diff --git a/RashaAlbezreh.ipynb b/RashaAlbezreh.ipynb new file mode 100644 index 0000000..707f8ef --- /dev/null +++ b/RashaAlbezreh.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":2,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6540,"status":"ok","timestamp":1654751404693,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"WXt-q2ZK_MaP","outputId":"8514f781-c451-4cf2-f870-d98b642cc009"},"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}],"source":["from google.colab import drive\n","drive.mount('/content/drive')"]},{"cell_type":"code","execution_count":3,"metadata":{"executionInfo":{"elapsed":2206,"status":"ok","timestamp":1654751410104,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"BfKD7mHh_ZuX"},"outputs":[],"source":["import pandas as pd\n","import numpy as np\n","import seaborn as sns\n","from sklearn.impute import SimpleImputer\n","from sklearn.preprocessing import OneHotEncoder\n","from sklearn.preprocessing import LabelEncoder\n","from sklearn.linear_model import Ridge\n","%matplotlib inline\n","import matplotlib.pyplot as plt\n","from sklearn import linear_model\n","from sklearn.metrics import mean_squared_error\n","from sklearn.preprocessing import MinMaxScaler\n","from sklearn.metrics import accuracy_score \n","from sklearn.metrics import mean_absolute_error\n","from sklearn.tree import DecisionTreeRegressor\n","from sklearn.ensemble import RandomForestRegressor\n","from sklearn.preprocessing import PolynomialFeatures\n","from sklearn.linear_model import LinearRegression\n","from sklearn.preprocessing import StandardScaler\n","\n","from sklearn.svm import SVR\n","pd.options.display.max_columns = 110"]},{"cell_type":"code","execution_count":4,"metadata":{"executionInfo":{"elapsed":2185,"status":"ok","timestamp":1654751416793,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"KA72fcJYEhj8"},"outputs":[],"source":["df_test = pd.read_csv('https://github.com/rashrosha/rihal-challenges/raw/2749ee878db5bd31bc7ef504f42aa43d833d0d1e/data_science/data_test.csv')\n","df_train = pd.read_csv('https://github.com/rashrosha/rihal-challenges/raw/2749ee878db5bd31bc7ef504f42aa43d833d0d1e/data_science/data_train.csv')"]},{"cell_type":"code","execution_count":5,"metadata":{"id":"HeQp7CXYZ491","colab":{"base_uri":"https://localhost:8080/","height":488},"executionInfo":{"status":"ok","timestamp":1654751420588,"user_tz":-180,"elapsed":354,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"15255eab-78e0-49b8-a5a6-277f7def4952"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" manufacturer_name transmission color odometer_value year_produced \\\n","0 Volkswagen automatic black 130000 2016 \n","1 Renault manual brown 149000 2012 \n","2 Kia automatic brown 110000 2014 \n","3 Opel automatic other 255100 2007 \n","4 Mazda manual blue 650000 1999 \n","... ... ... ... ... ... \n","49995 Opel manual white 380000 1996 \n","49996 Volkswagen manual green 311213 1994 \n","49997 Fiat manual red 250000 1999 \n","49998 BMW automatic grey 615000 1998 \n","49999 Volvo automatic other 485000 2002 \n","\n"," engine_fuel engine_type engine_capacity body_type has_warranty \\\n","0 diesel diesel 1.6 universal False \n","1 gasoline gasoline 1.6 sedan False \n","2 gasoline gasoline 1.6 hatchback False \n","3 gasoline gasoline 1.8 hatchback False \n","4 gasoline gasoline 2.0 sedan False \n","... ... ... ... ... ... \n","49995 gasoline gasoline 1.6 sedan False \n","49996 gas gasoline 1.8 universal False \n","49997 gasoline gasoline 1.8 coupe False \n","49998 diesel diesel 2.5 universal False \n","49999 diesel diesel 2.4 sedan False \n","\n"," ownership type_of_drive is_exchangeable number_of_photos \\\n","0 owned front True 17 \n","1 owned front False 9 \n","2 owned front False 5 \n","3 owned front False 10 \n","4 owned front True 5 \n","... ... ... ... ... \n","49995 owned front False 2 \n","49996 owned front False 15 \n","49997 owned front False 7 \n","49998 owned rear True 10 \n","49999 owned front True 6 \n","\n"," number_of_maintenance duration_listed price_usd \n","0 38 67 13150.0 \n","1 3 100 7500.0 \n","2 10 91 12200.0 \n","3 4 91 4950.0 \n","4 7 62 3000.0 \n","... ... ... ... \n","49995 2 59 3500.0 \n","49996 7 29 2850.0 \n","49997 13 108 2000.0 \n","49998 26 64 5080.0 \n","49999 2 58 6800.0 \n","\n","[50000 rows x 17 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
manufacturer_nametransmissioncolorodometer_valueyear_producedengine_fuelengine_typeengine_capacitybody_typehas_warrantyownershiptype_of_driveis_exchangeablenumber_of_photosnumber_of_maintenanceduration_listedprice_usd
0Volkswagenautomaticblack1300002016dieseldiesel1.6universalFalseownedfrontTrue17386713150.0
1Renaultmanualbrown1490002012gasolinegasoline1.6sedanFalseownedfrontFalse931007500.0
2Kiaautomaticbrown1100002014gasolinegasoline1.6hatchbackFalseownedfrontFalse5109112200.0
3Opelautomaticother2551002007gasolinegasoline1.8hatchbackFalseownedfrontFalse104914950.0
4Mazdamanualblue6500001999gasolinegasoline2.0sedanFalseownedfrontTrue57623000.0
......................................................
49995Opelmanualwhite3800001996gasolinegasoline1.6sedanFalseownedfrontFalse22593500.0
49996Volkswagenmanualgreen3112131994gasgasoline1.8universalFalseownedfrontFalse157292850.0
49997Fiatmanualred2500001999gasolinegasoline1.8coupeFalseownedfrontFalse7131082000.0
49998BMWautomaticgrey6150001998dieseldiesel2.5universalFalseownedrearTrue1026645080.0
49999Volvoautomaticother4850002002dieseldiesel2.4sedanFalseownedfrontTrue62586800.0
\n","

50000 rows × 17 columns

\n","
\n"," \n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":5}],"source":["\n","df_train"]},{"cell_type":"code","source":["#to know the number of the missing value in the training dataset,here we have 15 missing values in engine_capacity\n","df_train['engine_type']"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Qek01V1PoEEm","executionInfo":{"status":"ok","timestamp":1654751424689,"user_tz":-180,"elapsed":558,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"b0af3554-e515-4535-9231-aa3c7c2f9108"},"execution_count":6,"outputs":[{"output_type":"execute_result","data":{"text/plain":["0 diesel\n","1 gasoline\n","2 gasoline\n","3 gasoline\n","4 gasoline\n"," ... \n","49995 gasoline\n","49996 gasoline\n","49997 gasoline\n","49998 diesel\n","49999 diesel\n","Name: engine_type, Length: 50000, dtype: object"]},"metadata":{},"execution_count":6}]},{"cell_type":"code","execution_count":7,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":329,"status":"ok","timestamp":1654751428570,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"LCIalJZBZ5YX","outputId":"c3e7efea-8d27-4380-acdc-c1b9b6b61f89"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["manufacturer_name 0\n","transmission 0\n","color 0\n","odometer_value 0\n","year_produced 0\n","engine_fuel 0\n","engine_type 0\n","engine_capacity 15\n","body_type 0\n","has_warranty 0\n","ownership 0\n","type_of_drive 0\n","is_exchangeable 0\n","number_of_photos 0\n","number_of_maintenance 0\n","duration_listed 0\n","price_usd 0\n","dtype: