-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhelpers.py
103 lines (81 loc) · 2.86 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import time
import sys
import pandas as pd
import copy
import numpy as np
from pyemd import emd_samples
def prettytime(seconds):
return seconds/3600, seconds/60%60, seconds%60
def update_progress(i, total, start_time, text=''):
now = time.time()
used = prettytime(now-start_time)
eta = prettytime((now-start_time) / (i+1) * (total-i-1))
output = ("\r%.2f%%, " % (100.0 * (i+1)/total) +
"%d/%d processed, " % (i+1, total) + text +
"time used: %02d:%02d:%02d, eta: %02d:%02d:%02d" %
(used[0], used[1], used[2],
eta[0], eta[1], eta[2]))
sys.stdout.write(output)
sys.stdout.flush()
if i == total-1:
print('')
def isfloat(string):
try:
x = float(string)
except ValueError:
return False
return True
def load_adult_data(url):
data_train = pd.read_csv(url)
columns = ['age','workclass','fnlwgt','education','education-num','marital-status','occupation','relationship','race','sex','capital-gain','capital-loss','hours-per-weak','native-country','income']
first_row = data_train.columns
data_train.columns = columns
data_train.loc[-1] = first_row
data_train.index += 1
data_train = data_train.sort_index()
# data_train = data_train.drop('fnlwgt',axis=1)
for c in data_train.columns:
if data_train[c].dtype == 'object':
if isfloat(data_train[c][0]):
data_train[c] = data_train[c].astype(float)
#data_train = pd.get_dummies(data_train, drop_first=True)
return data_train
def get_dummies_map(data):
dummies = {}
for c in data:
if data[c].dtype == 'object':
objs = sorted(set(data[c]))
mapping = {objs[i]:i for i in range(len(objs))}
dummies[c] = mapping
return dummies
def convert_dummies(data, dummies):
data_new = copy.deepcopy(data)
for c in dummies:
data_new = data_new.replace(dummies[c])
return data_new
def normalize(data, n_unique):
data_new = np.array(copy.deepcopy(data)).T
for i, col in enumerate(data_new):
n_uni = len(set(data_new[i, :]))
if n_uni >= n_unique:
tmp = data_new[i, :]
data_new[i, :] = (tmp - np.mean(tmp)) / np.std(tmp)
return data_new.T
def total_correlation(X, Y):
X = normalize(X,0)
N = len(X)
#Y_norm = normalize(Y, 10)
S_XX = 1.0 * X.T.dot(X) / N
S_YX = 1.0 * Y.T.dot(X) / N
S_XY = 1.0 * X.T.dot(Y) / N
S_XX_inv = 1.0 * np.linalg.inv(S_XX)
S_YY = 1.0 * Y.T.dot(Y) / N
R_sq = S_YX.dot(S_XX_inv).dot(S_XY) / S_YY
return np.sqrt(R_sq)
def cal_emd_resamp(A,B,n_samp,times):
emds = []
for t in range(times):
idx_a = np.random.choice(len(A), n_samp)
idx_b = np.random.choice(len(B), n_samp)
emds.append(emd_samples(A[idx_a],B[idx_b]))
return np.mean(emds)