-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathChapter 6 Labs.txt
175 lines (156 loc) · 5.05 KB
/
Chapter 6 Labs.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Chapter 6 Lab 1: Subset Selection Methods
# Best Subset Selection
library(ISLR)
fix(Hitters)
names(Hitters)
dim(Hitters)
sum(is.na(Hitters$Salary))
Hitters=na.omit(Hitters)
dim(Hitters)
sum(is.na(Hitters))
library(leaps)
regfit.full=regsubsets(Salary~.,Hitters)
summary(regfit.full)
regfit.full=regsubsets(Salary~.,data=Hitters,nvmax=19)
reg.summary=summary(regfit.full)
names(reg.summary)
reg.summary$rsq
par(mfrow=c(2,2))
plot(reg.summary$rss,xlab="Number of Variables",ylab="RSS",type="l")
plot(reg.summary$adjr2,xlab="Number of Variables",ylab="Adjusted RSq",type="l")
which.max(reg.summary$adjr2)
points(11,reg.summary$adjr2[11], col="red",cex=2,pch=20)
plot(reg.summary$cp,xlab="Number of Variables",ylab="Cp",type='l')
which.min(reg.summary$cp)
points(10,reg.summary$cp[10],col="red",cex=2,pch=20)
which.min(reg.summary$bic)
plot(reg.summary$bic,xlab="Number of Variables",ylab="BIC",type='l')
points(6,reg.summary$bic[6],col="red",cex=2,pch=20)
plot(regfit.full,scale="r2")
plot(regfit.full,scale="adjr2")
plot(regfit.full,scale="Cp")
plot(regfit.full,scale="bic")
coef(regfit.full,6)
# Forward and Backward Stepwise Selection
regfit.fwd=regsubsets(Salary~.,data=Hitters,nvmax=19,method="forward")
summary(regfit.fwd)
regfit.bwd=regsubsets(Salary~.,data=Hitters,nvmax=19,method="backward")
summary(regfit.bwd)
coef(regfit.full,7)
coef(regfit.fwd,7)
coef(regfit.bwd,7)
# Choosing Among Models
set.seed(1)
train=sample(c(TRUE,FALSE), nrow(Hitters),rep=TRUE)
test=(!train)
regfit.best=regsubsets(Salary~.,data=Hitters[train,],nvmax=19)
test.mat=model.matrix(Salary~.,data=Hitters[test,])
val.errors=rep(NA,19)
for(i in 1:19){
coefi=coef(regfit.best,id=i)
pred=test.mat[,names(coefi)]%*%coefi
val.errors[i]=mean((Hitters$Salary[test]-pred)^2)
}
val.errors
which.min(val.errors)
coef(regfit.best,10)
predict.regsubsets=function(object,newdata,id,...){
form=as.formula(object$call[[2]])
mat=model.matrix(form,newdata)
coefi=coef(object,id=id)
xvars=names(coefi)
mat[,xvars]%*%coefi
}
regfit.best=regsubsets(Salary~.,data=Hitters,nvmax=19)
coef(regfit.best,10)
k=10
set.seed(1)
folds=sample(1:k,nrow(Hitters),replace=TRUE)
cv.errors=matrix(NA,k,19, dimnames=list(NULL, paste(1:19)))
for(j in 1:k){
best.fit=regsubsets(Salary~.,data=Hitters[folds!=j,],nvmax=19)
for(i in 1:19){
pred=predict(best.fit,Hitters[folds==j,],id=i)
cv.errors[j,i]=mean( (Hitters$Salary[folds==j]-pred)^2)
}
}
mean.cv.errors=apply(cv.errors,2,mean)
mean.cv.errors
par(mfrow=c(1,1))
plot(mean.cv.errors,type='b')
reg.best=regsubsets(Salary~.,data=Hitters, nvmax=19)
coef(reg.best,11)
# Chapter 6 Lab 2: Ridge Regression and the Lasso
x=model.matrix(Salary~.,Hitters)[,-1]
y=Hitters$Salary
# Ridge Regression
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x,y,alpha=0,lambda=grid)
dim(coef(ridge.mod))
ridge.mod$lambda[50]
coef(ridge.mod)[,50]
sqrt(sum(coef(ridge.mod)[-1,50]^2))
ridge.mod$lambda[60]
coef(ridge.mod)[,60]
sqrt(sum(coef(ridge.mod)[-1,60]^2))
predict(ridge.mod,s=50,type="coefficients")[1:20,]
set.seed(1)
train=sample(1:nrow(x), nrow(x)/2)
test=(-train)
y.test=y[test]
ridge.mod=glmnet(x[train,],y[train],alpha=0,lambda=grid, thresh=1e-12)
ridge.pred=predict(ridge.mod,s=4,newx=x[test,])
mean((ridge.pred-y.test)^2)
mean((mean(y[train])-y.test)^2)
ridge.pred=predict(ridge.mod,s=1e10,newx=x[test,])
mean((ridge.pred-y.test)^2)
ridge.pred=predict(ridge.mod,s=0,newx=x[test,],exact=T)
mean((ridge.pred-y.test)^2)
lm(y~x, subset=train)
predict(ridge.mod,s=0,exact=T,type="coefficients")[1:20,]
set.seed(1)
cv.out=cv.glmnet(x[train,],y[train],alpha=0)
plot(cv.out)
bestlam=cv.out$lambda.min
bestlam
ridge.pred=predict(ridge.mod,s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
out=glmnet(x,y,alpha=0)
predict(out,type="coefficients",s=bestlam)[1:20,]
# The Lasso
lasso.mod=glmnet(x[train,],y[train],alpha=1,lambda=grid)
plot(lasso.mod)
set.seed(1)
cv.out=cv.glmnet(x[train,],y[train],alpha=1)
plot(cv.out)
bestlam=cv.out$lambda.min
lasso.pred=predict(lasso.mod,s=bestlam,newx=x[test,])
mean((lasso.pred-y.test)^2)
out=glmnet(x,y,alpha=1,lambda=grid)
lasso.coef=predict(out,type="coefficients",s=bestlam)[1:20,]
lasso.coef
lasso.coef[lasso.coef!=0]
# Chapter 6 Lab 3: PCR and PLS Regression
# Principal Components Regression
library(pls)
set.seed(2)
pcr.fit=pcr(Salary~., data=Hitters,scale=TRUE,validation="CV")
summary(pcr.fit)
validationplot(pcr.fit,val.type="MSEP")
set.seed(1)
pcr.fit=pcr(Salary~., data=Hitters,subset=train,scale=TRUE, validation="CV")
validationplot(pcr.fit,val.type="MSEP")
pcr.pred=predict(pcr.fit,x[test,],ncomp=7)
mean((pcr.pred-y.test)^2)
pcr.fit=pcr(y~x,scale=TRUE,ncomp=7)
summary(pcr.fit)
# Partial Least Squares
set.seed(1)
pls.fit=plsr(Salary~., data=Hitters,subset=train,scale=TRUE, validation="CV")
summary(pls.fit)
validationplot(pls.fit,val.type="MSEP")
pls.pred=predict(pls.fit,x[test,],ncomp=2)
mean((pls.pred-y.test)^2)
pls.fit=plsr(Salary~., data=Hitters,scale=TRUE,ncomp=2)
summary(pls.fit)