Skip to content

Latest commit

 

History

History
668 lines (503 loc) · 25.4 KB

quickstart-microsoft-provider-format.md

File metadata and controls

668 lines (503 loc) · 25.4 KB
author description ms.author ms.date ms.service ms.subservice ms.topic no-loc title uid
bradben
Learn how to submit specific formatted quantum circuits with QIR, OpenQASM, or Pulser SDK to the Azure Quantum service.
brbenefield
08/09/2024
azure-quantum
qdk
how-to
Python
$$v
target
targets
Submit formatted quantum circuits
microsoft.quantum.quickstarts.computing.provider

How to submit specific formatted circuits to Azure Quantum

Learn how to use the azure-quantum Python package to submit circuits in specific formats to the Azure Quantum service. This article shows you how to submit circuits in the following formats:

For more information, see Quantum circuits.

Prerequisites

To run your circuits in a Notebook in Azure portal, you need:

  • An Azure account with an active subscription. If you don’t have an Azure account, register for free and sign up for a pay-as-you-go subscription.
  • An Azure Quantum workspace. For more information, see Create an Azure Quantum workspace.

To develop and run your circuits in Visual Studio Code, you also need:

Create a new Jupyter Notebook

You can create a notebook in VS Code or directly in the Azure Quantum portal.

  1. Log in to the Azure portal and select the workspace from the previous step.
  2. In the left blade, select Notebooks.
  3. Click My Notebooks and click Add New.
  4. In Kernel Type, select IPython.
  5. Type a name for the file, and click Create file.

When your new Notebook opens, it automatically creates the code for the first cell, based on your subscription and workspace information.

from azure.quantum import Workspace
workspace = Workspace ( 
    resource_id = "", # Your resource_id 
    location = ""  # Your workspace location (for example, "westus") 
)
  1. In VS Code, select View > Command palette and select Create: New Jupyter Notebook.

  2. To connect to the Azure Quantum service, your program will need the resource ID and the location of your Azure Quantum workspace.

    1. Log in to your Azure account, https://portal.azure.com,

    2. Select your Azure Quantum workspace, and navigate to Overview.

    3. Copy the parameters in the fields.

      :::image type="content" source="media/azure-portal-workspace-overview.png" alt-text="Screenshot of Visual Studio Code showing how to expand the overview pane of your Quantum Workspace." lightbox="media/azure-portal-workspace-overview.png":::

  3. In the first cell of your notebook, paste the values into the following Workspace constructor to create a workspace object that connects to your Azure Quantum workspace.

    from azure.quantum import Workspace
    workspace = Workspace ( 
        resource_id = "", # Add your resource_id 
        location = ""  # Add your workspace location (for example, "westus") 
    )

Submit QIR-formatted circuits

Quantum Intermediate Representation (QIR) is an intermediate representation which serves as a common interface between quantum programming languages/frameworks and targeted quantum computation platforms. For more information, see Quantum Intermediate Representation.

  1. Create the QIR circuit. For example, the following code creates a simple entanglement circuit.

    QIR_routine = """%Result = type opaque
    %Qubit = type opaque
    
    define void @ENTRYPOINT__main() #0 {
      call void @__quantum__qis__h__body(%Qubit* inttoptr (i64 0 to %Qubit*))
      call void @__quantum__qis__cx__body(%Qubit* inttoptr (i64 0 to %Qubit*), %Qubit* inttoptr (i64 1 to %Qubit*))
      call void @__quantum__qis__h__body(%Qubit* inttoptr (i64 2 to %Qubit*))
      call void @__quantum__qis__cz__body(%Qubit* inttoptr (i64 2 to %Qubit*), %Qubit* inttoptr (i64 0 to %Qubit*))
      call void @__quantum__qis__h__body(%Qubit* inttoptr (i64 2 to %Qubit*))
      call void @__quantum__qis__h__body(%Qubit* inttoptr (i64 3 to %Qubit*))
      call void @__quantum__qis__cz__body(%Qubit* inttoptr (i64 3 to %Qubit*), %Qubit* inttoptr (i64 1 to %Qubit*))
      call void @__quantum__qis__h__body(%Qubit* inttoptr (i64 3 to %Qubit*))
      call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 2 to %Qubit*), %Result* inttoptr (i64 0 to %Result*)) #1
      call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 3 to %Qubit*), %Result* inttoptr (i64 1 to %Result*)) #1
      call void @__quantum__rt__tuple_record_output(i64 2, i8* null)
      call void @__quantum__rt__result_record_output(%Result* inttoptr (i64 0 to %Result*), i8* null)
      call void @__quantum__rt__result_record_output(%Result* inttoptr (i64 1 to %Result*), i8* null)
      ret void
    }
    
