-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgebra.tex
2286 lines (2286 loc) · 86 KB
/
algebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt,a4paper,dvipdfmx]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{multicol}
\usepackage[hidelinks,dvipdfm]{hyperref}
\usepackage{graphicx}
\usepackage{kpfonts}
\usepackage[left=1.6cm,right=1.4cm,top=1.5cm,bottom=1.5cm]{geometry}
\title{M\'etodos para resoluci\'on de sistemas de ecuaciones lineales $LU$}
\author{Ricardo-Francisco Luis Mart\'inez}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Metodo Lu}
\subsection{Caso de matrices de $2\times 2$ }
$$ \left(
\begin{array}{cc}
a_{{1}{1}} & a_{{1}{2}} \\
a_{{2}{1}} & a_{{2}{2}}
\end{array}
\right)
= \left(
\begin{array}{cc}
l_{{1}{1}} & 0 \\
l_{{2}{1}} & l_{{2}{2}}
\end{array}
\right)
\cdot \left(
\begin{array}{cc}
1 & u_{{1}{2}} \\
0 & 1
\end{array}
\right)
$$
$$ \left(
\begin{array}{cc}
l_{{1}{1}} & u_{{1}{2}} \\
l_{{2}{1}} & l_{{2}{2}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = l_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} $$
$$ a_{{1}{2}} = l_{{1}{1}} u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + l_{{2}{2}} $$
\vfill\null
\columnbreak
$$ l_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}}{l_{{1}{1}}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
\end{multicols}
\subsection{Caso de matrices de $3\times 3$ }
$$ \left(
\begin{array}{ccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}}
\end{array}
\right)
= \left(
\begin{array}{ccc}
l_{{1}{1}} & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}}
\end{array}
\right)
\cdot \left(
\begin{array}{ccc}
1 & u_{{1}{2}} & u_{{1}{3}} \\
0 & 1 & u_{{2}{3}} \\
0 & 0 & 1
\end{array}
\right)
$$
$$ \left(
\begin{array}{ccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = l_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} $$
$$ a_{{1}{2}} = l_{{1}{1}} u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + l_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} $$
$$ a_{{1}{3}} = l_{{1}{1}} u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + l_{{2}{2}} u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + l_{{3}{3}} $$
\vfill\null
\columnbreak
$$ l_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}} $$
$$ l_{{3}{1}} = a_{{3}{1}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}}{l_{{1}{1}}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}} $$
$$ u_{{1}{3}} = \dfrac{a_{{1}{3}}}{l_{{1}{1}}} $$
$$ u_{{2}{3}} = \dfrac{a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}}}{l_{{2}{2}}} $$
$$ l_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
\end{multicols}
\subsection{Caso de matrices de $4\times 4$ }
$$ \left(
\begin{array}{cccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}}
\end{array}
\right)
= \left(
\begin{array}{cccc}
l_{{1}{1}} & 0 & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}}
\end{array}
\right)
\cdot \left(
\begin{array}{cccc}
1 & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} \\
0 & 1 & u_{{2}{3}} & u_{{2}{4}} \\
0 & 0 & 1 & u_{{3}{4}} \\
0 & 0 & 0 & 1
\end{array}
\right)
$$
$$ \left(
\begin{array}{cccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & u_{{3}{4}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = l_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} $$
$$ a_{{1}{2}} = l_{{1}{1}} u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + l_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} $$
$$ a_{{4}{2}} = l_{{4}{1}} u_{{1}{2}} + l_{{4}{2}} $$
$$ a_{{1}{3}} = l_{{1}{1}} u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + l_{{2}{2}} u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + l_{{3}{3}} $$
$$ a_{{4}{3}} = l_{{4}{1}} u_{{1}{3}} + l_{{4}{2}} u_{{2}{3}} + l_{{4}{3}} $$
$$ a_{{1}{4}} = l_{{1}{1}} u_{{1}{4}} $$
$$ a_{{2}{4}} = l_{{2}{1}} u_{{1}{4}} + l_{{2}{2}} u_{{2}{4}} $$
$$ a_{{3}{4}} = l_{{3}{1}} u_{{1}{4}} + l_{{3}{2}} u_{{2}{4}} + l_{{3}{3}} u_{{3}{4}} $$
$$ a_{{4}{4}} = l_{{4}{1}} u_{{1}{4}} + l_{{4}{2}} u_{{2}{4}} + l_{{4}{3}} u_{{3}{4}} + l_{{4}{4}} $$
\vfill\null
\columnbreak
$$ l_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}} $$
$$ l_{{3}{1}} = a_{{3}{1}} $$
$$ l_{{4}{1}} = a_{{4}{1}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}}{l_{{1}{1}}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}} $$
$$ l_{{4}{2}} = a_{{4}{2}}- l_{{4}{1}} u_{{1}{2}} $$
$$ u_{{1}{3}} = \dfrac{a_{{1}{3}}}{l_{{1}{1}}} $$
$$ u_{{2}{3}} = \dfrac{a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}}}{l_{{2}{2}}} $$
$$ l_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
$$ l_{{4}{3}} = a_{{4}{3}}- l_{{4}{1}} u_{{1}{3}}- l_{{4}{2}} u_{{2}{3}} $$
$$ u_{{1}{4}} = \dfrac{a_{{1}{4}}}{l_{{1}{1}}} $$
$$ u_{{2}{4}} = \dfrac{a_{{2}{4}}- l_{{2}{1}} u_{{1}{4}}}{l_{{2}{2}}} $$
$$ u_{{3}{4}} = \dfrac{a_{{3}{4}}- l_{{3}{1}} u_{{1}{4}}- l_{{3}{2}} u_{{2}{4}}}{l_{{3}{3}}} $$
$$ l_{{4}{4}} = a_{{4}{4}}- l_{{4}{1}} u_{{1}{4}}- l_{{4}{2}} u_{{2}{4}}- l_{{4}{3}} u_{{3}{4}} $$
\end{multicols}
\subsection{Caso de matrices de $5\times 5$ }
$$ \left(