int64"]},"metadata":{},"execution_count":7}],"source":["df_train.isnull().sum()"]},{"cell_type":"code","execution_count":8,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":333,"status":"ok","timestamp":1654751431893,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"k1nkol-uagO2","outputId":"c5720fe2-f389-41cd-b117-0509f26179fe"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["manufacturer_name 0\n","transmission 0\n","color 0\n","odometer_value 0\n","year_produced 0\n","engine_fuel 0\n","engine_type 0\n","engine_capacity 5\n","body_type 0\n","has_warranty 0\n","ownership 0\n","type_of_drive 0\n","is_exchangeable 0\n","number_of_photos 0\n","number_of_maintenance 0\n","duration_listed 0\n","price_usd 0\n","dtype: int64"]},"metadata":{},"execution_count":8}],"source":["#we have 5 missing values in engine_capacity in testing dataset\n","df_test.isnull().sum()"]},{"cell_type":"code","execution_count":9,"metadata":{"executionInfo":{"elapsed":654,"status":"ok","timestamp":1654751435728,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"P9I-pOVOaywP"},"outputs":[],"source":["#to solve the problem of missing value is imputer,we use the known value to calculate the unknown value\n","#we have multiple chooses for strategy:mean,median,most frequent\n","#the default for missing values is nan(not a number),sometimes it will be integer like -1 according to the data\n","#create an object from imputer\n","imputer = SimpleImputer(missing_values=np.nan, strategy='mean',verbose=0)"]},{"cell_type":"code","execution_count":10,"metadata":{"executionInfo":{"elapsed":343,"status":"ok","timestamp":1654751438919,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"9jQjspr3dMUG"},"outputs":[],"source":["#to fit the imputer on the data of engine_capacity column\n","imputer = imputer.fit(df_train[['engine_capacity']])\n","#to transform the missing values in this column\n","df_train[['engine_capacity']]=imputer.transform(df_train[['engine_capacity']])"]},{"cell_type":"code","execution_count":11,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":368,"status":"ok","timestamp":1654751442383,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"LSrYMFPgeIDl","outputId":"c24aea85-d3e8-4bc5-9a78-00b05853823e"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["manufacturer_name 0\n","transmission 0\n","color 0\n","odometer_value 0\n","year_produced 0\n","engine_fuel 0\n","engine_type 0\n","engine_capacity 0\n","body_type 0\n","has_warranty 0\n","ownership 0\n","type_of_drive 0\n","is_exchangeable 0\n","number_of_photos 0\n","number_of_maintenance 0\n","duration_listed 0\n","price_usd 0\n","dtype: int64"]},"metadata":{},"execution_count":11}],"source":["#check for the result\n","df_train.isnull().sum()"]},{"cell_type":"code","execution_count":12,"metadata":{"executionInfo":{"elapsed":24,"status":"ok","timestamp":1654751445463,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"YSk5zSC-e3u6"},"outputs":[],"source":["#to fit the imputer on the data of engine_capacity column in testing data\n","imputer = imputer.fit(df_test[['engine_capacity']])\n","#to transform the missing values in this column\n","df_test[['engine_capacity']]=imputer.transform(df_test[['engine_capacity']])"]},{"cell_type":"code","execution_count":13,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":365,"status":"ok","timestamp":1654751448784,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"n9QkiDB2fGc9","outputId":"30340b9e-d7b8-42f6-c4d4-cfd589c858c9"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["manufacturer_name 0\n","transmission 0\n","color 0\n","odometer_value 0\n","year_produced 0\n","engine_fuel 0\n","engine_type 0\n","engine_capacity 0\n","body_type 0\n","has_warranty 0\n","ownership 0\n","type_of_drive 0\n","is_exchangeable 0\n","number_of_photos 0\n","number_of_maintenance 0\n","duration_listed 0\n","price_usd 0\n","dtype: int64"]},"metadata":{},"execution_count":13}],"source":["#check for the result\n","df_test.isnull().sum()"]},{"cell_type":"code","execution_count":14,"metadata":{"executionInfo":{"elapsed":402,"status":"ok","timestamp":1654751452257,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"7zVOHiwihicw"},"outputs":[],"source":["#as we know the input to the model should be numbers so we have to do encoding (convert strings to ones and zeros)\n","#we use label incoder for coulmns that has two categories to be 1 or 0\n","label_encoder=LabelEncoder()"]},{"cell_type":"code","execution_count":15,"metadata":{"executionInfo":{"elapsed":328,"status":"ok","timestamp":1654751454832,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"CGMBNphPh8GY","colab":{"base_uri":"https://localhost:8080/","height":488},"outputId":"28f2c031-743f-4af4-d87b-19a623f1436f"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" manufacturer_name transmission color odometer_value year_produced \\\n","0 Volkswagen 0 black 130000 2016 \n","1 Renault 1 brown 149000 2012 \n","2 Kia 0 brown 110000 2014 \n","3 Opel 0 other 255100 2007 \n","4 Mazda 1 blue 650000 1999 \n","... ... ... ... ... ... \n","49995 Opel 1 white 380000 1996 \n","49996 Volkswagen 1 green 311213 1994 \n","49997 Fiat 1 red 250000 1999 \n","49998 BMW 0 grey 615000 1998 \n","49999 Volvo 0 other 485000 2002 \n","\n"," engine_fuel engine_type engine_capacity body_type has_warranty \\\n","0 diesel diesel 1.6 universal 0 \n","1 gasoline gasoline 1.6 sedan 0 \n","2 gasoline gasoline 1.6 hatchback 0 \n","3 gasoline gasoline 1.8 hatchback 0 \n","4 gasoline gasoline 2.0 sedan 0 \n","... ... ... ... ... ... \n","49995 gasoline gasoline 1.6 sedan 0 \n","49996 gas gasoline 1.8 universal 0 \n","49997 gasoline gasoline 1.8 coupe 0 \n","49998 diesel diesel 2.5 universal 0 \n","49999 diesel diesel 2.4 sedan 0 \n","\n"," ownership type_of_drive is_exchangeable number_of_photos \\\n","0 owned front 1 17 \n","1 owned front 0 9 \n","2 owned front 0 5 \n","3 owned front 0 10 \n","4 owned front 1 5 \n","... ... ... ... ... \n","49995 owned front 0 2 \n","49996 owned front 0 15 \n","49997 owned front 0 7 \n","49998 owned rear 1 10 \n","49999 owned front 1 6 \n","\n"," number_of_maintenance duration_listed price_usd \n","0 38 67 13150.0 \n","1 3 100 7500.0 \n","2 10 91 12200.0 \n","3 4 91 4950.0 \n","4 7 62 3000.0 \n","... ... ... ... \n","49995 2 59 3500.0 \n","49996 7 29 2850.0 \n","49997 13 108 2000.0 \n","49998 26 64 5080.0 \n","49999 2 58 6800.0 \n","\n","[50000 rows x 17 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
manufacturer_nametransmissioncolorodometer_valueyear_producedengine_fuelengine_typeengine_capacitybody_typehas_warrantyownershiptype_of_driveis_exchangeablenumber_of_photosnumber_of_maintenanceduration_listedprice_usd
0Volkswagen0black1300002016dieseldiesel1.6universal0ownedfront117386713150.0
1Renault1brown1490002012gasolinegasoline1.6sedan0ownedfront0931007500.0
2Kia0brown1100002014gasolinegasoline1.6hatchback0ownedfront05109112200.0
3Opel0other2551002007gasolinegasoline1.8hatchback0ownedfront0104914950.0
4Mazda1blue6500001999gasolinegasoline2.0sedan0ownedfront157623000.0
......................................................