    declare void @__quantum__qis__ccx__body(%Qubit*, %Qubit*, %Qubit*)
    declare void @__quantum__qis__cx__body(%Qubit*, %Qubit*)
    declare void @__quantum__qis__cy__body(%Qubit*, %Qubit*)
    declare void @__quantum__qis__cz__body(%Qubit*, %Qubit*)
    declare void @__quantum__qis__rx__body(double, %Qubit*)
    declare void @__quantum__qis__rxx__body(double, %Qubit*, %Qubit*)
    declare void @__quantum__qis__ry__body(double, %Qubit*)
    declare void @__quantum__qis__ryy__body(double, %Qubit*, %Qubit*)
    declare void @__quantum__qis__rz__body(double, %Qubit*)
    declare void @__quantum__qis__rzz__body(double, %Qubit*, %Qubit*)
    declare void @__quantum__qis__h__body(%Qubit*)
    declare void @__quantum__qis__s__body(%Qubit*)
    declare void @__quantum__qis__s__adj(%Qubit*)
    declare void @__quantum__qis__t__body(%Qubit*)
    declare void @__quantum__qis__t__adj(%Qubit*)
    declare void @__quantum__qis__x__body(%Qubit*)
    declare void @__quantum__qis__y__body(%Qubit*)
    declare void @__quantum__qis__z__body(%Qubit*)
    declare void @__quantum__qis__swap__body(%Qubit*, %Qubit*)
    declare void @__quantum__qis__mz__body(%Qubit*, %Result* writeonly) #1
    declare void @__quantum__rt__result_record_output(%Result*, i8*)
    declare void @__quantum__rt__array_record_output(i64, i8*)
    declare void @__quantum__rt__tuple_record_output(i64, i8*)
    
    attributes #0 = { "entry_point" "output_labeling_schema" "qir_profiles"="base_profile" "required_num_qubits"="4" "required_num_results"="2" }
    attributes #1 = { "irreversible" }
    
    ; module flags
    
    !llvm.module.flags = !{!0, !1, !2, !3}
    
    !0 = !{i32 1, !"qir_major_version", i32 1}
    !1 = !{i32 7, !"qir_minor_version", i32 0}
    !2 = !{i32 1, !"dynamic_qubit_management", i1 false}
    !3 = !{i32 1, !"dynamic_result_management", i1 false}
    """
  2. Create a submit_qir_job helper function to submit the QIR circuit to a target. Note that the input and output data formats are specified as qir.v1 and microsoft.quantum-results.v1, respectively.

    # Submit the job with proper input and output data formats
    def submit_qir_job(target, input, name, count=100):
        job = target.submit(
            input_data=input, 
            input_data_format="qir.v1",
            output_data_format="microsoft.quantum-results.v1",
            name=name,
            input_params = {
                "entryPoint": "ENTRYPOINT__main",
                "arguments": [],
                "count": count
                }
        )
    
        print(f"Queued job: {job.id}")
        job.wait_until_completed()
        print(f"Job completed with state: {job.details.status}")
        #if job.details.status == "Succeeded":
        result = job.get_results()
    
        return result
  3. Select a target and submit the QIR circuit to Azure Quantum. For example, to submit the QIR circuit to the IonQ simulator target:

    target = workspace.get_targets(name="ionq.simulator") 
    result = submit_qir_job(target, QIR_routine, "QIR routine")
    result
    {'Histogram': ['(0, 0)', 0.5, '(1, 1)', 0.5]}
    

Submit a circuit with a provider-specific format to Azure Quantum

Besides QIR languages, such as Q# or Qiskit, you can submit quantum circuits in provider-specific formats to Azure Quantum. Each provider has its own format for representing quantum circuits.

