forked from shrx/spectre
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspectre.py
361 lines (325 loc) · 14.4 KB
/
spectre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/python3
import numpy as np
## configlation
#* increase this number for larger tilings.
N_ITERATIONS = 3
#* shape Edge_ration tile(Edge_a, Edge_b)
Edge_a = 10.0 # 20.0 / (np.sqrt(3) + 1.0)
Edge_b = 10.0 # 20.0 - Edge_a
## end of configilation.
TILE_NAMES = ["Gamma", "Delta", "Theta", "Lambda", "Xi", "Pi", "Sigma", "Phi", "Psi"]
def get_spectre_points(edge_a, edge_b):
a = edge_a
a_sqrt3_d2 = a * np.sqrt(3)/2 # a*sin(60 deg)
a_d2 = a * 0.5 # a* cos(60 deg)
b = edge_b
b_sqrt3_d2 = b * np.sqrt(3) / 2 # b*sin(60 deg)
b_d2 = b * 0.5 # b* cos(60 deg)
spectre_points = np.array([
(0 , 0 ), #// 1: - b
(a , 0 ), #// 2: + a
(a + a_d2 , 0 - a_sqrt3_d2 ), #// 3: + ~a
(a + a_d2 + b_sqrt3_d2, 0 - a_sqrt3_d2 + b_d2), #// 4: + ~b
(a + a_d2 + b_sqrt3_d2, 0 - a_sqrt3_d2 + b + b_d2), #// 5: + b
(a + a + a_d2 + b_sqrt3_d2, 0 - a_sqrt3_d2 + b + b_d2), #// 6: + a
(a + a + a + b_sqrt3_d2, b + b_d2), #// 7: + ~a
(a + a + a , b + b ), #// 8: - ~b
(a + a + a - b_sqrt3_d2, b + b - b_d2), #// 9: - ~b
(a + a + a_d2 - b_sqrt3_d2, a_sqrt3_d2 + b + b - b_d2), #// 10: +~a
(a + a_d2 - b_sqrt3_d2, a_sqrt3_d2 + b + b - b_d2), #// 11: -a
( a_d2 - b_sqrt3_d2, a_sqrt3_d2 + b + b - b_d2), #// 12: -a
(0 - b_sqrt3_d2, b + b - b_d2), #// 13: -~a
(0 , b ) #// 14: +~b
], 'float32')
# print(spectre_points)
return spectre_points
SPECTRE_POINTS = get_spectre_points(Edge_a, Edge_b) # tile(Edge_a, Edge_b)
Mystic_SPECTRE_POINTS = get_spectre_points(Edge_b, Edge_a) # tile(Edge_b, Edge_a)
SPECTRE_QUAD = SPECTRE_POINTS[[3,5,7,11],:]
IDENTITY = np.array([[1,0,0],[0,1,0]], 'float32') # == trot(0)
# Rotation matrix for Affine transform
trot_memo = {
0: np.array([[1.0, 0.0, 0.0],[0.0, 1.0, 0.0]]),
30: np.array([[np.sqrt(3)/2, -0.5, 0.0], [0.5, np.sqrt(3)/2, 0.0]]),
60: np.array([[0.5, -np.sqrt(3)/2, 0.0], [np.sqrt(3)/2, 0.5, 0.0]]),
120: np.array([[-0.5, -np.sqrt(3)/2, 0.0], [np.sqrt(3)/2, -0.5, 0.0]]),
180: np.array([[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0]]),
240: np.array([[-0.5, np.sqrt(3)/2, 0.0], [-np.sqrt(3)/2, -0.5, 0.0]]),
}
def trot(degAngle):
"""
degAngle: integer degree angle
"""
global trot_memo
if degAngle not in trot_memo:
ang = np.deg2rad(degAngle)
c = np.cos(ang)
s = np.sin(ang)
trot_memo[degAngle] = np.array([[c, -s, 0],[s, c, 0]])
print(f"trot_memo[{degAngle}]={trot_memo[degAngle]}")
return trot_memo[degAngle].copy()
def trot_inv(T):
"""
T: rotation matrix for Affine transform
"""
degAngle1 = int(np.round(np.rad2deg(np.arctan2(T[1, 0], T[0, 0]))))
if degAngle1 == -180:
degAngle1 = 180
degAngle2 = int(np.round(np.rad2deg(np.arctan2(-T[0, 1], T[1, 1]))))
if (degAngle1 == degAngle2): # self validate angle
scaleY = 1
elif (degAngle1 == (-degAngle2)):
scaleY = 1
elif (degAngle1 == (180 - degAngle2)) or (degAngle2 == (180 - degAngle1)):
scaleY = -1
elif (degAngle1 == (degAngle2 - 180)) or (degAngle2 == (degAngle1 - 180)):
scaleY = -1
else:
scaleY = -1