\begin{array}{ccccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} & a_{{1}{5}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} & a_{{2}{5}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} & a_{{3}{5}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}} & a_{{4}{5}} \\
a_{{5}{1}} & a_{{5}{2}} & a_{{5}{3}} & a_{{5}{4}} & a_{{5}{5}}
\end{array}
\right)
= \left(
\begin{array}{ccccc}
l_{{1}{1}} & 0 & 0 & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & 0 & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}} & 0 \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & l_{{5}{5}}
\end{array}
\right)
\cdot \left(
\begin{array}{ccccc}
1 & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} \\
0 & 1 & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} \\
0 & 0 & 1 & u_{{3}{4}} & u_{{3}{5}} \\
0 & 0 & 0 & 1 & u_{{4}{5}} \\
0 & 0 & 0 & 0 & 1
\end{array}
\right)
$$
$$ \left(
\begin{array}{ccccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}} & u_{{4}{5}} \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & l_{{5}{5}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = l_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} $$
$$ a_{{5}{1}} = l_{{5}{1}} $$
$$ a_{{1}{2}} = l_{{1}{1}} u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + l_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} $$
$$ a_{{4}{2}} = l_{{4}{1}} u_{{1}{2}} + l_{{4}{2}} $$
$$ a_{{5}{2}} = l_{{5}{1}} u_{{1}{2}} + l_{{5}{2}} $$
$$ a_{{1}{3}} = l_{{1}{1}} u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + l_{{2}{2}} u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + l_{{3}{3}} $$
$$ a_{{4}{3}} = l_{{4}{1}} u_{{1}{3}} + l_{{4}{2}} u_{{2}{3}} + l_{{4}{3}} $$
$$ a_{{5}{3}} = l_{{5}{1}} u_{{1}{3}} + l_{{5}{2}} u_{{2}{3}} + l_{{5}{3}} $$
$$ a_{{1}{4}} = l_{{1}{1}} u_{{1}{4}} $$
$$ a_{{2}{4}} = l_{{2}{1}} u_{{1}{4}} + l_{{2}{2}} u_{{2}{4}} $$
$$ a_{{3}{4}} = l_{{3}{1}} u_{{1}{4}} + l_{{3}{2}} u_{{2}{4}} + l_{{3}{3}} u_{{3}{4}} $$
$$ a_{{4}{4}} = l_{{4}{1}} u_{{1}{4}} + l_{{4}{2}} u_{{2}{4}} + l_{{4}{3}} u_{{3}{4}} + l_{{4}{4}} $$
$$ a_{{5}{4}} = l_{{5}{1}} u_{{1}{4}} + l_{{5}{2}} u_{{2}{4}} + l_{{5}{3}} u_{{3}{4}} + l_{{5}{4}} $$
$$ a_{{1}{5}} = l_{{1}{1}} u_{{1}{5}} $$
$$ a_{{2}{5}} = l_{{2}{1}} u_{{1}{5}} + l_{{2}{2}} u_{{2}{5}} $$
$$ a_{{3}{5}} = l_{{3}{1}} u_{{1}{5}} + l_{{3}{2}} u_{{2}{5}} + l_{{3}{3}} u_{{3}{5}} $$
$$ a_{{4}{5}} = l_{{4}{1}} u_{{1}{5}} + l_{{4}{2}} u_{{2}{5}} + l_{{4}{3}} u_{{3}{5}} + l_{{4}{4}} u_{{4}{5}} $$
$$ a_{{5}{5}} = l_{{5}{1}} u_{{1}{5}} + l_{{5}{2}} u_{{2}{5}} + l_{{5}{3}} u_{{3}{5}} + l_{{5}{4}} u_{{4}{5}} + l_{{5}{5}} $$
\vfill\null
\columnbreak
$$ l_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}} $$
$$ l_{{3}{1}} = a_{{3}{1}} $$
$$ l_{{4}{1}} = a_{{4}{1}} $$
$$ l_{{5}{1}} = a_{{5}{1}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}}{l_{{1}{1}}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}} $$
$$ l_{{4}{2}} = a_{{4}{2}}- l_{{4}{1}} u_{{1}{2}} $$
$$ l_{{5}{2}} = a_{{5}{2}}- l_{{5}{1}} u_{{1}{2}} $$
$$ u_{{1}{3}} = \dfrac{a_{{1}{3}}}{l_{{1}{1}}} $$
$$ u_{{2}{3}} = \dfrac{a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}}}{l_{{2}{2}}} $$
$$ l_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
$$ l_{{4}{3}} = a_{{4}{3}}- l_{{4}{1}} u_{{1}{3}}- l_{{4}{2}} u_{{2}{3}} $$
$$ l_{{5}{3}} = a_{{5}{3}}- l_{{5}{1}} u_{{1}{3}}- l_{{5}{2}} u_{{2}{3}} $$
$$ u_{{1}{4}} = \dfrac{a_{{1}{4}}}{l_{{1}{1}}} $$
$$ u_{{2}{4}} = \dfrac{a_{{2}{4}}- l_{{2}{1}} u_{{1}{4}}}{l_{{2}{2}}} $$
$$ u_{{3}{4}} = \dfrac{a_{{3}{4}}- l_{{3}{1}} u_{{1}{4}}- l_{{3}{2}} u_{{2}{4}}}{l_{{3}{3}}} $$
$$ l_{{4}{4}} = a_{{4}{4}}- l_{{4}{1}} u_{{1}{4}}- l_{{4}{2}} u_{{2}{4}}- l_{{4}{3}} u_{{3}{4}} $$
$$ l_{{5}{4}} = a_{{5}{4}}- l_{{5}{1}} u_{{1}{4}}- l_{{5}{2}} u_{{2}{4}}- l_{{5}{3}} u_{{3}{4}} $$
$$ u_{{1}{5}} = \dfrac{a_{{1}{5}}}{l_{{1}{1}}} $$
$$ u_{{2}{5}} = \dfrac{a_{{2}{5}}- l_{{2}{1}} u_{{1}{5}}}{l_{{2}{2}}} $$
$$ u_{{3}{5}} = \dfrac{a_{{3}{5}}- l_{{3}{1}} u_{{1}{5}}- l_{{3}{2}} u_{{2}{5}}}{l_{{3}{3}}} $$
$$ u_{{4}{5}} = \dfrac{a_{{4}{5}}- l_{{4}{1}} u_{{1}{5}}- l_{{4}{2}} u_{{2}{5}}- l_{{4}{3}} u_{{3}{5}}}{l_{{4}{4}}} $$
$$ l_{{5}{5}} = a_{{5}{5}}- l_{{5}{1}} u_{{1}{5}}- l_{{5}{2}} u_{{2}{5}}- l_{{5}{3}} u_{{3}{5}}- l_{{5}{4}} u_{{4}{5}} $$
\end{multicols}
\subsection{Caso de matrices de $6\times 6$ }
$$ \left(
\begin{array}{cccccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} & a_{{1}{5}} & a_{{1}{6}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} & a_{{2}{5}} & a_{{2}{6}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} & a_{{3}{5}} & a_{{3}{6}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}} & a_{{4}{5}} & a_{{4}{6}} \\
a_{{5}{1}} & a_{{5}{2}} & a_{{5}{3}} & a_{{5}{4}} & a_{{5}{5}} & a_{{5}{6}} \\
a_{{6}{1}} & a_{{6}{2}} & a_{{6}{3}} & a_{{6}{4}} & a_{{6}{5}} & a_{{6}{6}}
\end{array}
\right)
= \left(
\begin{array}{cccccc}
l_{{1}{1}} & 0 & 0 & 0 & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 & 0 & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & 0 & 0 & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}} & 0 & 0 \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & l_{{5}{5}} & 0 \\
l_{{6}{1}} & l_{{6}{2}} & l_{{6}{3}} & l_{{6}{4}} & l_{{6}{5}} & l_{{6}{6}}
\end{array}
\right)