Submit a circuit to IonQ using JSON format

  1. Create a quantum circuit using the language-agnostic JSON format supported by the IonQ targets, as described in the IonQ API documentation. For example, the following sample creates a superposition between three qubits:

    circuit = {
        "qubits": 3,
        "circuit": [
            {
            "gate": "h",
            "target": 0
            },
            {
            "gate": "cnot",
            "control": 0,
            "target": 1
            },
            {
            "gate": "cnot",
            "control": 0,
            "target": 2
            },
        ]
    }
  2. Submit the circuit to the IonQ target. The following example uses the IonQ simulator, which returns a Job object.

    target = workspace.get_targets(name="ionq.simulator")
    job = target.submit(circuit)
  3. Wait until the job is complete and then fetch the results.

    results = job.get_results()
    print(results)
    .....
    {'duration': 8240356, 'histogram': {'0': 0.5, '7': 0.5}}
    
  4. You can then visualize the results using Matplotlib.

    import pylab as pl
    pl.rcParams["font.size"] = 16
    hist = {format(n, "03b"): 0 for n in range(8)}
    hist.update({format(int(k), "03b"): v for k, v in results["histogram"].items()})
    pl.bar(hist.keys(), hist.values())
    pl.ylabel("Probabilities")

    IonQ job output

  5. Before running a job on the QPU, you should estimate how much it will cost to run.

    [!NOTE] For the most current pricing details, see IonQ Pricing, or find your workspace and view pricing options in the "Provider" tab of your workspace via: aka.ms/aq/myworkspaces.

Submit a circuit to PASQAL using Pulser SDK

To submit a circuit to PASQAL, you can use the Pulser SDK to create pulse sequences and submit them to the PASQAL target.

Install the Pulser SDK

Pulser is a framework for composing, simulating and executing pulse sequences for neutral-atom quantum devices. It's designed by PASQAL as a pass-through to submit quantum experiments to their quantum processors. For more information, see Pulser documentation.

To submit the pulse sequences, first install the Pulser SDK packages:

try:
    import pulser
except ImportError:
    !pip -q install pulser

Create a quantum register

You need to define both a register and a layout before proceeding. The register specify where atoms will be arranged, while the layout specifies the positioning of traps necessary to capture and structure these atoms within the register.

For details on layouts, see the Pulser documentation.

  • First, you create a 'devices' object to import the PASQAL quantum computer target, Fresnel.

    from pulser_pasqal import PasqalCloud
    
    devices = PasqalCloud().fetch_available_devices()
    QPU = devices["FRESNEL"]
Pre-calibrated layouts

The device defines a list of pre-calibrated layouts. You can build your register out of one of these layouts.

This is the recommended option because it will improve the performance of the QPU.

  • Option 1: Define your register using pre-calibrated layouts

    Inspect the layouts available on Fresnel and define your register from this layout. Check the pulser documentation for more information on how to do that.

    Example:

    # let's say we are interested in the first layout available on the device
    layout = QPU.pre_calibrated_layouts[0]
    # Select traps 1, 3 and 5 of the layout to define the register
    traps = [1,3,5]
    reg = layout.define_register(*traps)
    # You can draw the resulting register to verify it matches your expectations
    reg.draw()
Arbitrary layouts

If pre-calibrated layouts do not satisfy the requirements of your experiment, you can create a custom layout.

For any given arbitrary register, a neutral-atom QPU will place traps according to the layout, which must then undergo calibration. Since each calibration requires time, it is generally advisable to reuse an existing calibrated layout whenever possible

  • Option 2: Automatically derive a layout from your defined register

    This option allows for the automatic generation of a layout based on a specified register. However, for large registers, this process may yield sub-optimal solutions due to limitations in the algorithm used to create the layout.

    qubits = {
        "q0": (0, 0),
        "q1": (0, 10),
        "q2": (8, 2),
        "q3": (1, 15),
        "q4": (-10, -3),
        "q5": (-8, 5),
    }
    
    reg = Register(qubits).with_automatic_layout(device) 
  • Option 3: Define your register using a manually defined layout

    • Create an arbitrary layout with 20 traps randomly positioned in a 2D plane
    import numpy as np
    
    # Generating random coordinates
    np.random.seed(301122)  # Keeps results consistent between runs
    traps = np.random.randint(0, 30, size=(20, 2))
    traps = traps - np.mean(traps, axis=0)
    # Creating the layout
    layout = RegisterLayout(traps, slug="random_20")
    • Define your register with specific trap IDs
    trap_ids = [4, 8, 19, 0]
    reg = layout.define_register(*trap_ids, qubit_ids=["a", "b", "c", "d"])
    reg.draw()

Write a pulse sequence

The neutral atoms are controlled with laser pulses. The Pulser SDK allows you to create pulse sequences to apply to the quantum register.