print(f"ValueError at trot_inv: degAngle1={degAngle1}, degAngle2={degAngle2} T={T}")
# raise ValueError("trot_inv: degAngle1.abs != degAngle2.abs")
return (degAngle1, scaleY)
# Matrix * point
def transPt(trsf, quad):
trPt = (trsf[:,:2].dot(quad) + trsf[:,2])
# print(f"at transPt={trPt}")
return trPt
# Matrix * point
def mul(A, B):
AB = A.copy()
AB[:,:2] = A[:,:2].dot(B[:,:2])
AB[:,2] += A[:,:2].dot(B[:,2])
return AB
class Tile:
def __init__(self, label):
"""
_: NO list of Tile coordinate points
label: Tile type used for shapes coloring
"""
self.label = label
self.quad = SPECTRE_QUAD
def forEachTile(self, doProc, tile_transformation=IDENTITY):
# print(f"at Tile.drawPolygon {self.label} angle={trot_inv(tile_transformation)} tile_transformation={tile_transformation}")
return doProc(tile_transformation, self.label)
class MetaTile:
def __init__(self, tiles=[], transformations=[], quad=SPECTRE_QUAD):
"""
tiles: list of Tiles(No points)
transformations: list of transformation matrices
quad: MetaTile quad points
"""
self.tiles = tiles
self.transformations = transformations
self.quad = quad
def forEachTile(self, doProc, transformation=IDENTITY):
"""
recursively expand MetaTiles down to Tiles and draw those
"""
# TODO: parallelize?
for tile, trsf in zip(self.tiles, self.transformations):
tile.forEachTile(doProc, (mul(transformation, trsf)))
def buildSpectreBase():
tiles = {label: (Tile(label) ) for label in TILE_NAMES if label != "Gamma"}
# special rule for Mystic == Gamma == Gamma1 + Gamma2
tiles["Gamma"] = MetaTile(tiles=[Tile("Gamma1"),
Tile("Gamma2")
],
transformations=[
IDENTITY.copy(),
mul(np.array([
[1,0,SPECTRE_POINTS[8,0]],
[0,1,SPECTRE_POINTS[8,1]]
]), trot(30))
],
quad=SPECTRE_QUAD.copy())
# print(f"at buildSpectreBase: tiles[Gamma]={tiles['Gamma'].transformations}")
return tiles
def get_transformation_range():
global transformation_min_X,transformation_min_Y,transformation_max_X,transformation_max_Y
return (transformation_min_X,transformation_min_Y,transformation_max_X,transformation_max_Y)
def buildSupertiles(input_tiles):
"""
iteratively build on current system of tiles
input_tiles = current system of tiles, initially built with buildSpectreBase()
"""
# First, use any of the nine-unit tiles in "tiles" to obtain a
# list of transformation matrices for placing tiles within supertiles.
quad = input_tiles["Delta"].quad
total_angle = 0
rotation = trot(total_angle) # IDENTITY.copy() #
transformations = [rotation.copy()] # [IDENTITY.copy()]
transformed_quad = quad
for _angle, _from, _to in (( 60, 3, 1),
( 0, 2, 0),
( 60, 3, 1),
( 60, 3, 1),
( 0, 2, 0),
( 60, 3, 1),
(-120, 3, 3)):
if _angle != 0:
total_angle += _angle
rotation = trot(total_angle)
transformed_quad = np.array([transPt(rotation, quad1) for quad1 in quad]) ### quad.dot(rotation[:,:2].T) # + trot[:,2]
ttrans = IDENTITY.copy()
ttrans[:,2] = transPt(transformations[-1], quad[_from]) - transformed_quad[_to,:]
transformations.append(mul(ttrans, rotation))
R = np.array([[-1.0, 0.0, 0.0],[0.0, 1.0, 0.0]]) # @TODO: Not trot(180). Instead of rotating 180 degrees, get a mirror image.