49995Opel1white3800001996gasolinegasoline1.6sedan0ownedfront022593500.0
49996Volkswagen1green3112131994gasgasoline1.8universal0ownedfront0157292850.0
49997Fiat1red2500001999gasolinegasoline1.8coupe0ownedfront07131082000.0
49998BMW0grey6150001998dieseldiesel2.5universal0ownedrear11026645080.0
49999Volvo0other4850002002dieseldiesel2.4sedan0ownedfront162586800.0
\n","

50000 rows × 17 columns

\n","
\n"," \n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":15}],"source":["#we apply it on the columns that have two categories in training dataset\n","df_train['transmission']= label_encoder.fit_transform(df_train['transmission'])\n","df_train['has_warranty']= label_encoder.fit_transform(df_train['has_warranty'])\n","df_train['is_exchangeable']= label_encoder.fit_transform(df_train['is_exchangeable'])\n","df_train"]},{"cell_type":"code","execution_count":16,"metadata":{"executionInfo":{"elapsed":339,"status":"ok","timestamp":1654751459058,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"5fNnaAWbje6h","colab":{"base_uri":"https://localhost:8080/","height":488},"outputId":"316410df-e0e4-4df0-e60a-dd84ae4c740e"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" manufacturer_name transmission color odometer_value year_produced \\\n","0 BMW 0 white 115000 2012 \n","1 Mercedes-Benz 1 other 500000 1999 \n","2 Fiat 1 silver 210000 2002 \n","3 Mitsubishi 0 violet 294000 2000 \n","4 Opel 0 blue 244000 1998 \n","... ... ... ... ... ... \n","26995 Volkswagen 1 violet 92000 1993 \n","26996 Infiniti 0 silver 135185 2009 \n","26997 Volkswagen 1 white 450000 1993 \n","26998 Audi 1 grey 275000 2006 \n","26999 Volkswagen 1 red 500000 1991 \n","\n"," engine_fuel engine_type engine_capacity body_type has_warranty \\\n","0 gasoline gasoline 4.4 sedan 0 \n","1 diesel diesel 2.2 sedan 0 \n","2 gasoline gasoline 1.2 hatchback 0 \n","3 diesel diesel 3.2 suv 0 \n","4 gasoline gasoline 1.6 sedan 0 \n","... ... ... ... ... ... \n","26995 gasoline gasoline 2.0 hatchback 0 \n","26996 gas gasoline 3.5 sedan 0 \n","26997 gasoline gasoline 1.8 sedan 0 \n","26998 gasoline gasoline 2.0 sedan 0 \n","26999 diesel diesel 1.9 hatchback 0 \n","\n"," ownership type_of_drive is_exchangeable number_of_photos \\\n","0 owned all 1 32 \n","1 owned rear 0 7 \n","2 owned front 1 16 \n","3 owned all 1 10 \n","4 owned front 0 9 \n","... ... ... ... ... \n","26995 owned front 0 13 \n","26996 owned all 0 8 \n","26997 owned front 0 6 \n","26998 owned front 0 7 \n","26999 owned front 0 9 \n","\n"," number_of_maintenance duration_listed price_usd \n","0 104 146 20450.0 \n","1 9 147 2600.0 \n","2 7 27 2900.0 \n","3 2 48 7500.0 \n","4 10 116 2200.0 \n","... ... ... ... \n","26995 11 65 3333.0 \n","26996 2 85 8500.0 \n","26997 1 35 1100.0 \n","26998 28 115 6300.0 \n","26999 2 15 1550.0 \n","\n","[27000 rows x 17 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
manufacturer_nametransmissioncolorodometer_valueyear_producedengine_fuelengine_typeengine_capacitybody_typehas_warrantyownershiptype_of_driveis_exchangeablenumber_of_photosnumber_of_maintenanceduration_listedprice_usd
0BMW0white1150002012gasolinegasoline4.4sedan0ownedall13210414620450.0
1Mercedes-Benz1other5000001999dieseldiesel2.2sedan0ownedrear0791472600.0
2Fiat1silver2100002002gasolinegasoline1.2hatchback0ownedfront1167272900.0
3Mitsubishi0violet2940002000dieseldiesel3.2suv0ownedall1102487500.0
4Opel0blue2440001998gasolinegasoline1.6sedan0ownedfront09101162200.0
......................................................
26995Volkswagen1violet920001993gasolinegasoline2.0hatchback0ownedfront01311653333.0
26996Infiniti0silver1351852009gasgasoline3.5sedan0ownedall082858500.0
26997Volkswagen1white4500001993gasolinegasoline1.8sedan0ownedfront061351100.0
26998Audi1grey2750002006gasolinegasoline2.0sedan0ownedfront07281156300.0
26999Volkswagen1red5000001991dieseldiesel1.9hatchback0ownedfront092151550.0
\n","

27000 rows × 17 columns

\n","
\n"," \n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":16}],"source":["#we apply it on the columns that have two categories in testing dataset\n","df_test['transmission']= label_encoder.fit_transform(df_test['transmission'])\n","df_test['has_warranty']= label_encoder.fit_transform(df_test['has_warranty'])\n","df_test['is_exchangeable']= label_encoder.fit_transform(df_test['is_exchangeable'])\n","df_test"]},{"cell_type":"code","execution_count":17,"metadata":{"executionInfo":{"elapsed":966,"status":"ok","timestamp":1654751463976,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"dLcs9Wo5jyvU","colab":{"base_uri":"https://localhost:8080/","height":488},"outputId":"2bcad606-ae41-4045-8dfd-0007160d546e"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" manufacturer_name transmission color odometer_value year_produced \\\n","0 0.0 0 1.0 130000 2016 \n","1 0.0 1 0.0 149000 2012 \n","2 0.0 0 0.0 110000 2014 \n","3 0.0 0 0.0 255100 2007 \n","4 0.0 1 0.0 650000 1999 \n","... ... ... ... ... ... \n","49995 0.0 1 0.0 380000 1996 \n","49996 0.0 1 0.0 311213 1994 \n","49997 0.0 1 0.0 250000 1999 \n","49998 0.0 0 0.0 615000 1998 \n","49999 0.0 0 0.0 485000 2002 \n","\n"," engine_fuel engine_type engine_capacity body_type has_warranty \\\n","0 1.0 1.0 1.6 0.0 0 \n","1 0.0 0.0 1.6 0.0 0 \n","2 0.0 0.0 1.6 0.0 0 \n","3 0.0 0.0 1.8 0.0 0 \n","4 0.0 0.0 2.0 0.0 0 \n","... ... ... ... ... ... \n","49995 0.0 0.0 1.6 0.0 0 \n","49996 0.0 0.0 1.8 0.0 0 \n","49997 0.0 0.0 1.8 0.0 0 \n","49998 1.0 1.0 2.5 0.0 0 \n","49999 1.0 1.0 2.4 0.0 0 \n","\n"," ownership type_of_drive is_exchangeable number_of_photos \\\n","0 0.0 0.0 1 17 \n","1 0.0 0.0 0 9 \n","2 0.0 0.0 0 5 \n","3 0.0 0.0 0 10 \n","4 0.0 0.0 1 5 \n","... ... ... ... ... \n","49995 0.0 0.0 0 2 \n","49996 0.0 0.0 0 15 \n","49997 0.0 0.0 0 7 \n","49998 0.0 0.0 1 10 \n","49999 0.0 0.0 1 6 \n","\n"," number_of_maintenance duration_listed price_usd \n","0 38 67 13150.0 \n","1 3 100 7500.0 \n","2 10 91 12200.0 \n","3 4 91 4950.0 \n","4 7 62 3000.0 \n","... ... ... ... \n","49995 2 59 3500.0 \n","49996 7 29 2850.0 \n","49997 13 108 2000.0 \n","49998 26 64 5080.0 \n","49999 2 58 6800.0 \n","\n","[50000 rows x 17 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
manufacturer_nametransmissioncolorodometer_valueyear_producedengine_fuelengine_typeengine_capacitybody_typehas_warrantyownershiptype_of_driveis_exchangeablenumber_of_photosnumber_of_maintenanceduration_listedprice_usd
00.001.013000020161.01.01.60.000.00.0117386713150.0
10.010.014900020120.00.01.60.000.00.00931007500.0
20.000.011000020140.00.01.60.000.00.005109112200.0
30.000.025510020070.00.01.80.000.00.00104914950.0
40.010.065000019990.00.02.00.000.00.0157623000.0
......................................................