\cdot \left(
\begin{array}{cccccc}
1 & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} & u_{{1}{6}} \\
0 & 1 & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} & u_{{2}{6}} \\
0 & 0 & 1 & u_{{3}{4}} & u_{{3}{5}} & u_{{3}{6}} \\
0 & 0 & 0 & 1 & u_{{4}{5}} & u_{{4}{6}} \\
0 & 0 & 0 & 0 & 1 & u_{{5}{6}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}
\right)
$$
$$ \left(
\begin{array}{cccccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} & u_{{1}{6}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} & u_{{2}{6}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} & u_{{3}{6}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}} & u_{{4}{5}} & u_{{4}{6}} \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & l_{{5}{5}} & u_{{5}{6}} \\
l_{{6}{1}} & l_{{6}{2}} & l_{{6}{3}} & l_{{6}{4}} & l_{{6}{5}} & l_{{6}{6}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = l_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} $$
$$ a_{{5}{1}} = l_{{5}{1}} $$
$$ a_{{6}{1}} = l_{{6}{1}} $$
$$ a_{{1}{2}} = l_{{1}{1}} u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + l_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} $$
$$ a_{{4}{2}} = l_{{4}{1}} u_{{1}{2}} + l_{{4}{2}} $$
$$ a_{{5}{2}} = l_{{5}{1}} u_{{1}{2}} + l_{{5}{2}} $$
$$ a_{{6}{2}} = l_{{6}{1}} u_{{1}{2}} + l_{{6}{2}} $$
$$ a_{{1}{3}} = l_{{1}{1}} u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + l_{{2}{2}} u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + l_{{3}{3}} $$
$$ a_{{4}{3}} = l_{{4}{1}} u_{{1}{3}} + l_{{4}{2}} u_{{2}{3}} + l_{{4}{3}} $$
$$ a_{{5}{3}} = l_{{5}{1}} u_{{1}{3}} + l_{{5}{2}} u_{{2}{3}} + l_{{5}{3}} $$
$$ a_{{6}{3}} = l_{{6}{1}} u_{{1}{3}} + l_{{6}{2}} u_{{2}{3}} + l_{{6}{3}} $$
$$ a_{{1}{4}} = l_{{1}{1}} u_{{1}{4}} $$
$$ a_{{2}{4}} = l_{{2}{1}} u_{{1}{4}} + l_{{2}{2}} u_{{2}{4}} $$
$$ a_{{3}{4}} = l_{{3}{1}} u_{{1}{4}} + l_{{3}{2}} u_{{2}{4}} + l_{{3}{3}} u_{{3}{4}} $$
$$ a_{{4}{4}} = l_{{4}{1}} u_{{1}{4}} + l_{{4}{2}} u_{{2}{4}} + l_{{4}{3}} u_{{3}{4}} + l_{{4}{4}} $$
$$ a_{{5}{4}} = l_{{5}{1}} u_{{1}{4}} + l_{{5}{2}} u_{{2}{4}} + l_{{5}{3}} u_{{3}{4}} + l_{{5}{4}} $$
$$ a_{{6}{4}} = l_{{6}{1}} u_{{1}{4}} + l_{{6}{2}} u_{{2}{4}} + l_{{6}{3}} u_{{3}{4}} + l_{{6}{4}} $$
$$ a_{{1}{5}} = l_{{1}{1}} u_{{1}{5}} $$
$$ a_{{2}{5}} = l_{{2}{1}} u_{{1}{5}} + l_{{2}{2}} u_{{2}{5}} $$
$$ a_{{3}{5}} = l_{{3}{1}} u_{{1}{5}} + l_{{3}{2}} u_{{2}{5}} + l_{{3}{3}} u_{{3}{5}} $$
$$ a_{{4}{5}} = l_{{4}{1}} u_{{1}{5}} + l_{{4}{2}} u_{{2}{5}} + l_{{4}{3}} u_{{3}{5}} + l_{{4}{4}} u_{{4}{5}} $$
$$ a_{{5}{5}} = l_{{5}{1}} u_{{1}{5}} + l_{{5}{2}} u_{{2}{5}} + l_{{5}{3}} u_{{3}{5}} + l_{{5}{4}} u_{{4}{5}} + l_{{5}{5}} $$
$$ a_{{6}{5}} = l_{{6}{1}} u_{{1}{5}} + l_{{6}{2}} u_{{2}{5}} + l_{{6}{3}} u_{{3}{5}} + l_{{6}{4}} u_{{4}{5}} + l_{{6}{5}} $$
$$ a_{{1}{6}} = l_{{1}{1}} u_{{1}{6}} $$
$$ a_{{2}{6}} = l_{{2}{1}} u_{{1}{6}} + l_{{2}{2}} u_{{2}{6}} $$
$$ a_{{3}{6}} = l_{{3}{1}} u_{{1}{6}} + l_{{3}{2}} u_{{2}{6}} + l_{{3}{3}} u_{{3}{6}} $$
$$ a_{{4}{6}} = l_{{4}{1}} u_{{1}{6}} + l_{{4}{2}} u_{{2}{6}} + l_{{4}{3}} u_{{3}{6}} + l_{{4}{4}} u_{{4}{6}} $$
$$ a_{{5}{6}} = l_{{5}{1}} u_{{1}{6}} + l_{{5}{2}} u_{{2}{6}} + l_{{5}{3}} u_{{3}{6}} + l_{{5}{4}} u_{{4}{6}} + l_{{5}{5}} u_{{5}{6}} $$
$$ a_{{6}{6}} = l_{{6}{1}} u_{{1}{6}} + l_{{6}{2}} u_{{2}{6}} + l_{{6}{3}} u_{{3}{6}} + l_{{6}{4}} u_{{4}{6}} + l_{{6}{5}} u_{{5}{6}} + l_{{6}{6}} $$
\vfill\null
\columnbreak
$$ l_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}} $$
$$ l_{{3}{1}} = a_{{3}{1}} $$
$$ l_{{4}{1}} = a_{{4}{1}} $$
$$ l_{{5}{1}} = a_{{5}{1}} $$
$$ l_{{6}{1}} = a_{{6}{1}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}}{l_{{1}{1}}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}} $$
$$ l_{{4}{2}} = a_{{4}{2}}- l_{{4}{1}} u_{{1}{2}} $$
$$ l_{{5}{2}} = a_{{5}{2}}- l_{{5}{1}} u_{{1}{2}} $$
$$ l_{{6}{2}} = a_{{6}{2}}- l_{{6}{1}} u_{{1}{2}} $$
$$ u_{{1}{3}} = \dfrac{a_{{1}{3}}}{l_{{1}{1}}} $$
$$ u_{{2}{3}} = \dfrac{a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}}}{l_{{2}{2}}} $$
$$ l_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
$$ l_{{4}{3}} = a_{{4}{3}}- l_{{4}{1}} u_{{1}{3}}- l_{{4}{2}} u_{{2}{3}} $$
$$ l_{{5}{3}} = a_{{5}{3}}- l_{{5}{1}} u_{{1}{3}}- l_{{5}{2}} u_{{2}{3}} $$
$$ l_{{6}{3}} = a_{{6}{3}}- l_{{6}{1}} u_{{1}{3}}- l_{{6}{2}} u_{{2}{3}} $$
$$ u_{{1}{4}} = \dfrac{a_{{1}{4}}}{l_{{1}{1}}} $$
$$ u_{{2}{4}} = \dfrac{a_{{2}{4}}- l_{{2}{1}} u_{{1}{4}}}{l_{{2}{2}}} $$
$$ u_{{3}{4}} = \dfrac{a_{{3}{4}}- l_{{3}{1}} u_{{1}{4}}- l_{{3}{2}} u_{{2}{4}}}{l_{{3}{3}}} $$
$$ l_{{4}{4}} = a_{{4}{4}}- l_{{4}{1}} u_{{1}{4}}- l_{{4}{2}} u_{{2}{4}}- l_{{4}{3}} u_{{3}{4}} $$
$$ l_{{5}{4}} = a_{{5}{4}}- l_{{5}{1}} u_{{1}{4}}- l_{{5}{2}} u_{{2}{4}}- l_{{5}{3}} u_{{3}{4}} $$
$$ l_{{6}{4}} = a_{{6}{4}}- l_{{6}{1}} u_{{1}{4}}- l_{{6}{2}} u_{{2}{4}}- l_{{6}{3}} u_{{3}{4}} $$
$$ u_{{1}{5}} = \dfrac{a_{{1}{5}}}{l_{{1}{1}}} $$
$$ u_{{2}{5}} = \dfrac{a_{{2}{5}}- l_{{2}{1}} u_{{1}{5}}}{l_{{2}{2}}} $$
$$ u_{{3}{5}} = \dfrac{a_{{3}{5}}- l_{{3}{1}} u_{{1}{5}}- l_{{3}{2}} u_{{2}{5}}}{l_{{3}{3}}} $$
$$ u_{{4}{5}} = \dfrac{a_{{4}{5}}- l_{{4}{1}} u_{{1}{5}}- l_{{4}{2}} u_{{2}{5}}- l_{{4}{3}} u_{{3}{5}}}{l_{{4}{4}}} $$
