-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathem_utilities.py
136 lines (114 loc) · 5.15 KB
/
em_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from scipy.sparse import csr_matrix
from scipy.sparse import spdiags
from scipy.stats import multivariate_normal
import graphlab
import numpy as np
import sys
import time
from copy import deepcopy
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import normalize
def sframe_to_scipy(x, column_name):
'''
Convert a dictionary column of an SFrame into a sparse matrix format where
each (row_id, column_id, value) triple corresponds to the value of
x[row_id][column_id], where column_id is a key in the dictionary.
Example
>>> sparse_matrix, map_key_to_index = sframe_to_scipy(sframe, column_name)
'''
assert x[column_name].dtype() == dict, \
'The chosen column must be dict type, representing sparse data.'
# Create triples of (row_id, feature_id, count).
# 1. Add a row number.
x = x.add_row_number()
# 2. Stack will transform x to have a row for each unique (row, key) pair.
x = x.stack(column_name, ['feature', 'value'])
# Map words into integers using a OneHotEncoder feature transformation.
f = graphlab.feature_engineering.OneHotEncoder(features=['feature'])
# 1. Fit the transformer using the above data.
f.fit(x)
# 2. The transform takes 'feature' column and adds a new column 'feature_encoding'.
x = f.transform(x)
# 3. Get the feature mapping.
mapping = f['feature_encoding']
# 4. Get the feature id to use for each key.
x['feature_id'] = x['encoded_features'].dict_keys().apply(lambda x: x[0])
# Create numpy arrays that contain the data for the sparse matrix.
i = np.array(x['id'])
j = np.array(x['feature_id'])
v = np.array(x['value'])
width = x['id'].max() + 1
height = x['feature_id'].max() + 1
# Create a sparse matrix.
mat = csr_matrix((v, (i, j)), shape=(width, height))
return mat, mapping
def diag(array):
n = len(array)
return spdiags(array, 0, n, n)
def logpdf_diagonal_gaussian(x, mean, cov):
'''
Compute logpdf of a multivariate Gaussian distribution with diagonal covariance at a given point x.
A multivariate Gaussian distribution with a diagonal covariance is equivalent
to a collection of independent Gaussian random variables.
x should be a sparse matrix. The logpdf will be computed for each row of x.
mean and cov should be given as 1D numpy arrays
mean[i] : mean of i-th variable
cov[i] : variance of i-th variable'''
n = x.shape[0]
dim = x.shape[1]
assert(dim == len(mean) and dim == len(cov))
# multiply each i-th column of x by (1/(2*sigma_i)), where sigma_i is sqrt of variance of i-th variable.
scaled_x = x.dot( diag(1./(2*np.sqrt(cov))) )
# multiply each i-th entry of mean by (1/(2*sigma_i))
scaled_mean = mean/(2*np.sqrt(cov))
# sum of pairwise squared Eulidean distances gives SUM[(x_i - mean_i)^2/(2*sigma_i^2)]
return -np.sum(np.log(np.sqrt(2*np.pi*cov))) - pairwise_distances(scaled_x, [scaled_mean], 'euclidean').flatten()**2
def log_sum_exp(x, axis):
'''Compute the log of a sum of exponentials'''
x_max = np.max(x, axis=axis)
if axis == 1:
return x_max + np.log( np.sum(np.exp(x-x_max[:,np.newaxis]), axis=1) )
else:
return x_max + np.log( np.sum(np.exp(x-x_max), axis=0) )
def EM_for_high_dimension(data, means, covs, weights, cov_smoothing=1e-5, maxiter=int(1e3), thresh=1e-4, verbose=False):
# cov_smoothing: specifies the default variance assigned to absent features in a cluster.
# If we were to assign zero variances to absent features, we would be overconfient,
# as we hastily conclude that those featurese would NEVER appear in the cluster.
# We'd like to leave a little bit of possibility for absent features to show up later.
n = data.shape[0]
dim = data.shape[1]
mu = deepcopy(means)
Sigma = deepcopy(covs)
K = len(mu)
weights = np.array(weights)
ll = None
ll_trace = []
for i in range(maxiter):
# E-step: compute responsibilities
logresp = np.zeros((n,K))
for k in xrange(K):
logresp[:,k] = np.log(weights[k]) + logpdf_diagonal_gaussian(data, mu[k], Sigma[k])
ll_new = np.sum(log_sum_exp(logresp, axis=1))
if verbose:
print(ll_new)
sys.stdout.flush()
logresp -= np.vstack(log_sum_exp(logresp, axis=1))
resp = np.exp(logresp)
counts = np.sum(resp, axis=0)
# M-step: update weights, means, covariances
weights = counts / np.sum(counts)
for k in range(K):
mu[k] = (diag(resp[:,k]).dot(data)).sum(axis=0)/counts[k]
mu[k] = mu[k].A1
Sigma[k] = diag(resp[:,k]).dot( data.power(2)-2*data.dot(diag(mu[k])) ).sum(axis=0) \
+ (mu[k]**2)*counts[k]
Sigma[k] = Sigma[k].A1 / counts[k] + cov_smoothing*np.ones(dim)
# check for convergence in log-likelihood
ll_trace.append(ll_new)
if ll is not None and (ll_new-ll) < thresh and ll_new > -np.inf:
ll = ll_new
break
else:
ll = ll_new
out = {'weights':weights,'means':mu,'covs':Sigma,'loglik':ll_trace,'resp':resp}
return out