499950.010.038000019960.00.01.60.000.00.0022593500.0
499960.010.031121319940.00.01.80.000.00.00157292850.0
499970.010.025000019990.00.01.80.000.00.007131082000.0
499980.000.061500019981.01.02.50.000.00.011026645080.0
499990.000.048500020021.01.02.40.000.00.0162586800.0
\n","

50000 rows × 17 columns

\n","
\n"," \n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":17}],"source":["# for the columns which has more than two categories we use OneHotEncoder \n","#we create an object from OneHotEncoder\n","encoder=OneHotEncoder(sparse=False)\n","#we apply it on the columns that have more than two categories in training dataset\n","df_train['manufacturer_name']=encoder.fit_transform(df_train[['manufacturer_name']])\n","df_train['engine_fuel']= encoder.fit_transform(df_train[['engine_fuel']])\n","df_train['color']=encoder.fit_transform(df_train[['color']])\n","df_train['ownership']= encoder.fit_transform(df_train[['ownership']])\n","df_train['engine_type']= encoder.fit_transform(df_train[['engine_type']])\n","df_train['body_type']=encoder.fit_transform(df_train[['body_type']])\n","df_train['type_of_drive']=encoder.fit_transform(df_train[['type_of_drive']])\n","df_train"]},{"cell_type":"code","execution_count":18,"metadata":{"executionInfo":{"elapsed":439,"status":"ok","timestamp":1654751468460,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"XcYocGQGli_a","colab":{"base_uri":"https://localhost:8080/","height":488},"outputId":"eb32fc89-ea97-4913-a208-f02295db99e4"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" manufacturer_name transmission color odometer_value year_produced \\\n","0 0.0 0 0.0 115000 2012 \n","1 0.0 1 0.0 500000 1999 \n","2 0.0 1 0.0 210000 2002 \n","3 0.0 0 0.0 294000 2000 \n","4 0.0 0 0.0 244000 1998 \n","... ... ... ... ... ... \n","26995 0.0 1 0.0 92000 1993 \n","26996 0.0 0 0.0 135185 2009 \n","26997 0.0 1 0.0 450000 1993 \n","26998 0.0 1 0.0 275000 2006 \n","26999 0.0 1 0.0 500000 1991 \n","\n"," engine_fuel engine_type engine_capacity body_type has_warranty \\\n","0 0.0 0.0 4.4 0.0 0 \n","1 1.0 1.0 2.2 0.0 0 \n","2 0.0 0.0 1.2 0.0 0 \n","3 1.0 1.0 3.2 0.0 0 \n","4 0.0 0.0 1.6 0.0 0 \n","... ... ... ... ... ... \n","26995 0.0 0.0 2.0 0.0 0 \n","26996 0.0 0.0 3.5 0.0 0 \n","26997 0.0 0.0 1.8 0.0 0 \n","26998 0.0 0.0 2.0 0.0 0 \n","26999 1.0 1.0 1.9 0.0 0 \n","\n"," ownership type_of_drive is_exchangeable number_of_photos \\\n","0 0.0 1.0 1 32 \n","1 0.0 0.0 0 7 \n","2 0.0 0.0 1 16 \n","3 0.0 1.0 1 10 \n","4 0.0 0.0 0 9 \n","... ... ... ... ... \n","26995 0.0 0.0 0 13 \n","26996 0.0 1.0 0 8 \n","26997 0.0 0.0 0 6 \n","26998 0.0 0.0 0 7 \n","26999 0.0 0.0 0 9 \n","\n"," number_of_maintenance duration_listed price_usd \n","0 104 146 20450.0 \n","1 9 147 2600.0 \n","2 7 27 2900.0 \n","3 2 48 7500.0 \n","4 10 116 2200.0 \n","... ... ... ... \n","26995 11 65 3333.0 \n","26996 2 85 8500.0 \n","26997 1 35 1100.0 \n","26998 28 115 6300.0 \n","26999 2 15 1550.0 \n","\n","[27000 rows x 17 columns]"],"text/html":["\n","
\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
manufacturer_nametransmissioncolorodometer_valueyear_producedengine_fuelengine_typeengine_capacitybody_typehas_warrantyownershiptype_of_driveis_exchangeablenumber_of_photosnumber_of_maintenanceduration_listedprice_usd
00.000.011500020120.00.04.40.000.01.013210414620450.0
10.010.050000019991.01.02.20.000.00.00791472600.0
20.010.021000020020.00.01.20.000.00.01167272900.0
30.000.029400020001.01.03.20.000.01.01102487500.0
40.000.024400019980.00.01.60.000.00.009101162200.0
......................................................
269950.010.09200019930.00.02.00.000.00.001311653333.0
269960.000.013518520090.00.03.50.000.01.0082858500.0
269970.010.045000019930.00.01.80.000.00.0061351100.0
269980.010.027500020060.00.02.00.000.00.007281156300.0
269990.010.050000019911.01.01.90.000.00.0092151550.0
\n","

27000 rows × 17 columns

\n","