$$ l_{{5}{5}} = a_{{5}{5}}- l_{{5}{1}} u_{{1}{5}}- l_{{5}{2}} u_{{2}{5}}- l_{{5}{3}} u_{{3}{5}}- l_{{5}{4}} u_{{4}{5}} $$
$$ l_{{6}{5}} = a_{{6}{5}}- l_{{6}{1}} u_{{1}{5}}- l_{{6}{2}} u_{{2}{5}}- l_{{6}{3}} u_{{3}{5}}- l_{{6}{4}} u_{{4}{5}} $$
$$ u_{{1}{6}} = \dfrac{a_{{1}{6}}}{l_{{1}{1}}} $$
$$ u_{{2}{6}} = \dfrac{a_{{2}{6}}- l_{{2}{1}} u_{{1}{6}}}{l_{{2}{2}}} $$
$$ u_{{3}{6}} = \dfrac{a_{{3}{6}}- l_{{3}{1}} u_{{1}{6}}- l_{{3}{2}} u_{{2}{6}}}{l_{{3}{3}}} $$
$$ u_{{4}{6}} = \dfrac{a_{{4}{6}}- l_{{4}{1}} u_{{1}{6}}- l_{{4}{2}} u_{{2}{6}}- l_{{4}{3}} u_{{3}{6}}}{l_{{4}{4}}} $$
$$ u_{{5}{6}} = \dfrac{a_{{5}{6}}- l_{{5}{1}} u_{{1}{6}}- l_{{5}{2}} u_{{2}{6}}- l_{{5}{3}} u_{{3}{6}}- l_{{5}{4}} u_{{4}{6}}}{l_{{5}{5}}} $$
$$ l_{{6}{6}} = a_{{6}{6}}- l_{{6}{1}} u_{{1}{6}}- l_{{6}{2}} u_{{2}{6}}- l_{{6}{3}} u_{{3}{6}}- l_{{6}{4}} u_{{4}{6}}- l_{{6}{5}} u_{{5}{6}} $$
\end{multicols}
\section{Metodo lU}
\subsection{Caso de matrices de $2\times 2$ }
$$ \left(
\begin{array}{cc}
a_{{1}{1}} & a_{{1}{2}} \\
a_{{2}{1}} & a_{{2}{2}}
\end{array}
\right)
= \left(
\begin{array}{cc}
1 & 0 \\
l_{{2}{1}} & 1
\end{array}
\right)
\cdot \left(
\begin{array}{cc}
u_{{1}{1}} & u_{{1}{2}} \\
0 & u_{{2}{2}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{cc}
u_{{1}{1}} & u_{{1}{2}} \\
l_{{2}{1}} & u_{{2}{2}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = u_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} u_{{1}{1}} $$
$$ a_{{1}{2}} = u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + u_{{2}{2}} $$
\vfill\null
\columnbreak
$$ u_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = \dfrac{a_{{2}{1}}}{u_{{1}{1}}} $$
$$ u_{{1}{2}} = a_{{1}{2}} $$
$$ u_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
\end{multicols}
\subsection{Caso de matrices de $3\times 3$ }
$$ \left(
\begin{array}{ccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}}
\end{array}
\right)
= \left(
\begin{array}{ccc}
1 & 0 & 0 \\
l_{{2}{1}} & 1 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & 1
\end{array}
\right)
\cdot \left(
\begin{array}{ccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} \\
0 & u_{{2}{2}} & u_{{2}{3}} \\
0 & 0 & u_{{3}{3}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{ccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} \\
l_{{2}{1}} & u_{{2}{2}} & u_{{2}{3}} \\
l_{{3}{1}} & l_{{3}{2}} & u_{{3}{3}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = u_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} u_{{1}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} u_{{1}{1}} $$
$$ a_{{1}{2}} = u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + u_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} u_{{2}{2}} $$
$$ a_{{1}{3}} = u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + u_{{3}{3}} $$
\vfill\null
\columnbreak
$$ u_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = \dfrac{a_{{2}{1}}}{u_{{1}{1}}} $$
$$ l_{{3}{1}} = \dfrac{a_{{3}{1}}}{u_{{1}{1}}} $$
$$ u_{{1}{2}} = a_{{1}{2}} $$
$$ u_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = \dfrac{a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ u_{{1}{3}} = a_{{1}{3}} $$
$$ u_{{2}{3}} = a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}} $$
$$ u_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
\end{multicols}
\subsection{Caso de matrices de $4\times 4$ }
$$ \left(
\begin{array}{cccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}}
\end{array}
\right)
= \left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
l_{{2}{1}} & 1 & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & 1 & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & 1
\end{array}
\right)
\cdot \left(
\begin{array}{cccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} \\
0 & u_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} \\
0 & 0 & u_{{3}{3}} & u_{{3}{4}} \\
0 & 0 & 0 & u_{{4}{4}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{cccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} \\
l_{{2}{1}} & u_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} \\
l_{{3}{1}} & l_{{3}{2}} & u_{{3}{3}} & u_{{3}{4}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & u_{{4}{4}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = u_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} u_{{1}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} u_{{1}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} u_{{1}{1}} $$
$$ a_{{1}{2}} = u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + u_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} u_{{2}{2}} $$
$$ a_{{4}{2}} = l_{{4}{1}} u_{{1}{2}} + l_{{4}{2}} u_{{2}{2}} $$
$$ a_{{1}{3}} = u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + u_{{3}{3}} $$
$$ a_{{4}{3}} = l_{{4}{1}} u_{{1}{3}} + l_{{4}{2}} u_{{2}{3}} + l_{{4}{3}} u_{{3}{3}} $$
$$ a_{{1}{4}} = u_{{1}{4}} $$
$$ a_{{2}{4}} = l_{{2}{1}} u_{{1}{4}} + u_{{2}{4}} $$
$$ a_{{3}{4}} = l_{{3}{1}} u_{{1}{4}} + l_{{3}{2}} u_{{2}{4}} + u_{{3}{4}} $$
$$ a_{{4}{4}} = l_{{4}{1}} u_{{1}{4}} + l_{{4}{2}} u_{{2}{4}} + l_{{4}{3}} u_{{3}{4}} + u_{{4}{4}} $$
\vfill\null
\columnbreak
$$ u_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = \dfrac{a_{{2}{1}}}{u_{{1}{1}}} $$