  1. First, you define the pulse sequence attributes by declaring the channels that will be used to control the atoms. To create a Sequence, you need to provide a Register instance along with the device where the sequence will be executed. For example, the following code declares one channel: ch0.

    [!NOTE] You can use the QPU = devices["FRESNEL"] device or import a virtual device from Pulser for more flexibility. The use of a VirtualDevice allows for sequence creation that is less constrained by device specifications, making it suitable for execution on an emulator. For more information, see Pulser documentation.

    from pulser import Sequence
    
    seq = Sequence(reg, QPU)
    # print the available channels for your sequence
    print(seq.available_channels)
    # Declare a channel. In this example we will be using `rydberg_global`
    seq.declare_channel("ch0", "rydberg_global")
  2. Add pulses to your sequence. To do so, you create and add pulses to the channels you declared. For example, the following code creates a pulse and adds it to channel ch0.

    from pulser import Pulse
    from pulser.waveforms import RampWaveform, BlackmanWaveform
    import numpy as np
    
    amp_wf = BlackmanWaveform(1000, np.pi)
    det_wf = RampWaveform(1000, -5, 5)
    pulse = Pulse(amp_wf, det_wf, 0)
    seq.add(pulse, "ch0")
    
    seq.draw()

    The following image shows the pulse sequence. :::image type="content" source="media/provider-format-pasqal-sequence.png" alt-text="Pulse sequence":::

Convert the sequence to a JSON string

To submit the pulse sequences, you need to convert the Pulser objects into a JSON string that can be used as input data.

import json

# Convert the sequence to a JSON string
def prepare_input_data(seq):
    input_data = {}
    input_data["sequence_builder"] = json.loads(seq.to_abstract_repr())
    to_send = json.dumps(input_data)
    return to_send

Submit the pulse sequence to PASQAL target

  1. First, you need to set the proper input and output data formats. For example, the following code sets the input data format to pasqal.pulser.v1 and the output data format to pasqal.pulser-results.v1.

    # Submit the job with proper input and output data formats
    def submit_job(target, seq, shots):
        job = target.submit(
            input_data=prepare_input_data(seq), # Take the JSON string previously defined as input data
            input_data_format="pasqal.pulser.v1",
            output_data_format="pasqal.pulser-results.v1",
            name="PASQAL sequence",
            shots=shots # Number of shots
        )
    
        print(f"Queued job: {job.id}")
        return job

    [!NOTE] The time required to run a job on the QPU depends on current queue times. You can view the average queue time for a target by selecting the Providers blade of your workspace.

  2. Submit the program to PASQAL. Before submitting your code to real quantum hardware, you can test your code using the emulator pasqal.sim.emu-tn as a target.

    target = workspace.get_targets(name="pasqal.sim.emu-tn") # Change to "pasqal.qpu.fresnel" to use Fresnel QPU
    job = submit_job(target, seq, 10)
    
    job.wait_until_completed()
    print(f"Job completed with state: {job.details.status}")
    result = job.get_results()
    print(result)
    {
        "1000000": 3, 
        "0010000": 1, 
        "0010101": 1
    }
    

Submit a circuit to Quantinuum using OpenQASM

  1. Create a quantum circuit in the OpenQASM representation. For example, the following example creates a Teleportation circuit:

    circuit = """OPENQASM 2.0;
    include "qelib1.inc";
    qreg q[3];
    creg c0[3];
    h q[0];
    cx q[0], q[1];
    cx q[1], q[2];
    measure q[0] -> c0[0];
    measure q[1] -> c0[1];
    measure q[2] -> c0[2];
    """

    Optionally, you can load the circuit from a file:

    with open("my_teleport.qasm", "r") as f:
        circuit = f.read()
  2. Submit the circuit to the Quantinuum target. The following example uses the Quantinuum API validator, which returns a Job object.

    target = workspace.get_targets(name="quantinuum.sim.h1-1sc")
    job = target.submit(circuit, shots=500)
  3. Wait until the job is complete and then fetch the results.

    results = job.get_results()
    print(results)
    ........
    {'c0': ['000',
    '000',
    '000',
    '000',
    '000',
    '000',
    '000',
    ...
    ]}
    
  4. You can then visualize the results using Matplotlib.

    import pylab as pl
    pl.hist(results["c0"])
    pl.ylabel("Counts")
    pl.xlabel("Bitstring")

    Quantinuum job output

    Looking at the histogram, you may notice that the random number generator returned 0 every time, which is not very random. This is because that, while the API Validator ensures that your code will run successfully on Quantinuum hardware, it also returns 0 for every quantum measurement. For a true random number generator, you need to run your circuit on quantum hardware.