\n"," \n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":18}],"source":["#we apply it on the columns that have more than two categories in testing dataset\n","df_test['manufacturer_name']=encoder.fit_transform(df_test[['manufacturer_name']])\n","df_test['engine_fuel']= encoder.fit_transform(df_test[['engine_fuel']])\n","df_test['engine_type']= encoder.fit_transform(df_test[['engine_type']])\n","df_test['color']=encoder.fit_transform(df_test[['color']])\n","df_test['ownership']= encoder.fit_transform(df_test[['ownership']])\n","df_test['body_type']=encoder.fit_transform(df_test[['body_type']])\n","df_test['type_of_drive']=encoder.fit_transform(df_test[['type_of_drive']])\n","df_test"]},{"cell_type":"code","execution_count":19,"metadata":{"executionInfo":{"elapsed":44,"status":"ok","timestamp":1654751478518,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"8qqWp7E8EtIT"},"outputs":[],"source":["#define the input and output for training dataset\n","x_train=df_train.loc[:,df_train.columns!='price_usd']\n","y_train=df_train['price_usd']\n","#define the input and output for training dataset\n","x_test=df_test.loc[:,df_test.columns!='price_usd']\n","y_test=df_test['price_usd']"]},{"cell_type":"code","execution_count":20,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":232},"executionInfo":{"elapsed":1304,"status":"ok","timestamp":1654751484670,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"820BxmclFpJ3","outputId":"1eba4fab-d174-46aa-8f32-7ff4a5c50e82"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":20},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAesUlEQVR4nO3dfZQdVZnv8e+vO50XSAKhEzNMOpi4El8iYpQW4iCOIxqDjsQZHMVRiV6UuxRnzcwdlTh31gV1HDH3jo74jpJFcI2DaEbJOGCMvIgvBGkEEoJgWgLSMUDeyAskoZN+7h+1G0/COcmpc+p0p8/5fdY6q6ue2lW1dyc5T3btql2KCMzMzGrVNtwVMDOzkc2JxMzM6uJEYmZmdXEiMTOzujiRmJlZXUYNdwWG2uTJk2PGjBnDXQ0zsxHlzjvv3BIRU8pta7lEMmPGDHp6eoa7GmZmI4qkhytt86UtMzOrixOJmZnVxYnEzMzq4kRiZmZ1cSIxM7O6NDyRSHpI0lpJd0vqSbETJK2StD79nJTiknS5pF5JayS9vOQ4i1L59ZIWlcRPTcfvTfuqUW258b5Hufi793DjfY826hRmZiPOUN3++2cRsaVkfTFwY0RcJmlxWr8YOBuYnT6nA18BTpd0AnAJ0A0EcKekFRGxPZV5P3A7cD2wALih6AbM/9wt/OaxJwH4dk8fL5h6LCv//jVFn8bMbMQZrktbC4FlaXkZ8JaS+NWRWQ0cL+lE4A3AqojYlpLHKmBB2jYxIlZHNh/+1SXHKsyN9z36TBIZ9MBjT7pnYmbG0CSSAH4k6U5JF6bY1IjYlJYfBaam5WnAIyX79qXY4eJ9ZeIHkXShpB5JPZs3b87dgH/63ppccTOzVjIUl7ZeFREbJT0HWCXp/tKNERGSGvp2rYi4ArgCoLu7O/e5Ht/VnytuZtZKGt4jiYiN6efjwPeA04DH0mUp0s/HU/GNwPSS3btS7HDxrjLxQk2dODpX3MyslTQ0kUg6VtKEwWVgPnAvsAIYvPNqEXBdWl4BnJ/u3poH7EiXwFYC8yVNSnd4zQdWpm07Jc1Ld2udX3Kswpz+vBNyxc3MWkmjL21NBb6X7sgdBXwrIn4o6Q7gWkkXAA8Db0vlrwfeCPQCTwHvBYiIbZI+CdyRyn0iIral5Q8CVwHjyO7WKvyOrWPHlO95VIqbmbWShiaSiHgQeGmZ+FbgrDLxAC6qcKylwNIy8R7g5LorexgvnDo+V9zMrJX4yfYq3P/Y7lxxM7NW4kRShfs2PZErbmbWSpxIqvC7rXtzxc3MWokTSRUmji3/a6oUNzNrJf4mrEJHe3uuuJlZK3EiqUJHW/kJhSvFzcxaiRNJFQYqzExfKW5m1kqcSKowo3NcrriZWStxIqnCi//4+FxxM7NW4kRShWnHj80VNzNrJU4kVfhZ79ZccTOzVuJEUoWde8q/d6RS3MyslTiRVGFgoPy7sCrFzcxaiRNJFTbtKj8VSqW4mVkrcSKpwoH9A7niZmatxImkCjv37c8VNzNrJU4kVTh2dPn3f1WKm5m1EieSKhw7uvzkjJXiZmatxInEzMzq4kRShdOf15krbmbWSpxIqjB5wphccTOzVuJEUoVr7ng4V9zMrJU4kVThkS17csXNzFqJE0kVxo0tf3dWpbiZWStxIqnCC6dOyBU3M2slTiRV2Ndf/gn2SnEzs1biRFKFtRt354qbmbUSJ5IqKGfczKyVOJFU4YRjO3LFzcxaiRNJFeacWH5QvVLczKyVOJFU4XdP7MsVNzNrJUOSSCS1S7pL0g/S+kxJt0vqlfRtSaNTfExa703bZ5Qc42Mp/oCkN5TEF6RYr6TFjaj/zMnH5IqbmbWSoeqR/C3w65L1zwCfi4hZwHbgghS/ANie4p9L5ZA0BzgPeDGwAPhySk7twJeAs4E5wDtS2UK97kVTc8XNzFpJwxOJpC7gTcA30rqA1wLfTUWWAW9JywvTOmn7Wan8QuCaiNgXERuAXuC09OmNiAcj4mngmlS2UJ++/t5ccTOzVjIUPZJ/Az4KDL7gvBN4IiIGn+brA6al5WnAIwBp+45U/pn4IftUih9E0oWSeiT1bN68OXcDdlYYCqkUNzNrJQ1NJJL+HHg8Iu5s5HmOJCKuiIjuiOieMmVK7v39HImZWWWNfun4GcA5kt4IjAUmAp8Hjpc0KvU6uoCNqfxGYDrQJ2kUcBywtSQ+qHSfSvHCRM64mVkraWiPJCI+FhFdETGDbLD8poh4J3Az8NZUbBFwXVpekdZJ22+KiEjx89JdXTOB2cAvgTuA2ekusNHpHCsa2SYzMztYo3sklVwMXCPpn4G7gCtT/Ergm5J6gW1kiYGIWCfpWuA+YD9wUUQcAJD0IWAl0A4sjYh1Q9oSM7MWN2SJJCJuAW5Jyw+S3XF1aJm9wF9V2P9TwKfKxK8Hri+wqs/SDhyoEDcza3V+sr0KAznjZmatxImkCh5sNzOrzInEzMzq4kRiZmZ1cSKpQqVBdQ+2m5k5kVSl3B1bh4ubmR1ttu7exz2PPMHW3cXP7TRcz5GYmdkQue7ujVy8fA0dbW30Dwyw5NxTOGfus6YlrJl7JGZmTWzr7n1cvHwNe/sH2LVvP3v7B/jo8jWF9kycSMzMmljf9j10tB38Vd/R1kbf9j2FncOJxMysiXVNGkf/wMGPT/cPDNA1aVxh53AiMTNrYp3jx7Dk3FMY29HGhDGjGNvRxpJzT6Fz/JjCzuHBdjOzJnfO3GmcMWsyfdv30DVpXKFJBJxIquJJG81spOscP6bwBDLIl7aq4OdIzMwqcyIxM7O6OJGYmVldnEiqMGFM+V9TpbiZWSvxN2EVdu0r/wqrSnEzs1biRGJmZnVxIjEzs7o4kZiZWV2cSMzMrC5OJGZmVhcnEjMzq4sTSRXalS9uZtZKnEiqcCDyxc3MWokTiZmZ1cWJxMzM6uJEUoVKL23xy1zMzJxIqrI/Z9zMrJU0NJFIGivpl5LukbRO0sdTfKak2yX1Svq2pNEpPiat96btM0qO9bEUf0DSG