$$ l_{{3}{1}} = \dfrac{a_{{3}{1}}}{u_{{1}{1}}} $$
$$ l_{{4}{1}} = \dfrac{a_{{4}{1}}}{u_{{1}{1}}} $$
$$ u_{{1}{2}} = a_{{1}{2}} $$
$$ u_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = \dfrac{a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ l_{{4}{2}} = \dfrac{a_{{4}{2}}- l_{{4}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ u_{{1}{3}} = a_{{1}{3}} $$
$$ u_{{2}{3}} = a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}} $$
$$ u_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
$$ l_{{4}{3}} = \dfrac{a_{{4}{3}}- l_{{4}{1}} u_{{1}{3}}- l_{{4}{2}} u_{{2}{3}}}{u_{{3}{3}}} $$
$$ u_{{1}{4}} = a_{{1}{4}} $$
$$ u_{{2}{4}} = a_{{2}{4}}- l_{{2}{1}} u_{{1}{4}} $$
$$ u_{{3}{4}} = a_{{3}{4}}- l_{{3}{1}} u_{{1}{4}}- l_{{3}{2}} u_{{2}{4}} $$
$$ u_{{4}{4}} = a_{{4}{4}}- l_{{4}{1}} u_{{1}{4}}- l_{{4}{2}} u_{{2}{4}}- l_{{4}{3}} u_{{3}{4}} $$
\end{multicols}
\subsection{Caso de matrices de $5\times 5$ }
$$ \left(
\begin{array}{ccccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} & a_{{1}{5}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} & a_{{2}{5}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} & a_{{3}{5}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}} & a_{{4}{5}} \\
a_{{5}{1}} & a_{{5}{2}} & a_{{5}{3}} & a_{{5}{4}} & a_{{5}{5}}
\end{array}
\right)
= \left(
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
l_{{2}{1}} & 1 & 0 & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & 1 & 0 & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & 1 & 0 \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & 1
\end{array}
\right)
\cdot \left(
\begin{array}{ccccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} \\
0 & u_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} \\
0 & 0 & u_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} \\
0 & 0 & 0 & u_{{4}{4}} & u_{{4}{5}} \\
0 & 0 & 0 & 0 & u_{{5}{5}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{ccccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} \\
l_{{2}{1}} & u_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} \\
l_{{3}{1}} & l_{{3}{2}} & u_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & u_{{4}{4}} & u_{{4}{5}} \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & u_{{5}{5}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = u_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} u_{{1}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} u_{{1}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} u_{{1}{1}} $$
$$ a_{{5}{1}} = l_{{5}{1}} u_{{1}{1}} $$
$$ a_{{1}{2}} = u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + u_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} u_{{2}{2}} $$
$$ a_{{4}{2}} = l_{{4}{1}} u_{{1}{2}} + l_{{4}{2}} u_{{2}{2}} $$
$$ a_{{5}{2}} = l_{{5}{1}} u_{{1}{2}} + l_{{5}{2}} u_{{2}{2}} $$
$$ a_{{1}{3}} = u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + u_{{3}{3}} $$
$$ a_{{4}{3}} = l_{{4}{1}} u_{{1}{3}} + l_{{4}{2}} u_{{2}{3}} + l_{{4}{3}} u_{{3}{3}} $$
$$ a_{{5}{3}} = l_{{5}{1}} u_{{1}{3}} + l_{{5}{2}} u_{{2}{3}} + l_{{5}{3}} u_{{3}{3}} $$
$$ a_{{1}{4}} = u_{{1}{4}} $$
$$ a_{{2}{4}} = l_{{2}{1}} u_{{1}{4}} + u_{{2}{4}} $$
$$ a_{{3}{4}} = l_{{3}{1}} u_{{1}{4}} + l_{{3}{2}} u_{{2}{4}} + u_{{3}{4}} $$
$$ a_{{4}{4}} = l_{{4}{1}} u_{{1}{4}} + l_{{4}{2}} u_{{2}{4}} + l_{{4}{3}} u_{{3}{4}} + u_{{4}{4}} $$
$$ a_{{5}{4}} = l_{{5}{1}} u_{{1}{4}} + l_{{5}{2}} u_{{2}{4}} + l_{{5}{3}} u_{{3}{4}} + l_{{5}{4}} u_{{4}{4}} $$
$$ a_{{1}{5}} = u_{{1}{5}} $$
$$ a_{{2}{5}} = l_{{2}{1}} u_{{1}{5}} + u_{{2}{5}} $$
$$ a_{{3}{5}} = l_{{3}{1}} u_{{1}{5}} + l_{{3}{2}} u_{{2}{5}} + u_{{3}{5}} $$
$$ a_{{4}{5}} = l_{{4}{1}} u_{{1}{5}} + l_{{4}{2}} u_{{2}{5}} + l_{{4}{3}} u_{{3}{5}} + u_{{4}{5}} $$
$$ a_{{5}{5}} = l_{{5}{1}} u_{{1}{5}} + l_{{5}{2}} u_{{2}{5}} + l_{{5}{3}} u_{{3}{5}} + l_{{5}{4}} u_{{4}{5}} + u_{{5}{5}} $$
\vfill\null
\columnbreak
$$ u_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = \dfrac{a_{{2}{1}}}{u_{{1}{1}}} $$
$$ l_{{3}{1}} = \dfrac{a_{{3}{1}}}{u_{{1}{1}}} $$
$$ l_{{4}{1}} = \dfrac{a_{{4}{1}}}{u_{{1}{1}}} $$
$$ l_{{5}{1}} = \dfrac{a_{{5}{1}}}{u_{{1}{1}}} $$
$$ u_{{1}{2}} = a_{{1}{2}} $$
$$ u_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = \dfrac{a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ l_{{4}{2}} = \dfrac{a_{{4}{2}}- l_{{4}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ l_{{5}{2}} = \dfrac{a_{{5}{2}}- l_{{5}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ u_{{1}{3}} = a_{{1}{3}} $$
$$ u_{{2}{3}} = a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}} $$
$$ u_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
$$ l_{{4}{3}} = \dfrac{a_{{4}{3}}- l_{{4}{1}} u_{{1}{3}}- l_{{4}{2}} u_{{2}{3}}}{u_{{3}{3}}} $$
$$ l_{{5}{3}} = \dfrac{a_{{5}{3}}- l_{{5}{1}} u_{{1}{3}}- l_{{5}{2}} u_{{2}{3}}}{u_{{3}{3}}} $$
$$ u_{{1}{4}} = a_{{1}{4}} $$
$$ u_{{2}{4}} = a_{{2}{4}}- l_{{2}{1}} u_{{1}{4}} $$
$$ u_{{3}{4}} = a_{{3}{4}}- l_{{3}{1}} u_{{1}{4}}- l_{{3}{2}} u_{{2}{4}} $$
$$ u_{{4}{4}} = a_{{4}{4}}- l_{{4}{1}} u_{{1}{4}}- l_{{4}{2}} u_{{2}{4}}- l_{{4}{3}} u_{{3}{4}} $$
$$ l_{{5}{4}} = \dfrac{a_{{5}{4}}- l_{{5}{1}} u_{{1}{4}}- l_{{5}{2}} u_{{2}{4}}- l_{{5}{3}} u_{{3}{4}}}{u_{{4}{4}}} $$
