioFormat.setCodec('audio/pcm')
audioFormat.setSampleRate(16000)
audioFormat.setSampleSize(16)
audioFormat.setChannelCount(1)
audioFormat.setByteOrder(QAudioFormat.LittleEndian)
audioFormat.setSampleType(QAudioFormat.SignedInt)
inputDeviceInfo = QAudioDeviceInfo.defaultInputDevice()
if not inputDeviceInfo.isFormatSupported(audioFormat):
print('Can\'t record audio in 16kHz 16-bit signed PCM format.')
self._audioInput = None
else:
self._audioInput = QAudioInput(audioFormat)
self._samples = []
with open('samples.csv', 'r') as csvfile:
sampleReader = csv.reader(csvfile)
next(sampleReader, None) # skip header
for wav_path, transcription, source, extra_text, color in sampleReader:
self._samples.append(
Sample(
wav_path,
transcription,
source,
extra_text,
color))
self._inferenceRunner = InferenceRunner()
self._inferenceRunner.inference_done.connect(self._on_inference_done)
self.create_UI()
def create_UI(self):
self.resize(1440, 880)
self.setWindowTitle('Deep Speech Demo')
quitAction = QAction('Quit')
quitAction.setShortcut('Ctrl-Q')
quitAction.triggered.connect(qApp.quit)
menubar = self.menuBar()
appMenu = menubar.addMenu('File')
appMenu.addAction(quitAction)
sampleSelectionLabel = QLabel(
'<span style="font-size:20px; font-style: bold;">' +
'Click a sample below to hear it and see the transcription from the model:' +
'</span>')
sampleSelectionLabel.setStyleSheet('max-height: 30px; height: 30px;')
sampleSelectionLabel.setAlignment(Qt.AlignCenter)
if self._audioInput is not None:
self._micButton = QPushButton(QIcon('microphone.png'), '')
self._micButton.setCheckable(True)
self._micButton.clicked.connect(self._on_mic_clicked)
sampleSelectionAndMicInputHbox = QHBoxLayout()
sampleSelectionAndMicInputHbox.addStretch(1)
sampleSelectionAndMicInputHbox.addWidget(sampleSelectionLabel)
sampleSelectionAndMicInputHbox.addStretch(1)
if self._audioInput is not None:
sampleSelectionAndMicInputHbox.addWidget(self._micButton)
sampleSelectionGrid = QGridLayout()
positions = [(j, i) for i in range(3) for j in range(5)]
for i in range(0, min(15, len(self._samples))):
transcription = self._samples[i].transcription
if len(transcription) > 336:
transcription = transcription[:336]
transcription += '...'
btn = QPushButton(textwrap.fill(transcription, 70))
self._samples[i].set_button(btn)
btn.clicked.connect(
(lambda s: lambda: self._sample_clicked(s))(
self._samples[i]))
btn.setStyleSheet(
'min-height: 100px; min-width: 300px; border: 2px solid ' +
self._samples[i].color +
';')
sampleSelectionGrid.addWidget(btn, *positions[i])
self._progressBar = QProgressBar(self)
self._progressBar.setOrientation(Qt.Horizontal)
self._progressBar.setFormat('Running inference...')
self._progressBar.setRange(0, 0)
self._progressBar.setVisible(False)
self._transcriptionResult = QTextEdit()
self._transcriptionResult.setReadOnly(True)
self._transcriptionResult.setStyleSheet('height: 120px;')
centralWidget = QWidget(self)
topWidget = QWidget(centralWidget)
topWidgetLayout = QVBoxLayout()
topWidgetLayout.addLayout(sampleSelectionAndMicInputHbox)
topWidget.setLayout(topWidgetLayout)
topWidget.setFixedHeight(150)
bottomWidget = QWidget(centralWidget)
bottomWidgetLayout = QVBoxLayout()
bottomWidgetLayout.addWidget(self._progressBar)
bottomWidgetLayout.addWidget(self._transcriptionResult)
bottomWidget.setLayout(bottomWidgetLayout)
bottomWidget.setFixedHeight(130)
vbox = QVBoxLayout()
vbox.addWidget(topWidget)
vbox.addStretch(1)
vbox.addLayout(sampleSelectionGrid)
vbox.addStretch(1)
vbox.addWidget(bottomWidget)
centralWidget.setLayout(vbox)
self.setCentralWidget(centralWidget)
self.show()
def _on_mic_clicked(self):
if not self._recording:
self._recording = True
self._recordingDuration = 0
self._recordingTimer = QTimer()
self._recordingTimer.setTimerType(Qt.PreciseTimer)
self._recordingTimer.timeout.connect(self._timer_timeout)
self._recordingBuffer = QByteArray()
self._inputIODevice = self._audioInput.start()
self._inputIODevice.readyRead.connect(self._input_bytes_available)
self._recordingTimer.start(100)
else:
self._recording = False
self._recordingTimer.stop()
self._micButton.setText('')
self._audioInput.stop()
f = tempfile.NamedTemporaryFile(delete=False)
wav.write(
f.name,
16000,
np.frombuffer(
self._recordingBuffer.data(),
np.int16))
self._sample_recorded(f.name)
def _input_bytes_available(self):
self._recordingBuffer.append(self._inputIODevice.readAll())
def _timer_timeout(self):
self._recordingDuration += 100
self._micButton.setText(
'{:.1f}'.format(
self._recordingDuration /
1000))
def _sample_recorded(self, wav_path):
self._progressBar.setVisible(True)
self._tasksInProgress += 1
self._soundEffect = QSoundEffect()
self._soundEffect.setSource(QUrl.fromLocalFile(wav_path))
self._soundEffect.setLoopCount(0)
self._soundEffect.setVolume(1.0)
self._soundEffect.play()
sample = Sample(wav_path, None, None, None, None)
self._inferenceRunner.inference(sample)
def _sample_clicked(self, sample):
self._progressBar.setVisible(True)
self._tasksInProgress += 1
self._soundEffect = QSoundEffect()
self._soundEffect.setSource(QUrl.fromLocalFile(sample.wav_path))
self._soundEffect.setLoopCount(0)
self._soundEffect.setVolume(1.0)
self._soundEffect.play()
sample.button.setIcon(self.style().standardIcon(QStyle.SP_MediaPlay))
self._soundEffect.playingChanged.connect(
(lambda sample: lambda: self._on_playing_changed(sample))(sample))
self._inferenceRunner.inference(sample)
def _on_inference_done(self, sample, transcription):
self._tasksInProgress -= 1
self._progressBar.setVisible(self._tasksInProgress != 0)
self._transcriptionResult.setHtml(
'<p style="font-size: 20px; text-align: center;">Transcription: ' +
transcription +
'</p>')
def _on_playing_changed(self, sample):
sample.button.setIcon(QIcon())
if __name__ == '__main__':
app = QApplication(sys.argv)
demo = MainWidget()
sys.exit(app.exec_())