0riC1KsV9LiRrSjo8LdWZXiZmatpNE9kn3AayPipcBcYIGkecBngM9FxCxgO3BBKn8BsD3FP5fKIWkOcB7wYmAB8GVJ7ZLagS8BZwNzgHeksoWaMrH86ykrxc3MjjY9G7by2R89QM+GrYUfu6GX+SMigN1ptSN9Angt8Ncpvgy4FPgKsDAtA3wX+KIkpfg1EbEP2CCpFzgtleuNiAcBJF2Tyt5XZDt+v2NfrriZ2dHkXd9Yzc96swRy+U29nDmrk2++b15hxz9ij0TSLkk7K32q2L9d0t3A48Aq4LfAExExOMTQB0xLy9OARwDS9h1AZ2n8kH0qxQ+tw4WSeiT1bN68+UhVNjNrGj0btj6TRAb9tHdroT2TIyaSiJgQEROBzwOLyb6ou4CLgX+rYv8DETE37XMa8MK6alyDiLgiIrojonvKlClDfXozs2Fz6/otueK1yDNGck5EfDkidkXEzogYvBRVlYh4ArgZeCVwvKTBy2pdwMa0vBGYDpC2HwdsLY0fsk+luJmZAa+ePTlXvBZ5EsmTkt6ZLlW1SXon8OThdpA0RdLxaXkc8Hrg12QJ5a2p2CLgurS8Iq2Ttt+UxllWAOelu7pmArOBXwJ3ALPTXWCjyQbkV+Rok5lZU+ue2cmZszoPip05q5PumZ0V9sgvz2D7X5Nd3vo82YD5z/nDgHklJwLL0t1VbcC1EfEDSfcB10j6Z+Au4MpU/krgm2kwfRtZYiAi1km6lmwQfT9wUUQcAJD0IWAl0A4sjYh1OdpkZtb0vvm+efRs2Mqt67fw6tmTC00iAMr+w986uru7o6enJ9c+Mxb/d8VtD132pnqrZGZ21JN0Z0R0l9tW9aUtSUskTZTUIelGSZslvau4apqZ2UiUZ4xkfkTsBP4ceAiYBXykEZUyM7ORI08iGRxPeRPwnYjY0YD6mJnZCJNnsP0Hku4H9gAfkDQF2NuYapmZ2UhRdY8kIhYDfwJ0R0Q/2a2/VT9HYmZmzanqHomk80uWSzddXWSFzMxsZMlzaesVJctjgbOAX+FEYmbW0qpOJBHxN6Xr6Yn1awqvkZmZjSj1vI/kSWBmURUxM7ORKc8YyX+RTY0CWQKaA1zbiEqZmdnIkWeM5P+VLO8HHo6IvoLrY2ZmI0yeMZKfHG67pNsi4pX1V8nMzEaSIt/ZPrbAY5mZ2QhRZCJprWmEzcxGkK2793HPI0+wdfe+wo+dZ4zEzMxGoOvu3sjFy9fQ0dZG/8AAS849hXPmTivs+EX2SHTkImZmNpS27t7HxcvXsLd/gF379rO3f4CPLl9TaM8kVyKR9FxJr0vL4yRNKNn87sJqZWZmhejbvoeOtoO/6jva2ujbvqewc+R5sdX7ge8CX0uhLuD7g9sj4t7CamVmZoXomjSO/oGBg2L9AwN0TRpX2Dny9EguAs4AdgJExHrgOYXVxMzMCtc5fgxLzj2FsR1tTBgzirEdbSw59xQ6x48p7Bx5Btv3RcTTgzP/ShqF79QyMzvqnTN3GmfMmkzf9j10TRpXaBKBfD2Sn0j6R2CcpNcD3wH+q9DamJnZiJOnR7IYuABYC/xP4HrgG42olJmZFafRt//mSSTjgKUR8XUASe0p9lRhtTEzs0KV3v67l2zQ/aPL13DGrMmFXeLKc2nrRrLEMWgc8ONCamFmZg1xVN3+C4yNiN2DK2n5mMJqYmZmhTvabv99UtLLB1cknQoUl9LMzKxwR9vtv38HfEfS78mmQ/kj4O2F1cTMzBqi0bf/5nkfyR2SXgi8IIUeiIj+QmtjZmYNsf3Jp1n/2C6OHd0+9IlE0msj4iZJf3nIpudLIiL+s9AamZlZof7P99dy9erfPbN+/itP4hMLX1LY8avpkfwpcBPw5jLbAnAiMTM7SvU+tuugJAJw9W2/4/x5M5g1dUKFvfI5YiKJiEsktQE3RMS1hZzVzMyGxN2PPFExXlQiqequrYgYAD6a9+CSpku6WdJ9ktZJ+tsUP0HSKknr089JKS5Jl0vqlbTmkLvEFqXy6yUtKomfKmlt2udyDU4GZmZmzJ1+fK54LfLc/vtjSR9OyeGEwc8R9tkP/ENEzAHmARdJmkM23cqNETGb7EHHxan82cDs9LkQ+ApkiQe4BDgdOA24ZDD5pDLvL9lvQY42mZk1tUnHjs4Vr0WeRPJ24IPAT4Cekk9FEbEpIn6VlncBvwamAQuBZanYMuAtaXkhcHVkVgPHSzoReAOwKiK2RcR2YBWwIG2bGBGrIyKAq0uOZWbW8m777ZZc8VrkeY5kDlkieRXZIPtPga9Wu7OkGcDLgNuBqRGxKW16FJialqcBj5Ts1pdih4v3lYkfeu4LyXo4nHTSSdVW2cxsxNuy++lc8Vrk6ZEsA14EXA58gSyxLDvsHomk8cBy4O8iYmfpttSTaOh7TSLiiojojojuKVOmNPJUZmZHlVfNmpwrXos8PZKT01jHoJsl3XeknSR1kCWRfy955uQxSSdGxKZ0eerxFN8ITC/ZvSvFNgKvOSR+S4p3lSlvZmbArKkT+KOJo3l05x96ICdOHF3YHVuQr0fyK0nzBlcknc4RxkjSHVRXAr+OiM+WbFoBDN55tQi4riR+frp7ax6wI10CWwnMlzQpDbLPB1ambTslzUvnOr/kWGZmLa9nw9aDkgjApp1P07Nha2HnyNMjORX4haTBJ1tOAh6QtJbsCtUpZfY5A3g3sFbS3Sn2j8BlwLWSLgAeBt6Wtl0PvBHoJXvPyXvJDr5N0ieBO1K5T0TEtrT8QeAqsmntb0gfMzMDbl1fflD91vVb6J7ZWcg58iSS3LfVRsTPyCZ4LOesMuUDuKjCsZYCS8vEe4CT89bNzKwVvHr2ZC6/qbdsvCh5Jm18uLCzmpnZkOie2cmJE0ez6ZAxkqJ6I5BvjMTMzEaY3sd2HZREIBsj6X1sV2HncCIxM2tih5trqyhOJGZmTexom2vLzMxGmMHnSEoN53MkZmY2wgzFcyROJGZmTexwz5EUxYnEzKyJvbTruFzxWjiRmJk1sckTxj7rqXCleFGcSMzMmlj//gPPml49UrwoTiRmZk3s3t/vzBWvhROJmVkT239gIFe8Fk4kZmZNbFR7+a/5SvFaOJGYmTWx6ZPG5YrXwonEzKyJbX+qP1e8Fk4kZmZNbEbnMbnitXAiMTNrYh2j2nPFa+FEYmbWxLbs2psrXgsnEjOzJnZP345c8Vo4kZiZNTHPtWVmZnXpGFX+a75SvBZOJGZmTWznnv254rVwIjEza2ITx43KFa+FE4mZWRP74+PKP8FeKV4LJxIzsyb25NMHGNN+8BtJxrSLJ5/2NPJmZlaFrknjOBAHv5HkQARdnmvLzMyqdeiM8QXOIA84kZiZNbVV6x4t+4bEVeseLewcTiRmZk2sd/OTueK1cCIxM2tiC148NVe8Fg1NJJKWSnpc0r0lsRMkrZK0Pv2clOKSdLmkXklrJL28ZJ9Fqfx6SYtK4qdKWpv2uVzSwbcmmJm1uO6ZnZw5q/Og2JmzOume2Vlhj/yKeyKlvKuALwJXl8QWAzdGxGWSFqf1i4GzgdnpczrwFeB0SScAlwDdZJf27pS0IiK2pzLvB24HrgcWADc0uE1mZiPKN983j54NW7l1/RZePXtyoUkEGtwjiYhbgW2HhBcCy9LyMuAtJfGrI7MaOF7SicAbgFURsS0lj1XAgrRtYkSsjoggS1ZvwczMnmXmlPGc9aKpzJwyvvBjN7pHUs7UiNiUlh8FBi/UTQMeKSnXl2KHi/eViT+LpAuBCwFOOumkOqtvZjayXHf3Ri5evoaOtjb6BwZYcu4pnDO37NdlTYZ1sD31JA69M60R57kiIrojonvKlCmNPp2Z2VFj6+59XLx8DXv7B9i1bz97+wf46PI1bN29r7BzDEcieSxdliL9fDzFNwLTS8p1pdjh4l1l4mZmlvRt38O+/oOfQNzXP0Df9j2FnWM4EskKYPDOq0XAdSXx89PdW/OAHekS2EpgvqRJ6Q6v+cDKtG2npHnpbq3zS45lZmZkr9Qt90DiiHnVrqT/AG4DXiCpT9IFwGXA6yWtB16X1iG76+pBoBf4OvBBgIjYBnwSuCN9PpFipDLfSPv8Ft+xZWZ2kKF41W5DB9sj4h0VNp1VpmwAF1U4zlJgaZl4D3ByPXU0M2tmz5t8TK54Lfxku5lZE9tfYYLGSvFaOJGYmTWxScd05IrXwonEzKyJ/bx3S654LZxIzMya2O93lL87q1K8Fk4kZmZN7K9O7coVr4UTiZlZE9v0RPkHDyvFa+FEYmbWxK5bsylXvBZOJGZmTey5k8bmitfCicTMrIk9vrs/V7wWTiRmZk3smI7yX/OV4rVwIjEza2JP9Zd/hL1SvBZOJGZmTWz+i56TK14LJxIzsyb2kumTcsVr4URiZtbE+vcfyBWvhROJmVkTe2jrU7nitXAiMTNrYnOnH58rXgsnEjMzq4sTiZlZE7v7kSdyxWvhRGJm1sT8YiszM6vL9qfKT4VSKV4LJxIzsybmHomZmdXFPRIzM6vLjM5jcsVr4URiZtbEOka1M+qQb/pRbVm8KE4kZmZNrGvSOEa1H/xVP6q9ja5J4wo7hxOJmVkT6xw/hiXnnsLYjjYmjBnF2I42lpx7Cp3jxxR2jlGFHcnMzI5K58ydxhmzJtO3fQ9dk8YVmkTAicTMrCV0jh9TeAIZ5EtbZmZWFycSMzOrixOJmZnVpSkSiaQFkh6Q1Ctp8XDXx8yslYz4RCKpHfgScDYwB3iHpDnDWyszs9Yx4hMJcBrQGxEPRsTTwDXAwmGuk5lZy2iGRDINeKRkvS/FniHpQkk9kno2b948pJUzM2t2zZBIjigiroiI7ojonjJlSu79x1b4LVWKm5m1kmb4KtwITC9Z70qxwtz/L2/KFTczayXNkEjuAGZLmilpNHAesKLokzx02Zue6YGMbcvWzcysCaZIiYj9kj4ErATagaURsa4R53IPxMzs2UZ8IgGIiOuB64e7HmZmragZLm2ZmdkwciIxM7O6OJGYmVldnEjMzKwuiojhrsOQkrQZeLiOQ0wGthRUnZGi1drcau0Ft7lV1NPm50ZE2Se6Wy6R1EtST0R0D3c9hlKrtbnV2gtuc6toVJt9acvMzOriRGJmZnVxIsnviuGuwDBotTa3WnvBbW4VDWmzx0jMzKwu7pGYmVldnEjMzKwuTiRlSFog6QFJvZIWl9k+RtK30/bbJc0Y+loWq4o2/y9J90laI+lGSc8djnoW6UhtLil3rqSQNOJvFa2mzZLelv6s10n61lDXsWhV/N0+SdLNku5Kf7/fOBz1LIqkpZIel3Rvhe2SdHn6fayR9PK6TxoR/pR8yKai/y3wPGA0cA8w55AyHwS+mpbPA7493PUegjb/GXBMWv5AK7Q5lZsA3AqsBrqHu95D8Oc8G7gLmJTWnzPc9R6CNl8BfCAtzwEeGu5619nmVwMvB+6tsP2NwA2AgHnA7fWe0z2SZzsN6I2IByPiaeAaYOEhZRYCy9Lyd4GzJGkI61i0I7Y5Im6OiKfS6mqyN1GOZNX8OQN8EvgMsHcoK9cg1bT5/cCXImI7QEQ8PsR1LFo1bQ5gYlo+Dvj9ENavcBFxK7DtMEUWAldHZjVwvKQT6zmnE8mzTQMeKVnvS7GyZSJiP7AD6ByS2jVGNW0udQHZ/2hGsiO2OXX5p0fEfw9lxRqomj/n5wPPl/RzSaslLRiy2jVGNW2+FHiXpD6y9xr9zdBUbdjk/fd+RE3xYisbOpLeBXQDfzrcdWkkSW3AZ4H3DHNVhtoosstbryHrdd4q6SUR8cSw1qqx3gFcFRH/KumVwDclnRwRA8NdsZHCPZJn2whML1nvSrGyZSSNIusObx2S2jVGNW1G0uuA/w2cExH7hqhujXKkNk8ATgZukfQQ2bXkFSN8wL2aP+c+YEVE9EfEBuA3ZIllpKqmzRcA1wJExG3AWLLJDZtVVf/e83AiebY7gNmSZkoaTTaYvuKQMiuARWn5rcBNkUaxRqgjtlnSy4CvkSWRkX7dHI7Q5ojYERGTI2JGRMwgGxc6JyJ6hqe6hajm7/b3yXojSJpMdqnrwaGsZMGqafPvgLMAJL2ILJFsHtJaDq0VwPnp7q15wI6I2FTPAX1p6xARsV/Sh4CVZHd8LI2IdZI+AfRExArgSrLuby/ZoNZ5w1fj+lXZ5v8LjAe+k+4r+F1EnDNsla5TlW1uKlW2eSUwX9J9wAHgIxExYnvbVbb5H4CvS/p7soH394zk/xhK+g+y/wxMTuM+lwAdABHxVbJxoDcCvcBTwHvrPucI/n2ZmdlRwJe2zMysLk4kZmZWFycSMzOrixOJmZnVxYnEzMzq4kRiZmZ1cSIxq4GkKekVAndJOjPnvnNH+lTlZqWcSMxqcxawNiJeFhE/zbnvXLIHwqqWnkI+4r/XasuZFcl/4awpSJoh6X5JV0n6jaR/l/S6NIvtekmnpc9tqRfxC0kvSPu+R9J/SvphKruk5Li7S5bfmo4/F1gCLJR0t6Rxkr4iqSe9DOrjJfu8Ip3rHkm/lHQc8Ang7Wnft0u6VNKHS/a5N7VnhrIXMl0N3AtMl/QRSXekFxJ9vKTtB5Wr8DvaLelTqS6rJU1N8TeX9K5+XBK/VNIyST+V9LCkv5S0RNLa9LvqSOVOlfQTSXdKWqk6pyS3EWi4X8Lijz9FfIAZwH7gJWT/QboTWEr28p6FZHNITQRGpfKvA5an5feQzSd1HNk8Sw+TTR8PsLvkHG8lmyV2cJ8vlmw7If1sB24BTiF7kdKDwCvStolk0xIduu+lwIdL1u9N7ZkBDADzUnw+2UuYlNr4A7KXGB1U7jC/owDenJaXAP+Ulifxh1ku3gf8a0m9fkY2vcZLyabTODtt+x7wlrTtF8CUFH872TQkw/53wp+h+3iuLWsmGyJiLYCkdcCNERGS1pJ92R4HLJM0m+xLtaNk3xsjYkfa9z7guRz8zoYjeZukC8kSxYlkb9oLYFNE3AEQETvT8fO06eHIXj4EWSKZT/YGQ8jmPptNNulgablKniZLPpAl2ten5S7g26knMRrYULLPDRHRn36H7cAPU3zwd/oCslmSV6V2tQN1TQBoI48TiTWT0qntB0rWB8j+rn8SuDki/kLSDLKeQ7l9D/CHfxulk9GNLXdSSTOBD5P1PLZLuqpS2Qr2c/Bl5tJ9nyw9FfDpiPjaIeefcUi5SvojYrA9pW38AvDZiFgh6TVkPZFB+wAiYkBS6f6Dv1MB6yLilVWc35qUx0islRzHH9678J4q93lM0ovSAPZfVCgzkeyLfEcaXzg7xR8ATpT0CgBJE5S9v2YX2ftOBj1E9o7twbcyzqxwnpXA/5A0PpWdJuk5VbbjcEp/L4sOV7CMB4Apyl4IhaQOSS8uoE42gjiRWCtZAnxa0l1U3xtfTHY56BdUuGQTEfeQXW66H/gW8PMUf5pszOALku4BVpH1Nm4G5gwOtgPLgRPS5bgPkb1Mqtx5fpSOf1u61PRdDk5ItbqU7PUAdwJb8uyY2vhW4DOpjXcDf1JAnWwE8TTyZmZWF/dIzMysLh5sN2sykm4HxhwSfvfgHW1mRfOlLTMzq4svbZmZWV2cSMzMrC5OJGZmVhcnEjMzq8v/B8OHjIbepMy5AAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}],"source":["#to know the relation between each feature and the price of the car we visualize the data\n","#this figure show us the relation between manufacturer_name and price_usd\n","#as we show this is an intermediate feature \n","df_train.plot( 'manufacturer_name', 