-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplacement_utils.py
378 lines (337 loc) · 16.4 KB
/
replacement_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import functools
import itertools
import random
import time
from typing import Tuple, List, Set
import sys
from grammar import Grammar
from parse_tree import ParseNode, fixup_terminal
REPLACE_CONST = '[[:REPLACEME]]'
MAX_SAMPLES = 10
TIME_GENERATING_EXAMPLES_INTERNAL = 0
"""
Utilities to sample strings that are in the grammar induced when two nodes in a parse tree are merged.
"""
def nt_in_tree(tree: ParseNode, nt: str):
"""
>>> tree_1 = ParseNode('t0', False, [ParseNode('t3', False, [ParseNode('3', True, [])])])
>>> tree_2 = ParseNode('t0', False, [ParseNode('t1', False, [ParseNode('(', True, [])]), tree_1, ParseNode('t2', False, [ParseNode(')', True, [])])])
>>> tree_3 = ParseNode('t0', False, [tree_1, ParseNode('t4', False, [ParseNode('*', True, [])]), tree_1])
>>> nt_in_tree(tree_2, 't1')
True
>>> nt_in_tree(tree_1, 't1')
False
"""
return nt in tree.all_nts()
def get_overlaps(larger: List[str], smaller: List[str]):
"""
ASSUMES: `smaller` is not explicitly contained in `larger`.
Returns a list of overlaps between the front/back of `larger`
and the front/back of `smaller`. Each overlap list is a list
of tuples of (l, s), where l is an index in `larger` and s
is an index in `smaller` s.t. larger[l] == smaller[s]
>>> get_overlaps(["a", "b", "c", "d"], ["c", "d", "e"])
[[(2, 0), (3, 1)]]
>>> get_overlaps(["a", "b", "c", "d"], ["e", "d", "e"])
[]
>>> get_overlaps(["a", "b", "c", "d"], ["c", "a", "b"])
[[(0, 1), (1, 2)]]
>>> get_overlaps(["a", "b", "c", "a"], ["c", "a", "b"])
[[(2, 0), (3, 1)], [(0, 1), (1, 2)]]
>>> get_overlaps(["a", "b", "c", "c"], ["c", "a", "b"])
[[(3, 0)], [(0, 1), (1, 2)]]
>>> get_overlaps(["a", "b", "c", "c"], ["c", "d"])
[[(3, 0)]]
>>> get_overlaps(["a", "b", "c"], ["d", "a"])
[[(0, 1)]]
"""
smaller_idx_1 = 0
match_1_idxs = []
for i in range(len(larger)):
if larger[i] == smaller[smaller_idx_1]:
match_1_idxs.append((i, smaller_idx_1))
smaller_idx_1 += 1
else:
match_1_idxs = []
smaller_idx_1 = 0
if larger[i] == smaller[smaller_idx_1]:
match_1_idxs.append((i, smaller_idx_1))
smaller_idx_1 += 1
smaller_idx_2 = len(smaller) - 1
match_2_idxs = []
for i in reversed(range(len(larger))):
if larger[i] == smaller[smaller_idx_2]:
match_2_idxs.insert(0, (i, smaller_idx_2))
smaller_idx_2 -= 1
else:
smaller_idx_2 = len(smaller) - 1
match_2_idxs = []
if larger[i] == smaller[smaller_idx_2]:
match_2_idxs.insert(0, (i, smaller_idx_2))
smaller_idx_2 -= 1
ret = []
if match_1_idxs:
ret.append(match_1_idxs)
if match_2_idxs:
ret.append(match_2_idxs)
return ret
def muh_product(lst):
"""
Because numpy product is really slow for some reason.
"""
prod = 1
for e in lst:
prod *= e
return prod
#@functools.lru_cache()
def lvl_n_derivable(trees, target_nt, n, max_samples=1000):
"""
Get the strings that are level-n derivable from the nonterminal `target_nt` in `trees`.