transformations = [(mul(R, trsf)) for trsf in transformations ] # @TODO Note that mul(trsf, R) is not commutible
# @TODO: TOBE auto update svg transform.translate scaleY. failed by (SvgContens_drowSvg_transform_scaleY=spectreTiles["Delta"].transformations[0][0,0])
# print(f"transformations={[transformations[i] for i in [6,5,3,0]]}")
# Now build the actual supertiles, labeling appropriately.
super_quad = np.array([
transPt(transformations[6], quad[2]),
transPt(transformations[5], quad[1]),
transPt(transformations[3], quad[2]),
transPt(transformations[0], quad[1])
])
# print(f"super_quad={super_quad}")
tiles = {label: MetaTile(tiles=[input_tiles[subst] for subst in substitutions if subst],
transformations=[trsf for subst, trsf in zip(substitutions, transformations) if subst],
quad=super_quad
) for label, substitutions in (
("Gamma", ("Pi", "Delta", None, "Theta", "Sigma", "Xi", "Phi", "Gamma")),
("Delta", ("Xi", "Delta", "Xi", "Phi", "Sigma", "Pi", "Phi", "Gamma")),
("Theta", ("Psi", "Delta", "Pi", "Phi", "Sigma", "Pi", "Phi", "Gamma")),
("Lambda", ("Psi", "Delta", "Xi", "Phi", "Sigma", "Pi", "Phi", "Gamma")),
("Xi", ("Psi", "Delta", "Pi", "Phi", "Sigma", "Psi", "Phi", "Gamma")),
("Pi", ("Psi", "Delta", "Xi", "Phi", "Sigma", "Psi", "Phi", "Gamma")),
("Sigma", ("Xi", "Delta", "Xi", "Phi", "Sigma", "Pi", "Lambda", "Gamma")),
("Phi", ("Psi", "Delta", "Psi", "Phi", "Sigma", "Pi", "Phi", "Gamma")),
("Psi", ("Psi", "Delta", "Psi", "Phi", "Sigma", "Psi", "Phi", "Gamma"))
)}
return tiles
transformation_min_X = np.inf
transformation_min_Y = np.inf
transformation_max_X = -np.inf
transformation_max_Y = -np.inf
def update_transformation_range(T, _label): # drowsvg
"""
T: transformation matrix
label: unused label string
"""
global transformation_min_X, transformation_min_Y, transformation_max_X, transformation_max_Y
transformation_min_X = min(transformation_min_X, T[0,2]) # drowsvg
transformation_min_Y = min(transformation_min_Y, T[1,2]) # drowsvg
transformation_max_X = max(transformation_max_X, T[0,2]) # drowsvg
transformation_max_Y = max(transformation_max_Y, T[1,2]) # drowsvg
return
#### main process ####
def buildSpectreTiles(n_ITERATIONS,edge_a,edge_b):
global SPECTRE_POINTS, Mystic_SPECTRE_POINTS, SPECTRE_QUAD
SPECTRE_POINTS = get_spectre_points(edge_a, edge_b) # tile(Edge_a, Edge_b)
Mystic_SPECTRE_POINTS = get_spectre_points(edge_b, edge_a) # tile(Edge_b, Edge_a)
SPECTRE_QUAD = SPECTRE_POINTS[[3,5,7,11],:]
tiles = buildSpectreBase()
for _ in range(n_ITERATIONS):
tiles = buildSupertiles(tiles)
tiles["Delta"].forEachTile(update_transformation_range) # scan all Tile
global transformation_min_X, transformation_min_Y, transformation_max_X, transformation_max_Y
transformation_min_X = int(np.floor(transformation_min_X - Edge_a * 3 - Edge_b * 3))
transformation_min_Y = int(np.floor(transformation_min_Y - Edge_a * 3 - Edge_b * 3))
transformation_max_X = int(np.ceil(transformation_max_X + Edge_a * 3 + Edge_b * 3))
transformation_max_Y = int(np.ceil(transformation_max_Y + Edge_a * 3 + Edge_b * 3))
return tiles
### drawing parameter data
# Color map from Figure 5.3
COLOR_MAP = {
'Gamma': np.array((203, 157, 126),'f')/255.,
'Gamma1': np.array((203, 157, 126),'f')/255.,
'Gamma2': np.array((203, 157, 126),'f')/255.,
'Delta': np.array((163, 150, 133),'f')/255.,
'Theta': np.array((208, 215, 150),'f')/255.,
'Lambda': np.array((184, 205, 178),'f')/255.,
'Xi': np.array((211, 177, 144),'f')/255.,
'Pi': np.array((218, 197, 161),'f')/255.,
'Sigma': np.array((191, 146, 126),'f')/255.,
'Phi': np.array((228, 213, 167),'f')/255.,
'Psi': np.array((224, 223, 156),'f')/255.
