-
Notifications
You must be signed in to change notification settings - Fork 24
/
imagenet_ddp_mixprec.py
402 lines (330 loc) · 15.6 KB
/
imagenet_ddp_mixprec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from apex.parallel import DistributedDataParallel as DDP
from apex import amp
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4). '
'these are different from the processes that '
'run the programe. they are just for data loading')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=896, type=int,
metavar='N',
help='mini-batch size (default: 896), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel'
'has to be a multiple of 8 to make use of Tensor'
'Cores. for GPU < 16 GB, max batch size is 224')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training. This should be'
'the IP address and open port number of the master node')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--opt-level', default='O2', type=str)
parser.add_argument('--desired-acc', default=75.0, type=float,
help='Training will stop after desired-acc is reached.')
best_acc1 = 0
def main():
args = parser.parse_args()
args.ngpus_per_node = torch.cuda.device_count()
# on each node we have: ngpus_per_node processes and ngpus_per_node gpus
# that is, 1 process for each gpu on each node.
# world_size is the total number of processes to run
args.world_size = args.ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args))
def main_worker(gpu, args):
"""
:param gpu: this is the process index, mp.spawn will assign this for you, goes from 0 to ngpus - 1 for the curr node
:param args:
:return:
"""
global best_acc1
print("Use GPU: {} for training".format(gpu))
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes across all nodes
# This is “blocking,” meaning that no process will continue until all processes have joined.
args.rank = args.rank * args.ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
torch.cuda.set_device(gpu)
model.cuda(gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the per node batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / args.ngpus_per_node) # calculate local batch size for each GPU
args.workers = int((args.workers + args.ngpus_per_node - 1) / args.ngpus_per_node)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(gpu)
# Scale learning rate based on global batch size
args.lr = args.lr * float(args.batch_size * args.ngpus_per_node * args.world_size) / 256.
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
##############################################################
# the model must already be on the correct GPU before calling amp.initialize.
# The opt_level goes from O0 through O3, which uses different degrees of mixed-precision
# We no longer have to specify the GPUs because Apex only allows one GPU per process.
model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level)
model = DDP(model)
##############################################################
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# cudnn will look for the optimal set of algorithms for that
# particular configuration. this will have faster runtime if
# your input sizes does not change at each iteration
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
# makes sure that each process gets a different slice of the training data
# during distributed training
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
# notice we turn off shuffling and use distributed data sampler
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
end = time.time()
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, gpu, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, gpu, args)
if args.rank % args.ngpus_per_node == 0:
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch, gpu, args):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
images = images.cuda(gpu, non_blocking=True)
target = target.cuda(gpu, non_blocking=True)
adjust_learning_rate(optimizer, epoch, i, len(train_loader), args)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
##############################################################
# Mixed-precision training requires that the loss is scaled in order
# to prevent the gradients from underflowing.
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
##############################################################
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Speed {3:.3f} ({4:.3f})\t'
'Loss {loss.val:.10f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader),
args.world_size * args.batch_size * args.ngpus_per_node / batch_time.val,
args.world_size * args.batch_size * args.ngpus_per_node / batch_time.avg,
batch_time=batch_time,
loss=losses, top1=top1, top5=top5))
def validate(val_loader, model, criterion, gpu, args):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.cuda(gpu, non_blocking=True)
target = target.cuda(gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Speed {2:.3f} ({3:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader),
args.world_size * args.batch_size * args.ngpus_per_node / batch_time.val,
args.world_size * args.batch_size * args.ngpus_per_node / batch_time.avg,
batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, step, len_epoch, args):
"""LR schedule that should yield 76% converged accuracy with batch size 256"""
factor = epoch // 30
if epoch >= 80:
factor = factor + 1
lr = args.lr*(0.1**factor)
"""Warmup"""
if epoch < 5:
lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
# if(args.local_rank == 0):
# print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()