-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
265 lines (206 loc) · 9.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Code adapted from:
# Run other python scripts: https://stackoverflow.com/questions/57200315/connect-process-a-script-to-pysimplegui-button/57228060#57228060
import subprocess
import sys
import PySimpleGUI as sg
import signal
import threading
import generateData
import os
import shutil
scriptDir = os.path.dirname(os.path.realpath(__file__))
# Function for running training
def runTraining(args, window):
global p
p = subprocess.Popen("python " + scriptDir + "/trainGPT2.py " + args, stderr=subprocess.PIPE, stdout=subprocess.PIPE,
shell=True)
output = ''
for line in p.stdout:
line = line.decode(errors='replace' if (sys.version_info) < (3, 5) else 'backslashreplace').rstrip()
output += line
print(line)
window.Refresh() if window else None
# Function for running message generation
def runMessage(args, window):
global q
q = subprocess.Popen("python " + scriptDir + "/generateMessage.py " + args, stderr=subprocess.PIPE, stdout=subprocess.PIPE,
stdin=subprocess.PIPE,
shell=True)
output = ''
for line in q.stdout:
line = line.decode(errors='replace' if (sys.version_info) < (3, 5) else 'backslashreplace').rstrip()
output += line
print(line)
window.Refresh() if window else None
# Function for finding model steps
def findModelSteps():
if not os.path.exists(scriptDir + '/checkpoint/run1'):
return None
else:
for file in os.listdir(scriptDir + "/checkpoint/run1"):
# Find model file and get steps
if file.startswith('model') and file.endswith('.index'):
return file.split('-')[1].split('.')[0]
# Model folder exists, but no model is found.
return None
# Layout tabs
testTab = [
[sg.Text("Text generation settings (can leave default)", font=("Helvetica", 12, "bold"))],
[
sg.Column([
[sg.Text("Prefix to start generation with (optional): ")],
[sg.Text("Number of samples: ")],
[sg.Text("Sample length (characters): ")],
[sg.Text("Batch size: ")],
[sg.Text("Temperature (0.0 - 1.0): ")],
[sg.Text("Top K: ")],
[sg.Text("Top P (0.0 - 1.0): ")]
]),
sg.Column([
[sg.Input(key='_genPrefix_', default_text='', size=(30, 10))],
[sg.Input(key='_genSampleNum_', default_text='5', size=(10, 10))],
[sg.Input(key='_genSampleLen_', default_text='100', size=(10, 10))],
[sg.Input(key='_genBatchSize_', default_text='1', size=(10, 10))],
[sg.Input(key='_genTemp_', default_text='0.7', size=(10, 10))],
[sg.Input(key='_genTopK_', default_text='0', size=(10, 10))],
[sg.Input(key='_genTopP_', default_text='0.0', size=(10, 10))]
])
],
[sg.Button('Start text generation'), sg.Button('End text generation')]
]
trainTab = [
[sg.Text('Enter path to Discord package (.zip): ')],
[sg.Input(key='_zippath_'), sg.FileBrowse('Browse', key='_browseFile_')],
[sg.Button('Generate dataset')],
[sg.Canvas()], # Figure out how to add space between
[sg.Canvas()],
[sg.Text("Model training settings (can leave default)", font=("Helvetica", 12, "bold"))],
[
sg.Column([
[sg.Text("Model size: ")],
[sg.Text("Steps: ")],
[sg.Text("Learning rate (0.0 - 1.0):")],
[sg.Text("Generate sample after # of steps: ")],
[sg.Text("Batch size: ")]
]),
sg.Column([
[sg.Combo(["124M (Small)", "355M (Medium)", "774M (Large)"], key='_modelsize_', readonly=True,
default_value="124M (Small)")],
[sg.Input(key='_steps_', default_text='200', size=(10, 10))],
[sg.Input(key='_learningrate_', default_text='0.0001', size=(10, 10))],
[sg.Input(key='_sampleevery_', default_text='100', size=(10, 10))],
[sg.Input(key='_batchsize_', default_text='1', size=(10, 10))]
])
],
[sg.Canvas()],
[sg.Canvas()],
[sg.Button('Start training'), sg.Button('Save and end training'), sg.Canvas(), sg.Canvas(),
sg.Button('Delete model', button_color='red')]
]
# Check if dataset is already generated
if os.path.exists(scriptDir + 'data/data.txt'):
trainTab[0] = [sg.Text('Enter path to Discord package (.zip): '), sg.Text('Dataset found.', key='_foundData_')]
else:
