-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathISLR04.R
159 lines (121 loc) · 3.91 KB
/
ISLR04.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# An Introduction to Statistical Learning with Applications in R
# by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani
# Chapter 4: Classification
# 4.6 Lab: Logistic Regression, LDA, QDA, and KNN
# 4.6.1 The Stock Market Data
library(ISLR)
names(Smarket)
dim(Smarket)
summary(Smarket)
pairs(Smarket)
cor(Smarket)
cor(Smarket[, -9])
attach(Smarket)
plot(Volume)
# 4.6.2 Logistic Regression
glm.fit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
data = Smarket, family = binomial)
summary(glm.fit)
coef(glm.fit)
summary(glm.fit)$coef
summary(glm.fit)$coef[, 4]
glm.probs <- predict(glm.fit, type = "response")
glm.probs[1:10]
contrasts(Direction)
glm.pred <- rep("Down", 1250)
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Direction)
(507 + 145)/1250
mean(glm.pred == Direction)
train <- (Year < 2005)
Smarket.2005 <- Smarket[!train, ]
dim(Smarket.2005)
Direction.2005 <- Direction[!train]
glm.fit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
data = Smarket, family = binomial, subset = train)
glm.probs <- predict(glm.fit, Smarket.2005, type = "response")
glm.pred <- rep("Down", 252)
glm.pred[glm.probs > 0.5] <- "Up"
table(glm.pred, Direction.2005)
mean(glm.pred == Direction.2005)
mean(glm.pred != Direction.2005)
glm.fit <- glm(Direction ~ Lag1 + Lag2, data = Smarket,
family = binomial, subset = train)
glm.probs <- predict(glm.fit, Smarket.2005, type = "response")
glm.pred <- rep("Down", 252)
glm.pred[glm.probs > 0.5] <- "Up"
table(glm.pred, Direction.2005)
mean(glm.pred == Direction.2005)
106/(106 + 76)
predict(glm.fit,
newdata = data.frame(Lag1 = c(1.2, 1.5), Lag2 = c(1.1, -0.8)),
type = "response")
# 4.6.3 Linear Discriminant Analysis
library(MASS)
lda.fit <- lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
lda.fit
plot(lda.fit)
lda.pred <- predict(lda.fit, Smarket.2005)
names(lda.pred)
lda.class <- lda.pred$class
table(lda.class, Direction.2005)
mean(lda.class == Direction.2005)
sum(lda.pred$posterior[ , 1] >= 0.5)
sum(lda.pred$posterior[ , 1] < 0.5)
lda.pred$posterior[1:20, 1]
lda.class[1:20]
sum(lda.pred$posterior[ , 1] > 0.9)
# 4.6.4 Quadratic Discriminant Analysis
qda.fit <- qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
qda.fit
qda.class <- predict(qda.fit, Smarket.2005)$class
table(qda.class, Direction.2005)
mean(qda.class == Direction.2005)
# 4.6.5 K-Nearest Neighbors
library(class)
train.X <- cbind(Lag1,Lag2)[train, ]
test.X <- cbind(Lag1, Lag2)[!train, ]
train.Direction <- Direction[train]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Direction, k = 1)
table(knn.pred, Direction.2005)
(83 + 43)/252
knn.pred <- knn(train.X, test.X, train.Direction, k = 3)
table(knn.pred, Direction.2005)
mean(knn.pred == Direction.2005)
# 4.6.6 An Application to Caravan Insurance Data
dim(Caravan)
attach(Caravan)
summary(Purchase)
348/5822
standardized.X <- scale(Caravan[ , -86])
var(Caravan[,1])
var(Caravan[,2])
var(standardized.X[ ,1])
var(standardized.X[ ,2])
test <- 1:1000
train.X <- standardized.X[-test, ]
test.X <- standardized.X[ test, ]
train.Y <- Purchase[-test]
test.Y <- Purchase[ test]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Y, k = 1)
mean(test.Y != knn.pred)
mean(test.Y != "No")
table(knn.pred, test.Y)
9/(68 + 9)
knn.pred <- knn(train.X, test.X, train.Y, k = 3)
table(knn.pred,test.Y)
5/26
knn.pred <- knn(train.X, test.X, train.Y, k = 5)
table(knn.pred, test.Y)
4/15
glm.fit <- glm(Purchase ~ ., data = Caravan, family = binomial, subset = -test)
glm.probs <- predict(glm.fit, Caravan[test, ], type = "response")
glm.pred <- rep("No", 1000)
glm.pred[glm.probs > 0.5] <- "Yes"
table(glm.pred, test.Y)
glm.pred <- rep("No", 1000)
glm.pred[glm.probs > 0.25] <- "Yes"
table(glm.pred, test.Y)
11/(22 + 11)