$$ u_{{1}{5}} = a_{{1}{5}} $$
$$ u_{{2}{5}} = a_{{2}{5}}- l_{{2}{1}} u_{{1}{5}} $$
$$ u_{{3}{5}} = a_{{3}{5}}- l_{{3}{1}} u_{{1}{5}}- l_{{3}{2}} u_{{2}{5}} $$
$$ u_{{4}{5}} = a_{{4}{5}}- l_{{4}{1}} u_{{1}{5}}- l_{{4}{2}} u_{{2}{5}}- l_{{4}{3}} u_{{3}{5}} $$
$$ u_{{5}{5}} = a_{{5}{5}}- l_{{5}{1}} u_{{1}{5}}- l_{{5}{2}} u_{{2}{5}}- l_{{5}{3}} u_{{3}{5}}- l_{{5}{4}} u_{{4}{5}} $$
\end{multicols}
\subsection{Caso de matrices de $6\times 6$ }
$$ \left(
\begin{array}{cccccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} & a_{{1}{5}} & a_{{1}{6}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} & a_{{2}{5}} & a_{{2}{6}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} & a_{{3}{5}} & a_{{3}{6}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}} & a_{{4}{5}} & a_{{4}{6}} \\
a_{{5}{1}} & a_{{5}{2}} & a_{{5}{3}} & a_{{5}{4}} & a_{{5}{5}} & a_{{5}{6}} \\
a_{{6}{1}} & a_{{6}{2}} & a_{{6}{3}} & a_{{6}{4}} & a_{{6}{5}} & a_{{6}{6}}
\end{array}
\right)
= \left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
l_{{2}{1}} & 1 & 0 & 0 & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & 1 & 0 & 0 & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & 1 & 0 & 0 \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & 1 & 0 \\
l_{{6}{1}} & l_{{6}{2}} & l_{{6}{3}} & l_{{6}{4}} & l_{{6}{5}} & 1
\end{array}
\right)
\cdot \left(
\begin{array}{cccccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} & u_{{1}{6}} \\
0 & u_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} & u_{{2}{6}} \\
0 & 0 & u_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} & u_{{3}{6}} \\
0 & 0 & 0 & u_{{4}{4}} & u_{{4}{5}} & u_{{4}{6}} \\
0 & 0 & 0 & 0 & u_{{5}{5}} & u_{{5}{6}} \\
0 & 0 & 0 & 0 & 0 & u_{{6}{6}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{cccccc}
u_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} & u_{{1}{6}} \\
l_{{2}{1}} & u_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} & u_{{2}{6}} \\
l_{{3}{1}} & l_{{3}{2}} & u_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} & u_{{3}{6}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & u_{{4}{4}} & u_{{4}{5}} & u_{{4}{6}} \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & u_{{5}{5}} & u_{{5}{6}} \\
l_{{6}{1}} & l_{{6}{2}} & l_{{6}{3}} & l_{{6}{4}} & l_{{6}{5}} & u_{{6}{6}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{1}{1}} = u_{{1}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} u_{{1}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} u_{{1}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} u_{{1}{1}} $$
$$ a_{{5}{1}} = l_{{5}{1}} u_{{1}{1}} $$
$$ a_{{6}{1}} = l_{{6}{1}} u_{{1}{1}} $$
$$ a_{{1}{2}} = u_{{1}{2}} $$
$$ a_{{2}{2}} = l_{{2}{1}} u_{{1}{2}} + u_{{2}{2}} $$
$$ a_{{3}{2}} = l_{{3}{1}} u_{{1}{2}} + l_{{3}{2}} u_{{2}{2}} $$
$$ a_{{4}{2}} = l_{{4}{1}} u_{{1}{2}} + l_{{4}{2}} u_{{2}{2}} $$
$$ a_{{5}{2}} = l_{{5}{1}} u_{{1}{2}} + l_{{5}{2}} u_{{2}{2}} $$
$$ a_{{6}{2}} = l_{{6}{1}} u_{{1}{2}} + l_{{6}{2}} u_{{2}{2}} $$
$$ a_{{1}{3}} = u_{{1}{3}} $$
$$ a_{{2}{3}} = l_{{2}{1}} u_{{1}{3}} + u_{{2}{3}} $$
$$ a_{{3}{3}} = l_{{3}{1}} u_{{1}{3}} + l_{{3}{2}} u_{{2}{3}} + u_{{3}{3}} $$
$$ a_{{4}{3}} = l_{{4}{1}} u_{{1}{3}} + l_{{4}{2}} u_{{2}{3}} + l_{{4}{3}} u_{{3}{3}} $$
$$ a_{{5}{3}} = l_{{5}{1}} u_{{1}{3}} + l_{{5}{2}} u_{{2}{3}} + l_{{5}{3}} u_{{3}{3}} $$
$$ a_{{6}{3}} = l_{{6}{1}} u_{{1}{3}} + l_{{6}{2}} u_{{2}{3}} + l_{{6}{3}} u_{{3}{3}} $$
$$ a_{{1}{4}} = u_{{1}{4}} $$
$$ a_{{2}{4}} = l_{{2}{1}} u_{{1}{4}} + u_{{2}{4}} $$
$$ a_{{3}{4}} = l_{{3}{1}} u_{{1}{4}} + l_{{3}{2}} u_{{2}{4}} + u_{{3}{4}} $$
$$ a_{{4}{4}} = l_{{4}{1}} u_{{1}{4}} + l_{{4}{2}} u_{{2}{4}} + l_{{4}{3}} u_{{3}{4}} + u_{{4}{4}} $$
$$ a_{{5}{4}} = l_{{5}{1}} u_{{1}{4}} + l_{{5}{2}} u_{{2}{4}} + l_{{5}{3}} u_{{3}{4}} + l_{{5}{4}} u_{{4}{4}} $$
$$ a_{{6}{4}} = l_{{6}{1}} u_{{1}{4}} + l_{{6}{2}} u_{{2}{4}} + l_{{6}{3}} u_{{3}{4}} + l_{{6}{4}} u_{{4}{4}} $$
$$ a_{{1}{5}} = u_{{1}{5}} $$
$$ a_{{2}{5}} = l_{{2}{1}} u_{{1}{5}} + u_{{2}{5}} $$
$$ a_{{3}{5}} = l_{{3}{1}} u_{{1}{5}} + l_{{3}{2}} u_{{2}{5}} + u_{{3}{5}} $$
$$ a_{{4}{5}} = l_{{4}{1}} u_{{1}{5}} + l_{{4}{2}} u_{{2}{5}} + l_{{4}{3}} u_{{3}{5}} + u_{{4}{5}} $$
$$ a_{{5}{5}} = l_{{5}{1}} u_{{1}{5}} + l_{{5}{2}} u_{{2}{5}} + l_{{5}{3}} u_{{3}{5}} + l_{{5}{4}} u_{{4}{5}} + u_{{5}{5}} $$
$$ a_{{6}{5}} = l_{{6}{1}} u_{{1}{5}} + l_{{6}{2}} u_{{2}{5}} + l_{{6}{3}} u_{{3}{5}} + l_{{6}{4}} u_{{4}{5}} + l_{{6}{5}} u_{{5}{5}} $$
$$ a_{{1}{6}} = u_{{1}{6}} $$
$$ a_{{2}{6}} = l_{{2}{1}} u_{{1}{6}} + u_{{2}{6}} $$
$$ a_{{3}{6}} = l_{{3}{1}} u_{{1}{6}} + l_{{3}{2}} u_{{2}{6}} + u_{{3}{6}} $$
$$ a_{{4}{6}} = l_{{4}{1}} u_{{1}{6}} + l_{{4}{2}} u_{{2}{6}} + l_{{4}{3}} u_{{3}{6}} + u_{{4}{6}} $$
$$ a_{{5}{6}} = l_{{5}{1}} u_{{1}{6}} + l_{{5}{2}} u_{{2}{6}} + l_{{5}{3}} u_{{3}{6}} + l_{{5}{4}} u_{{4}{6}} + u_{{5}{6}} $$
$$ a_{{6}{6}} = l_{{6}{1}} u_{{1}{6}} + l_{{6}{2}} u_{{2}{6}} + l_{{6}{3}} u_{{3}{6}} + l_{{6}{4}} u_{{4}{6}} + l_{{6}{5}} u_{{5}{6}} + u_{{6}{6}} $$
\vfill\null
\columnbreak
$$ u_{{1}{1}} = a_{{1}{1}} $$
$$ l_{{2}{1}} = \dfrac{a_{{2}{1}}}{u_{{1}{1}}} $$
$$ l_{{3}{1}} = \dfrac{a_{{3}{1}}}{u_{{1}{1}}} $$