trainTab[0] = [sg.Text('Enter path to Discord package (.zip): '), sg.Text('Dataset not found.', key='_foundData_')]
# Check if model is already generated
stepText = findModelSteps()
if stepText is None:
trainTab[5].append(sg.Text("Model not found.", key='_modelFound_'))
testTab[0].append(sg.Text("Model not found.", key='_modelFound2_'))
else:
trainTab[5].append(sg.Text("Model found, steps: " + stepText, key='_modelFound_'))
testTab[0].append(sg.Text("Model found, steps: " + stepText, key='_modelFound2_'))
layout = [
[sg.TabGroup([[
sg.Tab("Generate/Train", trainTab, key='_trainTab_'),
sg.Tab("Test model", testTab, key='_testTab_')
]], key='_tabGroup_')],
[sg.Multiline(size=(70, 20), font=('Arial', 18), key='_output_', reroute_stdout=True)]
]
window = sg.Window('Discord Messages to AI', layout, size=(700, 700))
trainingStarted = False
generationStarted = False
# Event loop
while True:
event, values = window.Read()
if event in (None, "Exit"):
if trainingStarted:
p.terminate()
if generationStarted:
q.terminate()
exit
break
# Always check for model steps
if not stepText == findModelSteps():
stepText = findModelSteps()
if stepText is None:
window['_modelFound_'].update("Model not found.")
window['_modelFound2_'].update("Model not found.")
window.refresh()
else:
window['_modelFound_'].update("Model found, steps: " + stepText)
window['_modelFound2_'].update("Model found, steps: " + stepText)
window.refresh()
# Clear output box when a button is pressed. I don't know why this works
if values['_tabGroup_'] == '_testTab_' or values['_tabGroup_'] == '_trainTab_':
window.find_element('_output_').Update('')
print()
# Always check for dataset availability
if os.path.exists(scriptDir + '/data/data.txt'):
window['_foundData_'].update("Dataset found.")
else:
window['_foundData_'].update("Dataset not found.")
if event == 'Browse':
values['_zippath_'] = values['_browseFile_']
if event == 'Start training':
if generationStarted:
q.terminate()
generationStarted = False
if trainingStarted:
print("Please save before restarting training.")
else:
window.find_element('_output_').Update('')
trainingStarted = True
args = "\"" + values['_modelsize_'] + "\"" + " " + values['_steps_'] + " " + values['_learningrate_'] + \
" " + values['_sampleevery_'] + " " + values['_batchsize_']
programComplete = False
thread = threading.Thread(target=runTraining, args=[args, window])
thread.setDaemon(True)
thread.start()
if event == 'Save and end training' and trainingStarted:
p.send_signal(signal.SIGINT)
trainingStarted = False
if event == 'Delete model' and not trainingStarted and not generationStarted and os.path.exists(scriptDir + '/checkpoint/run1'):
option = sg.popup_yes_no(
'Are you sure you want to delete the trained model? \nYou will have to retrain from step 0.',
title='Confirm model deletion', keep_on_top=True)
if option == 'Yes':
shutil.rmtree(scriptDir + '/checkpoint/run1')
sg.popup('Model deleted.', keep_on_top=True)
if event == 'Generate dataset':
try:
generateData.generateDataset(values['_zippath_'])
sg.popup("Dataset generated successfully.", title="Success", keep_on_top=True)
window['_foundData_'].update("Dataset found.")
except:
sg.popup("Error: Invalid package path.", title="Error", keep_on_top=True)
if event == 'Start text generation':
window.find_element('_output_').Update('')
if generationStarted:
q.terminate()
if trainingStarted:
print("Please wait for training to complete, or save + end training.")
else:
generationStarted = True
genArgs = "\"" + values['_genPrefix_'] + "\"" + " " + values['_genSampleNum_'] + " " + values[
'_genSampleLen_'] + \
" " + values['_genBatchSize_'] + " " + values['_genTemp_'] + " " + values['_genTopK_'] + " " + \
values['_genTopP_']
genThread = threading.Thread(target=runMessage, args=[genArgs, window])
genThread.setDaemon(True)
genThread.start()
if event == 'End text generation' and generationStarted:
q.terminate()
print("Text generation ended.")
generationStarted = False
window.Close()