- Level-0 derivable: strings that are directly derivable from `target_nt` (i.e. that
literally occur in `trees`
- Level-n derivable: product of Level-(n-1) derivable strings for each child of `target_nt`
tree_1:
t0
|
t3
|
3
tree_2:
t0
/ | \
t1 t0 t2
| | |
( t3 )
|
3
tree_3:
t0
/ | \
t0 t4 t0
| | |
t3 * t3
| |
3 3
>>> tree_1 = ParseNode('t0', False, [ParseNode('t3', False, [ParseNode('3', True, [])])])
>>> tree_2 = ParseNode('t0', False, [ParseNode('t1', False, [ParseNode('(', True, [])]), tree_1, ParseNode('t2', False, [ParseNode(')', True, [])])])
>>> tree_3 = ParseNode('t0', False, [tree_1, ParseNode('t4', False, [ParseNode('*', True, [])]), tree_1])
>>> trees = [tree_1, tree_2, tree_3]
>>> lvl_n_derivable(trees, 't0', 0)
['3', '(3)', '3*3']
>>> lvl_n_derivable(trees, 't0', 1)
['3', '(3)', '((3))', '(3*3)', '3*3', '3*(3)', '3*3*3', '(3)*3', '(3)*(3)', '(3)*3*3', '3*3*(3)', '3*3*3*3']
>>> len(lvl_n_derivable(trees, 't0', 2, 10))
10
>>> lvl_n_derivable([tree_1, tree_2], 't0', 2)
['3', '(3)', '((3))', '(((3)))']
"""
# switching from set() to list() for deterministic order of elements
ret_strs = []
for tree in trees:
def process_tree(tree: ParseNode):
if tree.payload == target_nt:
nonlocal ret_strs
if n == 0 or tree.is_terminal:
ret_strs.append(tree.derived_string())
else:
child_strs = [lvl_n_derivable(trees, c.payload, n-1, max_samples) for c in tree.children]
ret_strs.extend(sample_from_product_ext(child_strs, max_samples))
ret_strs = list(dict.fromkeys(ret_strs))
else:
for c in tree.children:
process_tree(c)
process_tree(tree)
if len(ret_strs) > max_samples:
return random.sample(ret_strs, max_samples)
# return list(dict.fromkeys(ret_strs))[:max_samples]
return ret_strs
def sample_from_product_ext(strings_per_child, num_samples):
lens_per_child = [len(spc) for spc in strings_per_child]
prod_size = muh_product(lens_per_child)
if prod_size < num_samples:
return [''.join(p) for p in itertools.product(*strings_per_child)]
else:
return sample_from_product(strings_per_child, num_samples, lens_per_child, prod_size)
def sample_from_product(strings_per_child, num_samples, lens_per_child, prod_size):
"""
Uniformly sample n strings from the product of strings_per_child.
An approcimate test is below.
>>> a = ['a', 'b', 'c']
>>> b = ['d', 'e', 'f', 'g']
>>> c = ['h', 'i']
>>> all_string_occs = {''.join(p): 0 for p in itertools.product(a,b,c)}
>>> for i in range(10000):
... samples = sample_from_product([a, b, c ], 12, [3,4,2], 24)
... for sample in samples:
... all_string_occs[sample] += 1
>>> print([ 0.48 < occ/10000 < 0.52 for occ in all_string_occs.values()])
[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]
"""
# fancy math to get efficient sampling.
# Consider lens_per_child = [3, 4, 2]
# to map idx to a sample, do (idx % (len(a)*len(b)*len(c)) // (len(b)*len(c)), (idx % (len(b)*len(c))) // len(c), idx % len(c))
if prod_size > sys.maxsize: prod_size = sys.maxsize//2
ret_strings = []
indices = random.sample(range(prod_size), num_samples)
# indices = [2*i if 2*i<prod_size else i for i in range(num_samples)]
to_divide = [1 for i in range(len(strings_per_child))]
for i in reversed(range(len(to_divide) - 1)):
to_divide[i] = to_divide[i + 1] * lens_per_child[i + 1]
to_modulo = [prod_size] + to_divide[:-1]
for idx in indices:
index_per_child = [(idx % to_modulo[i]) // to_divide[i] for i in range(len(strings_per_child))]
children_choice = [strings_per_child[i][child_index] for i, child_index in enumerate(index_per_child)]
ret_strings.append(''.join(children_choice))
return ret_strings
def get_all_replacement_strings(tree: ParseNode, nt_to_replace: str):
"""
Get all the possible strings derived from `tree` where all possible combinations
(including the combination of len 0) of instances of `nt_to_replace` are replaced
by REPLACE_CONST.