}
# COLOR_MAP_orig
COLOR_MAP = {
'Gamma': np.array((255, 255, 255),'f')/255.,
'Gamma1': np.array((255, 255, 255),'f')/255.,
'Gamma2': np.array((255, 255, 255),'f')/255.,
'Delta': np.array((220, 220, 220),'f')/255.,
'Theta': np.array((255, 191, 191),'f')/255.,
'Lambda': np.array((255, 160, 122),'f')/255.,
'Xi': np.array((255, 242, 0),'f')/255.,
'Pi': np.array((135, 206, 250),'f')/255.,
'Sigma': np.array((245, 245, 220),'f')/255.,
'Phi': np.array((0, 255, 0),'f')/255.,
'Psi': np.array((0, 255, 255),'f')/255.
}
# COLOR_MAP_mystics
COLOR_MAP = {
'Gamma': np.array((196, 201, 169),'f')/255.,
'Gamma1': np.array((196, 201, 169),'f')/255.,
'Gamma2': np.array((156, 160, 116),'f')/255.,
'Delta': np.array((247, 252, 248),'f')/255.,
'Theta': np.array((247, 252, 248),'f')/255.,
'Lambda': np.array((247, 252, 248),'f')/255.,
'Xi': np.array((247, 252, 248),'f')/255.,
'Pi': np.array((247, 252, 248),'f')/255.,
'Sigma': np.array((247, 252, 248),'f')/255.,
'Phi': np.array((247, 252, 248),'f')/255.,
'Psi': np.array((247, 252, 248),'f')/255.
}
# COLOR_MAP_pride
COLOR_MAP = {
"Gamma": np.array((255, 255, 255),'f')/255.,
"Gamma1": np.array(( 97, 57, 21),'f')/255.,
"Gamma2": np.array(( 64, 64, 64),'f')/255.,
"Delta": np.array(( 2, 129, 33),'f')/255.,
"Theta": np.array(( 0, 76, 255),'f')/255.,
"Lambda": np.array((118, 0, 136),'f')/255.,
"Xi": np.array((229, 0, 0),'f')/255.,
"Pi": np.array((255, 175, 199),'f')/255.,
"Sigma": np.array((115, 215, 238),'f')/255.,
"Phi": np.array((255, 141, 0),'f')/255.,
"Psi": np.array((255, 238, 0),'f')/255.
}
trot_inv_prof = {
# -180: 0, # to be 0, becaluse angle -180=>180
-150: 0, # Gamma2
-120: 0,
-90: 0, # Gamma2
-60: 0,
-30: 0, # Gamma2
0: 0,
30: 0, # Gamma2
60: 0,
90: 0, # Gamma2
120: 0,
150: 0, # Gamma2
180: 0,
360: 0 # Gamma2 total
}
def print_trot_inv_prof():
global trot_inv_prof
print("transformation rotation profile(angle: count)={")
for angle, count in (sorted(trot_inv_prof.items())):
print(f"\t{angle}: {count},")
print("}")
return trot_inv_prof
def get_color_array(tile_transformation, label):
global trot_inv_prof
angle, _scale = trot_inv(tile_transformation)
trot_inv_prof[angle] += 1
if (label == 'Gamma2'):
trot_inv_prof[360] += 1
return np.array([0.25,0.25,0.25])
else :
rgb = {
# -180: ( 0, 0, 1.0), # sangle -180 == 180
-120: (0.9, 0.8, 0),
-60: (0.9, 0.4, 0.4),
0: (1.0, 0, 0),
60: (0.4, 0.4, 0.9),
120: ( 0, 0.8, 0.9),
180: ( 0, 0, 1.0)
}[angle]
if rgb:
return np.array(rgb, 'f')
else:
print(f"Inalid color {rgb} {label}, {tile_transformation}")
return COLOR_MAP[label]