$$ l_{{4}{1}} = \dfrac{a_{{4}{1}}}{u_{{1}{1}}} $$
$$ l_{{5}{1}} = \dfrac{a_{{5}{1}}}{u_{{1}{1}}} $$
$$ l_{{6}{1}} = \dfrac{a_{{6}{1}}}{u_{{1}{1}}} $$
$$ u_{{1}{2}} = a_{{1}{2}} $$
$$ u_{{2}{2}} = a_{{2}{2}}- l_{{2}{1}} u_{{1}{2}} $$
$$ l_{{3}{2}} = \dfrac{a_{{3}{2}}- l_{{3}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ l_{{4}{2}} = \dfrac{a_{{4}{2}}- l_{{4}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ l_{{5}{2}} = \dfrac{a_{{5}{2}}- l_{{5}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ l_{{6}{2}} = \dfrac{a_{{6}{2}}- l_{{6}{1}} u_{{1}{2}}}{u_{{2}{2}}} $$
$$ u_{{1}{3}} = a_{{1}{3}} $$
$$ u_{{2}{3}} = a_{{2}{3}}- l_{{2}{1}} u_{{1}{3}} $$
$$ u_{{3}{3}} = a_{{3}{3}}- l_{{3}{1}} u_{{1}{3}}- l_{{3}{2}} u_{{2}{3}} $$
$$ l_{{4}{3}} = \dfrac{a_{{4}{3}}- l_{{4}{1}} u_{{1}{3}}- l_{{4}{2}} u_{{2}{3}}}{u_{{3}{3}}} $$
$$ l_{{5}{3}} = \dfrac{a_{{5}{3}}- l_{{5}{1}} u_{{1}{3}}- l_{{5}{2}} u_{{2}{3}}}{u_{{3}{3}}} $$
$$ l_{{6}{3}} = \dfrac{a_{{6}{3}}- l_{{6}{1}} u_{{1}{3}}- l_{{6}{2}} u_{{2}{3}}}{u_{{3}{3}}} $$
$$ u_{{1}{4}} = a_{{1}{4}} $$
$$ u_{{2}{4}} = a_{{2}{4}}- l_{{2}{1}} u_{{1}{4}} $$
$$ u_{{3}{4}} = a_{{3}{4}}- l_{{3}{1}} u_{{1}{4}}- l_{{3}{2}} u_{{2}{4}} $$
$$ u_{{4}{4}} = a_{{4}{4}}- l_{{4}{1}} u_{{1}{4}}- l_{{4}{2}} u_{{2}{4}}- l_{{4}{3}} u_{{3}{4}} $$
$$ l_{{5}{4}} = \dfrac{a_{{5}{4}}- l_{{5}{1}} u_{{1}{4}}- l_{{5}{2}} u_{{2}{4}}- l_{{5}{3}} u_{{3}{4}}}{u_{{4}{4}}} $$
$$ l_{{6}{4}} = \dfrac{a_{{6}{4}}- l_{{6}{1}} u_{{1}{4}}- l_{{6}{2}} u_{{2}{4}}- l_{{6}{3}} u_{{3}{4}}}{u_{{4}{4}}} $$
$$ u_{{1}{5}} = a_{{1}{5}} $$
$$ u_{{2}{5}} = a_{{2}{5}}- l_{{2}{1}} u_{{1}{5}} $$
$$ u_{{3}{5}} = a_{{3}{5}}- l_{{3}{1}} u_{{1}{5}}- l_{{3}{2}} u_{{2}{5}} $$
$$ u_{{4}{5}} = a_{{4}{5}}- l_{{4}{1}} u_{{1}{5}}- l_{{4}{2}} u_{{2}{5}}- l_{{4}{3}} u_{{3}{5}} $$
$$ u_{{5}{5}} = a_{{5}{5}}- l_{{5}{1}} u_{{1}{5}}- l_{{5}{2}} u_{{2}{5}}- l_{{5}{3}} u_{{3}{5}}- l_{{5}{4}} u_{{4}{5}} $$
$$ l_{{6}{5}} = \dfrac{a_{{6}{5}}- l_{{6}{1}} u_{{1}{5}}- l_{{6}{2}} u_{{2}{5}}- l_{{6}{3}} u_{{3}{5}}- l_{{6}{4}} u_{{4}{5}}}{u_{{5}{5}}} $$
$$ u_{{1}{6}} = a_{{1}{6}} $$
$$ u_{{2}{6}} = a_{{2}{6}}- l_{{2}{1}} u_{{1}{6}} $$
$$ u_{{3}{6}} = a_{{3}{6}}- l_{{3}{1}} u_{{1}{6}}- l_{{3}{2}} u_{{2}{6}} $$
$$ u_{{4}{6}} = a_{{4}{6}}- l_{{4}{1}} u_{{1}{6}}- l_{{4}{2}} u_{{2}{6}}- l_{{4}{3}} u_{{3}{6}} $$
$$ u_{{5}{6}} = a_{{5}{6}}- l_{{5}{1}} u_{{1}{6}}- l_{{5}{2}} u_{{2}{6}}- l_{{5}{3}} u_{{3}{6}}- l_{{5}{4}} u_{{4}{6}} $$
$$ u_{{6}{6}} = a_{{6}{6}}- l_{{6}{1}} u_{{1}{6}}- l_{{6}{2}} u_{{2}{6}}- l_{{6}{3}} u_{{3}{6}}- l_{{6}{4}} u_{{4}{6}}- l_{{6}{5}} u_{{5}{6}} $$
\end{multicols}
\section{Metodo uL}
\subsection{Caso de matrices de $2\times 2$ }
$$ \left(
\begin{array}{cc}
a_{{1}{1}} & a_{{1}{2}} \\
a_{{2}{1}} & a_{{2}{2}}
\end{array}
\right)
= \left(
\begin{array}{cc}
1 & u_{{1}{2}} \\
0 & 1
\end{array}
\right)
\cdot \left(
\begin{array}{cc}
l_{{1}{1}} & 0 \\
l_{{2}{1}} & l_{{2}{2}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{cc}
l_{{1}{1}} & u_{{1}{2}} \\
l_{{2}{1}} & l_{{2}{2}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{2}{2}} = l_{{2}{2}} $$
$$ a_{{1}{2}} = u_{{1}{2}} l_{{2}{2}} $$
$$ a_{{2}{1}} = l_{{2}{1}} $$
$$ a_{{1}{1}} = l_{{1}{1}} + u_{{1}{2}} l_{{2}{1}} $$
\vfill\null
\columnbreak
$$ l_{{2}{2}} = a_{{2}{2}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}}{l_{{2}{2}}} $$
$$ l_{{2}{1}} = a_{{2}{1}} $$
$$ l_{{1}{1}} = a_{{1}{1}}- u_{{1}{2}} l_{{2}{1}} $$
\end{multicols}
\subsection{Caso de matrices de $3\times 3$ }
$$ \left(
\begin{array}{ccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}}
\end{array}
\right)
= \left(
\begin{array}{ccc}
1 & u_{{1}{2}} & u_{{1}{3}} \\
0 & 1 & u_{{2}{3}} \\
0 & 0 & 1
\end{array}
\right)
\cdot \left(
\begin{array}{ccc}
l_{{1}{1}} & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{ccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{3}{3}} = l_{{3}{3}} $$
$$ a_{{2}{3}} = u_{{2}{3}} l_{{3}{3}} $$
$$ a_{{1}{3}} = u_{{1}{3}} l_{{3}{3}} $$
$$ a_{{3}{2}} = l_{{3}{2}} $$
$$ a_{{2}{2}} = l_{{2}{2}} + u_{{2}{3}} l_{{3}{2}} $$
$$ a_{{1}{2}} = u_{{1}{2}} l_{{2}{2}} + u_{{1}{3}} l_{{3}{2}} $$
$$ a_{{3}{1}} = l_{{3}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} + u_{{2}{3}} l_{{3}{1}} $$
$$ a_{{1}{1}} = l_{{1}{1}} + u_{{1}{2}} l_{{2}{1}} + u_{{1}{3}} l_{{3}{1}} $$
\vfill\null
\columnbreak
$$ l_{{3}{3}} = a_{{3}{3}} $$
$$ u_{{2}{3}} = \dfrac{a_{{2}{3}}}{l_{{3}{3}}} $$
$$ u_{{1}{3}} = \dfrac{a_{{1}{3}}}{l_{{3}{3}}} $$
$$ l_{{3}{2}} = a_{{3}{2}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- u_{{2}{3}} l_{{3}{2}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}- u_{{1}{3}} l_{{3}{2}}}{l_{{2}{2}}} $$
$$ l_{{3}{1}} = a_{{3}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}}- u_{{2}{3}} l_{{3}{1}} $$
$$ l_{{1}{1}} = a_{{1}{1}}- u_{{1}{2}} l_{{2}{1}}- u_{{1}{3}} l_{{3}{1}} $$
\end{multicols}
\subsection{Caso de matrices de $4\times 4$ }
$$ \left(
\begin{array}{cccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}}
\end{array}
\right)
= \left(
\begin{array}{cccc}
1 & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} \\
0 & 1 & u_{{2}{3}} & u_{{2}{4}} \\
0 & 0 & 1 & u_{{3}{4}} \\