>>> left_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])]), ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> right_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> left_l2 = [ParseNode('t2', False, left_l3)]
>>> right_l2 = [ParseNode('t2', False, right_l3)]
>>> big_tree = ParseNode('t0', False, \
[ParseNode('t0', False, left_l2), \
ParseNode('t4', False, [ParseNode('"*"', True, [])]), \
ParseNode('t0', False, right_l2)] \
)
>>> no_occ_tree = ParseNode('t4', False, [ParseNode('"*"', True, [])])
>>> get_all_replacement_strings(no_occ_tree, 't2')
['*']
>>> one_occ_tree = right_l2[0]
>>> sorted(get_all_replacement_strings(one_occ_tree, 't2'))
['4', '[[:REPLACEME]]']
>>> three_occ_tree = left_l2[0]
>>> sorted(get_all_replacement_strings(three_occ_tree, 't2'))
['44', '4[[:REPLACEME]]', '[[:REPLACEME]]', '[[:REPLACEME]]4', '[[:REPLACEME]][[:REPLACEME]]']
>>> sorted(get_all_replacement_strings(big_tree, 't2'))
['44*4', '44*[[:REPLACEME]]', '4[[:REPLACEME]]*4', '4[[:REPLACEME]]*[[:REPLACEME]]', '[[:REPLACEME]]*4', '[[:REPLACEME]]*[[:REPLACEME]]', '[[:REPLACEME]]4*4', '[[:REPLACEME]]4*[[:REPLACEME]]', '[[:REPLACEME]][[:REPLACEME]]*4', '[[:REPLACEME]][[:REPLACEME]]*[[:REPLACEME]]']
"""
replacement_strings = []
if tree.is_terminal:
return [fixup_terminal(tree.payload)]
if not nt_in_tree(tree, nt_to_replace):
return [tree.derived_string()]
if tree.payload == nt_to_replace:
replacement_strings.append(REPLACE_CONST)
strings_per_child = [get_all_replacement_strings(c, nt_to_replace) for c in tree.children]
lens_per_child = [len(spc) for spc in strings_per_child]
prod_size = muh_product(lens_per_child)
if prod_size > MAX_SAMPLES:
replacement_strings.extend(sample_from_product(strings_per_child, MAX_SAMPLES, lens_per_child, prod_size))
else:
replacement_strings.extend([''.join(p) for p in itertools.product(*strings_per_child)])
return list(dict.fromkeys(replacement_strings))
def get_all_rule_replacement_strs(tree: ParseNode, replacee_rule: Tuple[str, List[str]], replacee_posn: int):
"""
Get all the possible strings derived from `tree` where all possible combinations
(including the combination of len 0) of instances of the nonterminal at position
`replacee_posn` in `replacee_rule` are replaced by REPLACE_CONST.
>>> left_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])]), ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> right_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> left_l2 = [ParseNode('t2', False, left_l3)]
>>> right_l2 = [ParseNode('t2', False, right_l3)]
>>> big_tree = ParseNode('t0', False, \
[ParseNode('t0', False, left_l2), \
ParseNode('t4', False, [ParseNode('"*"', True, [])]), \
ParseNode('t0', False, right_l2)] \
)
>>> no_occ_tree = ParseNode('t4', False, [ParseNode('"*"', True, [])])
>>> replacee_rule = ('t0', ['t2'])
>>> replacee_posn = 0
>>> get_all_rule_replacement_strs(no_occ_tree, replacee_rule, replacee_posn)
['*']
>>> one_child_one_occ = ParseNode('t0', False, right_l2)
>>> sorted(get_all_rule_replacement_strs(one_child_one_occ, replacee_rule, replacee_posn))
['4', '[[:REPLACEME]]']
>>> two_children_one_occ = ParseNode('t0', False, left_l2)
>>> sorted(get_all_rule_replacement_strs(two_children_one_occ, replacee_rule, replacee_posn))
['44', '[[:REPLACEME]]']
>>> sorted(get_all_rule_replacement_strs(big_tree,replacee_rule, replacee_posn))
['44*4', '44*[[:REPLACEME]]', '[[:REPLACEME]]*4', '[[:REPLACEME]]*[[:REPLACEME]]']
"""
start = replacee_rule[0]
body = [fixup_terminal(elem) for elem in replacee_rule[1]]
if tree.is_terminal:
return [fixup_terminal(tree.payload)]
if not nt_in_tree(tree, start):
return [tree.derived_string()]
strings_per_child = [get_all_rule_replacement_strs(c, replacee_rule, replacee_posn) for c in tree.children]
if tree.payload == start:
tree_body = [fixup_terminal(c.payload) for c in tree.children]
if tree_body == body:
strings_per_child[replacee_posn].append(REPLACE_CONST)
lens_per_child = [len(spc) for spc in strings_per_child]
prod_size = muh_product(lens_per_child)
if prod_size > MAX_SAMPLES:
ret_list = sample_from_product(strings_per_child, MAX_SAMPLES, lens_per_child, prod_size)
else:
ret_list = [''.join(p) for p in itertools.product(*strings_per_child)]
return list(set(ret_list))
def get_strings_with_replacement(tree: ParseNode, nt_to_replace: str, replacement_strs: List[str]):
"""
Get all the possible strings derived from `tree` where all possible combinations
(not including the empty combo) of instances of `nt_to_replace` are replaced
with one of the replacement strings in `replacement_strs`. Does not combine different
strings from `replacement_strs` in the same instance.