  5. Before running a job on the QPU, you should estimate how much it will cost to run.

    [!NOTE] For the most current pricing details, see Azure Quantum pricing, or find your workspace and view pricing options in the "Provider" tab of your workspace via: aka.ms/aq/myworkspaces.

Submit a circuit to Rigetti using Quil

The easiest way to submit Quil jobs is using the pyquil-for-azure-quantum package, as it allows you to use the tools and documentation of the pyQuil library. Without this package, pyQuil can be used to construct Quil programs but not to submit them to Azure Quantum.

You can also construct Quil programs manually and submit them using the azure-quantum package directly.

  1. First, load the required imports.

    from pyquil.gates import CNOT, MEASURE, H
    from pyquil.quil import Program
    from pyquil.quilbase import Declare
    from pyquil_for_azure_quantum import get_qpu, get_qvm
  2. Use the get_qvm or get_qpu function to get a connection to the QVM or QPU.

    qc = get_qvm()  # For simulation
    # qc = get_qpu("Ankaa-9Q-3") for submitting to a QPU
  3. Create a Quil program. Any valid Quil program is accepted, but the readout must be named ro.

    program = Program(
        Declare("ro", "BIT", 2),
        H(0),
        CNOT(0, 1),
        MEASURE(0, ("ro", 0)),
        MEASURE(1, ("ro", 1)),
    ).wrap_in_numshots_loop(5)
    
    # Optionally pass to_native_gates=False to .compile() to skip the compilation stage
    
    result = qc.run(qc.compile(program))
    data_per_shot = result.readout_data["ro"]
  4. Here, data_per_shot is a numpy array, so you can use numpy methods.

    assert data_per_shot.shape == (5, 2)
    ro_data_first_shot = data_per_shot[0]
    assert ro_data_first_shot[0] == 1 or ro_data_first_shot[0] == 0
  5. Print out all the data.

    print("Data from 'ro' register:")
    for i, shot in enumerate(data_per_shot):
        print(f"Shot {i}: {shot}")
  1. First, load the required imports.

    from azure.quantum import Workspace
    from azure.quantum.target.rigetti import Result, Rigetti, RigettiTarget, InputParams
  2. Create a target object and select the name of the Rigetti's target. For example, the following code selects the QVM target.

    target = Rigetti(
        workspace=workspace,
        name=RigettiTarget.QVM,
    )
  3. Create a Quil program. Any valid Quil program is accepted, but the readout must be named ro.

    readout = "ro"
    bell_state_quil = f"""
    DECLARE {readout} BIT[2]
    
    H 0
    CNOT 0 1
    
    MEASURE 0 {readout}[0]
    MEASURE 1 {readout}[1]
    """
    
    num_shots = 5
    job = target.submit(
        input_data=bell_state_quil, 
        name="bell state", 
        shots=100, 
        input_params=InputParams(skip_quilc=False)
    )
    
    print(f"Job completed with state: {job.details.status}")
    result = Result(job)  # This throws an exception if the job failed
  4. You can index a Result with the name of the readout. In this case, ro. Here, data_per_shot is a list of length num_shots, each entry is a list containing the data for the register for that shot.

    data_per_shot = result[readout]
    
    ro_data_first_shot = data_per_shot[0]

    In this case, because the type of the register is BIT, the type will be integer and the value either 0 or 1.

    assert isinstance(ro_data_first_shot[0], int)
    assert ro_data_first_shot[0] == 1 or ro_data_first_shot[0] == 0
  5. Print out all the data

    print(f"Data from '{readout}' register:")
    for i, shot in enumerate(data_per_shot):
        print(f"Shot {i}: {shot}")

Important

Submitting multiple circuits on a single job is currently not supported. As a workaround you can call the backend.run method to submit each circuit asynchronously, then fetch the results of each job. For example:

jobs = []
for circuit in circuits:
    jobs.append(backend.run(circuit, shots=N))

results = []
for job in jobs:
    results.append(job.result())

Related content

  • Submit a circuit with Qiskit to Azure Quantum.
  • Submit a circuit with Cirq to Azure Quantum.