Skip to content

Latest commit

 

History

History
92 lines (70 loc) · 5.35 KB

resource-estimator-batching.md

File metadata and controls

92 lines (70 loc) · 5.35 KB
author description ms.date ms.author ms.service ms.subservice ms.topic no-loc title uid
SoniaLopezBravo
Learn how to run multiple configurations of target parameters and compare them using the Resource Estimator.
10/16/2024
sonialopez
azure-quantum
qdk
how-to
Q#
$$v
target
targets
Compare Multiple Configurations with the Resource Estimator
microsoft.quantum.resource-estimator-batching

How to compare multiple configurations of target parameters with the Resource Estimator

In this article, you learn how to run multiple configurations of target parameters at the same time and compare them using the Azure Quantum Resource Estimator.

The Azure Quantum Resource Estimator allows you to run multiple configurations of target parameters as a single job to avoid rerunning multiple jobs on the same quantum program.

One job may consists of multiple items or configurations of target parameters. Some scenarios where you may want to run multiple items as a single job:

  • Run multiple target parameters with same operation arguments in all items.
  • Run multiple target parameters with different operation arguments in all items.
  • Easily compare multiple results in a tabular format.
  • Easily compare multiple results in a chart.

For information about how to run the Resource Estimator, see Different ways to use the Resource Estimator.

Prerequisites

Running multiple configurations with the Resource Estimator

Running multiple configurations of target parameters as a single job in Q# can be done in a Jupyter Notebook in VS Code. You can pass a list of target parameters to the params parameter of the qsharp.estimate function.

The following example shows how to run two configurations of target parameters as a single job. The first configuration uses the default target parameters, and the second configuration uses the qubit_maj_ns_e6 qubit parameter and the floquet_code QEC scheme.

In the same Jupyter Notebook of your Q# program, add a new cell and run the following code:

result_batch = qsharp.estimate("RunProgram()", params=
                [{}, # Default parameters
                {
                    "qubitParams": {
                        "name": "qubit_maj_ns_e6"
                    },
                    "qecScheme": {
                        "name": "floquet_code"
                    }
                }])
result_batch.summary_data_frame(labels=["Gate-based ns, 10⁻³", "Majorana ns, 10⁻⁶"])

You can also construct a list of estimation target parameters using the EstimatorParams class. The following code shows how to batch six configurations of target parameters as a single job.

from qsharp.estimator import EstimatorParams, QubitParams, QECScheme

labels = ["Gate-based µs, 10⁻³", "Gate-based µs, 10⁻⁴", "Gate-based ns, 10⁻³", "Gate-based ns, 10⁻⁴", "Majorana ns, 10⁻⁴", "Majorana ns, 10⁻⁶"]

params = EstimatorParams(num_items=6)
params.error_budget = 0.333
params.items[0].qubit_params.name = QubitParams.GATE_US_E3
params.items[1].qubit_params.name = QubitParams.GATE_US_E4
params.items[2].qubit_params.name = QubitParams.GATE_NS_E3
params.items[3].qubit_params.name = QubitParams.GATE_NS_E4
params.items[4].qubit_params.name = QubitParams.MAJ_NS_E4
params.items[4].qec_scheme.name = QECScheme.FLOQUET_CODE
params.items[5].qubit_params.name = QubitParams.MAJ_NS_E6
params.items[5].qec_scheme.name = QECScheme.FLOQUET_CODE

qsharp.estimate("RunProgram()", params=params).summary_data_frame(labels=labels)

Note

If you run into any issue while working with the Resource Estimator, check out the Troubleshooting page, or contact AzureQuantumInfo@microsoft.com.

Related content

  • Understand the results of the Resource Estimator
  • Use different SDKs and IDEs with Resource Estimator
  • Customize resource estimates to machine characteristics
  • Tutorial: Estimate the resources of a quantum chemistry problem