>>> global MAX_SAMPLES; MAX_SAMPLES = 100
>>> left_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])]), ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> right_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> left_l2 = [ParseNode('t2', False, left_l3)]
>>> right_l2 = [ParseNode('t2', False, right_l3)]
>>> big_tree = ParseNode('t0', False, \
[ParseNode('t0', False, left_l2), \
ParseNode('t4', False, [ParseNode('"*"', True, [])]), \
ParseNode('t0', False, right_l2)] \
)
>>> sorted(get_strings_with_replacement(big_tree, 't2', {"3", "2"}))
['2*2', '2*4', '22*2', '22*4', '24*2', '24*4', '3*3', '3*4', '33*3', '33*4', '34*3', '34*4', '42*2', '42*4', '43*3', '43*4', '44*2', '44*3']
"""
global TIME_GENERATING_EXAMPLES_INTERNAL
s = time.time()
placeholder_strings = get_all_replacement_strings(tree, nt_to_replace)
placeholder_strings = [s for s in placeholder_strings if REPLACE_CONST in s]
ret_strings = []
for replacement_str in replacement_strs:
ret_strings.extend([ps.replace(REPLACE_CONST, replacement_str) for ps in placeholder_strings])
if len(ret_strings) > MAX_SAMPLES:
random.shuffle(ret_strings)
ret_strings = ret_strings[:MAX_SAMPLES]
TIME_GENERATING_EXAMPLES_INTERNAL += time.time() - s
return ret_strings
def get_strings_with_replacement_in_rule(tree: ParseNode, replacee_rule: Tuple[str, List[str]], replacee_posn: int, replacement_strs: Set[str]):
"""
Get all the possible strings derived from `tree` where all possible combinations
(not including the empty combo) of instances of the nonterminal at position
`replacee_posn` in `replacee_rule` are replaced with one of the replacement strings
in `replacement_strs`. Does not combine differentstrings from `replacement_strs`
in the same instance.
>>> left_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])]), ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> right_l3 = [ParseNode('t2', False, [ParseNode('"4"', True, [])])]
>>> left_l2 = [ParseNode('t2', False, left_l3)]
>>> right_l2 = [ParseNode('t2', False, right_l3)]
>>> big_tree = ParseNode('t0', False, \
[ParseNode('t0', False, left_l2), \
ParseNode('t4', False, [ParseNode('"*"', True, [])]), \
ParseNode('t0', False, right_l2)] \
)
>>> sorted(get_strings_with_replacement_in_rule(big_tree, ('t0', ['t2']), 0, {"3", "2"}))
['2*2', '2*4', '3*3', '3*4', '44*2', '44*3']
"""
global TIME_GENERATING_EXAMPLES_INTERNAL
s = time.time()
placeholder_strings = get_all_rule_replacement_strs(tree, replacee_rule, replacee_posn)
placeholder_strings = [s for s in placeholder_strings if REPLACE_CONST in s]
ret_strings = []
for replacement_str in replacement_strs:
ret_strings.extend([ps.replace(REPLACE_CONST, replacement_str) for ps in placeholder_strings])
if len(ret_strings) > MAX_SAMPLES:
random.shuffle(ret_strings)
ret_strings = ret_strings[:MAX_SAMPLES]
TIME_GENERATING_EXAMPLES_INTERNAL += time.time() - s
return ret_strings
if __name__ == "__main__":
import doctest
doctest.testmod()