0 & 0 & 0 & 1
\end{array}
\right)
\cdot \left(
\begin{array}{cccc}
l_{{1}{1}} & 0 & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{cccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & u_{{3}{4}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{4}{4}} = l_{{4}{4}} $$
$$ a_{{3}{4}} = u_{{3}{4}} l_{{4}{4}} $$
$$ a_{{2}{4}} = u_{{2}{4}} l_{{4}{4}} $$
$$ a_{{1}{4}} = u_{{1}{4}} l_{{4}{4}} $$
$$ a_{{4}{3}} = l_{{4}{3}} $$
$$ a_{{3}{3}} = l_{{3}{3}} + u_{{3}{4}} l_{{4}{3}} $$
$$ a_{{2}{3}} = u_{{2}{3}} l_{{3}{3}} + u_{{2}{4}} l_{{4}{3}} $$
$$ a_{{1}{3}} = u_{{1}{3}} l_{{3}{3}} + u_{{1}{4}} l_{{4}{3}} $$
$$ a_{{4}{2}} = l_{{4}{2}} $$
$$ a_{{3}{2}} = l_{{3}{2}} + u_{{3}{4}} l_{{4}{2}} $$
$$ a_{{2}{2}} = l_{{2}{2}} + u_{{2}{3}} l_{{3}{2}} + u_{{2}{4}} l_{{4}{2}} $$
$$ a_{{1}{2}} = u_{{1}{2}} l_{{2}{2}} + u_{{1}{3}} l_{{3}{2}} + u_{{1}{4}} l_{{4}{2}} $$
$$ a_{{4}{1}} = l_{{4}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} + u_{{3}{4}} l_{{4}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} + u_{{2}{3}} l_{{3}{1}} + u_{{2}{4}} l_{{4}{1}} $$
$$ a_{{1}{1}} = l_{{1}{1}} + u_{{1}{2}} l_{{2}{1}} + u_{{1}{3}} l_{{3}{1}} + u_{{1}{4}} l_{{4}{1}} $$
\vfill\null
\columnbreak
$$ l_{{4}{4}} = a_{{4}{4}} $$
$$ u_{{3}{4}} = \dfrac{a_{{3}{4}}}{l_{{4}{4}}} $$
$$ u_{{2}{4}} = \dfrac{a_{{2}{4}}}{l_{{4}{4}}} $$
$$ u_{{1}{4}} = \dfrac{a_{{1}{4}}}{l_{{4}{4}}} $$
$$ l_{{4}{3}} = a_{{4}{3}} $$
$$ l_{{3}{3}} = a_{{3}{3}}- u_{{3}{4}} l_{{4}{3}} $$
$$ u_{{2}{3}} = \dfrac{a_{{2}{3}}- u_{{2}{4}} l_{{4}{3}}}{l_{{3}{3}}} $$
$$ u_{{1}{3}} = \dfrac{a_{{1}{3}}- u_{{1}{4}} l_{{4}{3}}}{l_{{3}{3}}} $$
$$ l_{{4}{2}} = a_{{4}{2}} $$
$$ l_{{3}{2}} = a_{{3}{2}}- u_{{3}{4}} l_{{4}{2}} $$
$$ l_{{2}{2}} = a_{{2}{2}}- u_{{2}{3}} l_{{3}{2}}- u_{{2}{4}} l_{{4}{2}} $$
$$ u_{{1}{2}} = \dfrac{a_{{1}{2}}- u_{{1}{3}} l_{{3}{2}}- u_{{1}{4}} l_{{4}{2}}}{l_{{2}{2}}} $$
$$ l_{{4}{1}} = a_{{4}{1}} $$
$$ l_{{3}{1}} = a_{{3}{1}}- u_{{3}{4}} l_{{4}{1}} $$
$$ l_{{2}{1}} = a_{{2}{1}}- u_{{2}{3}} l_{{3}{1}}- u_{{2}{4}} l_{{4}{1}} $$
$$ l_{{1}{1}} = a_{{1}{1}}- u_{{1}{2}} l_{{2}{1}}- u_{{1}{3}} l_{{3}{1}}- u_{{1}{4}} l_{{4}{1}} $$
\end{multicols}
\subsection{Caso de matrices de $5\times 5$ }
$$ \left(
\begin{array}{ccccc}
a_{{1}{1}} & a_{{1}{2}} & a_{{1}{3}} & a_{{1}{4}} & a_{{1}{5}} \\
a_{{2}{1}} & a_{{2}{2}} & a_{{2}{3}} & a_{{2}{4}} & a_{{2}{5}} \\
a_{{3}{1}} & a_{{3}{2}} & a_{{3}{3}} & a_{{3}{4}} & a_{{3}{5}} \\
a_{{4}{1}} & a_{{4}{2}} & a_{{4}{3}} & a_{{4}{4}} & a_{{4}{5}} \\
a_{{5}{1}} & a_{{5}{2}} & a_{{5}{3}} & a_{{5}{4}} & a_{{5}{5}}
\end{array}
\right)
= \left(
\begin{array}{ccccc}
1 & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} \\
0 & 1 & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} \\
0 & 0 & 1 & u_{{3}{4}} & u_{{3}{5}} \\
0 & 0 & 0 & 1 & u_{{4}{5}} \\
0 & 0 & 0 & 0 & 1
\end{array}
\right)
\cdot \left(
\begin{array}{ccccc}
l_{{1}{1}} & 0 & 0 & 0 & 0 \\
l_{{2}{1}} & l_{{2}{2}} & 0 & 0 & 0 \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & 0 & 0 \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}} & 0 \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & l_{{5}{5}}
\end{array}
\right)
$$
$$ \left(
\begin{array}{ccccc}
l_{{1}{1}} & u_{{1}{2}} & u_{{1}{3}} & u_{{1}{4}} & u_{{1}{5}} \\
l_{{2}{1}} & l_{{2}{2}} & u_{{2}{3}} & u_{{2}{4}} & u_{{2}{5}} \\
l_{{3}{1}} & l_{{3}{2}} & l_{{3}{3}} & u_{{3}{4}} & u_{{3}{5}} \\
l_{{4}{1}} & l_{{4}{2}} & l_{{4}{3}} & l_{{4}{4}} & u_{{4}{5}} \\
l_{{5}{1}} & l_{{5}{2}} & l_{{5}{3}} & l_{{5}{4}} & l_{{5}{5}}
\end{array}
\right)
$$
\begin{multicols}{2}
$$ a_{{5}{5}} = l_{{5}{5}} $$
$$ a_{{4}{5}} = u_{{4}{5}} l_{{5}{5}} $$
$$ a_{{3}{5}} = u_{{3}{5}} l_{{5}{5}} $$
$$ a_{{2}{5}} = u_{{2}{5}} l_{{5}{5}} $$
$$ a_{{1}{5}} = u_{{1}{5}} l_{{5}{5}} $$
$$ a_{{5}{4}} = l_{{5}{4}} $$
$$ a_{{4}{4}} = l_{{4}{4}} + u_{{4}{5}} l_{{5}{4}} $$
$$ a_{{3}{4}} = u_{{3}{4}} l_{{4}{4}} + u_{{3}{5}} l_{{5}{4}} $$
$$ a_{{2}{4}} = u_{{2}{4}} l_{{4}{4}} + u_{{2}{5}} l_{{5}{4}} $$
$$ a_{{1}{4}} = u_{{1}{4}} l_{{4}{4}} + u_{{1}{5}} l_{{5}{4}} $$
$$ a_{{5}{3}} = l_{{5}{3}} $$
$$ a_{{4}{3}} = l_{{4}{3}} + u_{{4}{5}} l_{{5}{3}} $$
$$ a_{{3}{3}} = l_{{3}{3}} + u_{{3}{4}} l_{{4}{3}} + u_{{3}{5}} l_{{5}{3}} $$
$$ a_{{2}{3}} = u_{{2}{3}} l_{{3}{3}} + u_{{2}{4}} l_{{4}{3}} + u_{{2}{5}} l_{{5}{3}} $$
$$ a_{{1}{3}} = u_{{1}{3}} l_{{3}{3}} + u_{{1}{4}} l_{{4}{3}} + u_{{1}{5}} l_{{5}{3}} $$
$$ a_{{5}{2}} = l_{{5}{2}} $$
$$ a_{{4}{2}} = l_{{4}{2}} + u_{{4}{5}} l_{{5}{2}} $$
$$ a_{{3}{2}} = l_{{3}{2}} + u_{{3}{4}} l_{{4}{2}} + u_{{3}{5}} l_{{5}{2}} $$
$$ a_{{2}{2}} = l_{{2}{2}} + u_{{2}{3}} l_{{3}{2}} + u_{{2}{4}} l_{{4}{2}} + u_{{2}{5}} l_{{5}{2}} $$
$$ a_{{1}{2}} = u_{{1}{2}} l_{{2}{2}} + u_{{1}{3}} l_{{3}{2}} + u_{{1}{4}} l_{{4}{2}} + u_{{1}{5}} l_{{5}{2}} $$
$$ a_{{5}{1}} = l_{{5}{1}} $$
$$ a_{{4}{1}} = l_{{4}{1}} + u_{{4}{5}} l_{{5}{1}} $$
$$ a_{{3}{1}} = l_{{3}{1}} + u_{{3}{4}} l_{{4}{1}} + u_{{3}{5}} l_{{5}{1}} $$
$$ a_{{2}{1}} = l_{{2}{1}} + u_{{2}{3}} l_{{3}{1}} + u_{{2}{4}} l_{{4}{1}} + u_{{2}{5}} l_{{5}{1}} $$
$$ a_{{1}{1}} = l_{{1}{1}} + u_{{1}{2}} l_{{2}{1}} + u_{{1}{3}} l_{{3}{1}} + u_{{1}{4}} l_{{4}{1}} + u_{{1}{5}} l_{{5}{1}} $$
\vfill\null
\columnbreak