'price_usd' ,kind='scatter')"]},{"cell_type":"code","execution_count":21,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":232},"executionInfo":{"elapsed":876,"status":"ok","timestamp":1654751488787,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"Hv6yQ08Ot3l2","outputId":"4392b576-0606-494b-f069-e9b515e3b398"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":21},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e3xV1Zn//1nnmjsJJ5AACRANoiAXJQqoMCqOWOuIbVO0LcX5jrb+fmO/09patfPtz+nYmW9rx9bWmf5arzOi0xGMU0G/VlTQ4gWQgAkIiARCSICE3G8kJ+eyvn/svQ/77LPWvp19Tk6S9X69lOQ5e++zzyXrWWs9z/N5CKUUAoFAIBDYxTXaNyAQCASCsY1wJAKBQCBICuFIBAKBQJAUwpEIBAKBICmEIxEIBAJBUnhG+wbSTXFxMZ09e/Zo34ZAIBCMKfbu3dtBKZ3CemzCOZLZs2ejtrZ2tG9DIBAIxhSEkCbeY2JrSyAQCARJIRyJQCAQCJJCOBKBQCAQJIVwJAKBQCBICuFIBAKBQJAUKXckhJAThJADhJA6QkitbJtMCHmbEHJU/rdIthNCyBOEkAZCyH5CyOWq69wpH3+UEHKnyr5Evn6DfC5J9WsSjB0a2vpRU9uMhrb+0b6VCY34HMY36Ur/vY5S2qH6/SEA2yilPyeEPCT//iCALwCYI/+3FMDvACwlhEwG8A8AqgBQAHsJIVsopd3yMd8CsBvAGwBuAvCn9LwsQSbz8KsHsGHXydjv65fPxCNrFoziHY0eDW39qGvuweLyQlSW5Kf1+uJzGP+MVh3JGgDXyj8/D+A9SI5kDYANVNK230UIKSSETJOPfZtS2gUAhJC3AdxECHkPQAGldJds3wDgNghHklZqGzux42gHVs4pRlVFYLRvB4A0sKkHLwDYsPMk1i+bnZKBNJNJ9UCud33xOUwM0hEjoQDeIoTsJYR8W7aVUErPyD+3AiiRf54BoFl1bots07O3MOxxEEK+TQipJYTUtre3J/t6BCrWPbML1U/uwhPbG1D95C5885ldo31LAIBfvnXEkn28whvIndpiMrr+1oOtzPN4dsHYJB2O5BpK6eWQtq3uJYSsVD8orz5S2l2LUvoUpbSKUlo1ZQqzwl9gg9rGTnzQ0Blne7+hE7WNnZwz0seRs+yBkmcfr9Q191iyZ9r1BWODlDsSSukp+d+zAP4I4EoAbfKWFeR/z8qHnwJQrjq9TLbp2csYdkEaeLXutCV7Orn98jJL9vHK4vJCS3anr796finzcZ5dMDZJqSMhhOQSQvKVnwHcCOBTAFsAKJlXdwLYLP+8BcB6OXtrGYBeeQtsK4AbCSFFcobXjQC2yo/1EUKWydla61XXEqSYSDRiyZ5Oqq+Yack+Xqksycf65fGvef3ymY7FJ4yun+rnF2QGqQ62lwD4o5yR6wHwB0rpm4SQPQA2EULuAtAEYK18/BsAbgbQAOAcgP8BAJTSLkLITwHskY97RAm8A/hbAP8BIBtSkF0E2tNEWVGuJXs6aekeQpbXheFQNGbL8rrQ0j2EQJ5/FO8s/TyyZgHWL5udsqwto+un+vkFo09KHQml9DiARQx7J4BVDDsFcC/nWs8BeI5hrwVwadI3K7DMxaXsAUFr7xwIoqV7CGVF2WkbxHN97jgnAgDDoShyfW7HnmM0XpddKkvyUzqAG10/1c8vGF0mnIy8wDk+a2UHrj9r7ceqedIe+Oa6U3jwlf3wulwIRaP4xVcW4tbFCYl1jjM4wt5e49mtMlqvK12MJScpGH2ERIogZXQOBPHgK/sxHIqiPxjGcCiKB17Zj86BYMqfe1cDO82bZ7fCaL6udLC57hSufnQ71j2zG1c/uh1b6kT+ikAf4UgEtjHKyGnpHoLXFf8V87qkOEWqee3AGUt2K4zm60o1491JClKDcCQC21SW5GNuSXxgfW5JbmwvvKwoG6FofJwiFI2irCg75feW5WF/tXl2K4zm60o1qXKSnQNB1Df3CIc0ThGORGCbhrZ+HGkbjLMdaRuMVTUH8vz4xVcWIsvrQr7fgyyvC7/4ysL07LnztDsd0PQc1deVYlLhJMVW2fhHBNsFtvnDbnYL5z/sbsLDt0qJdLcunoGrK4vTHri9prIYtU2J1dXXVBY7cv3Rel2pRnGSD2gSCey+PvVW2TAkB/XAK/txdWVx7JqpFpQUpB7hSAS2OdE5aMoeyPOnfaC9ZeF0/HpbA9PuFKPxutKBk05S2SpTnAhwfqsskOcXysDjBLG1JbDN8gvZs3uePZ0MjkSQ5Y3/emd5XUml/06knhqBPD8WlRcm7Sj1tspSLSgpSB/CkQhs82WObpXWPhoDcFlRNsKR+AEsHLG/1//wqwdww+M7cH/Nftzw+A48vPmAE7c57tGLJwnBx/GD2NoS2CaQ58cTdyzGDzbVIQppVvLLtYvjZrGjuXURpfq/m0X01EgO3lZZqgUlBelDrEgESXHr4hn4/bolqL68DL9ftySuuns0ty4Onu5jOpKDp/ssX0vMnJOHtVUmBB3HD2JFIkiKdc/sivUk2VjbghWVAbxw9zIA+gNwqgeLU93nLNn1SNXMWciQCEHH8YJwJALb8BpbPfnuURzvPIcF0wuY56Vj66KF4zB4dj2UmfOGnfFbdMkMeuNdq8sKQtBx7CMcicA2vAZWP9v6OQBgI4BsD8FQ+Pwe04rKQFoGjRwf+6vNsxvh5MzZTG2FQDCWEI5EYJuCbOOvj9qJAMCepm50DgRTPmAurZhsyW4Gp2bORrUVAsFYQwTbBbZZMrPI8jnpEjds7WNrOvHs6WQ8a3UJJibCkQhsw+tHoke6BswmTtU9z55OxrNWl2BiIra2BLYxo+Q6rcCH7qGwI7pNvHtgZT5pixGN7OlmvGp1CSYmwpEIbJPFaVv7xfklyMv24sZ5JVg1rzRlaa56mU8DHCkUnn00GK9aXYKJh9jaEthm3jR2eu8XFk7Do9WLYu12uwdHcLStH92DI449t1EDptXzSpjn8exmmEhaWwKBFcSKRGAbnjjjxaUFqG/uQVlRNn7zzucpkUhp6R5CKKwJWIejKct8Eiq1AgEf4UgEtuGtML74rx/A53ZhJBJFUDPYO6VRFQpHENFIoESoZAeAl/acZJwl2asqApaeayxobRn19BBV9IJUIhyJwDZbD7Yy7cFwogPRnpfsAHyik12hfqLznOwoeJ0QrXdIHE2pFzMYrZZEFb0g1YgYiWDUsdPP20j/6o4rypmP8+x6zA7kWLKnEyNhTKNYkkDgBMKRCGyzen5p0ufZ7edtpBzL276yuq0FAF6PG27NQsZNJPtoY6RMrFTRq0lXUahg4iC2tgS26TnHjpH43AR+jxuhaBRXzCrC+yphR/Vgn6zmlJ7+1eNbDzPPeXzrYdy3+hLTrxEAcn1uZjwml5P+nE6MVmZlRdnoD4bjHusPhkUVvcBRhCMR2IYn2njromn45vKKWGCXFwh2QnOKp3/18j72yublfacsO5LBkQj8boKgypv43SSptr1OYaRM3Ng+wDyvsX1ABN0FjiEcicA2XYPDTPu5kTAWqWbKRbk+zCnJR1GuL+64VGpOTSvIwunexDjAtIIsy9cqK8oGcRGolyXERTJmVq+3MttxtIN5zo6jHba2+TIBoww1QfoRjkRgmyhlZ0Cp7XoZQ4rm1AOax52YKV8yfRL2Nvcy7VZJ5X06BW9ltnJOMZ7Y3sC0j0VEPU9mIhyJwDZzp+bizYNsO2AuBpIqzanbFk/Hi7sTa0luWzzd1vXGqjZWVUUAKyoDcXGqFZWBMbkaGQv1PBMV4UgEtvm8na2kq9jNxkBSoTlVVRHARSW5+Lzt/D3OLclNagAdq9pYL9y9DLWNndhxtAMr5xSPSScCZH49z0QmLem/hBA3IeQTQsjr8u8VhJDdhJAGQshGQohPtvvl3xvkx2errvEj2X6EELJaZb9JtjUQQh5Kx+sRSJRy4g2hUBQ1tc0IhSOj1nejcyCIk13xKa5NXUMTpn5i26FWPFhTj22HpKLRqooAvn/j3FFzInZqhbQYZag5+VwCa6RrRfJdAIcBKCp/jwJ4nFL6EiHk9wDuAvA7+d9uSmklIeQO+bjbCSHzANwBYD6A6QDeIYRcJF/rtwD+EkALgD2EkC2U0kNpel0Tmi8umIZ//6gpwf7OkXa8c6QdgLSNsqepO+2xhZbuIQyH4p3YcCg5La6xIjNy4+PvxVZiG2tbMLckF1vvu3bU7sepynqjDDUnn0tgjZQ7EkJIGYAvAvhnAN8nhBAA1wP4unzI8wB+AsmRrJF/BoAaAP8mH78GwEuU0iCARkJIA4Ar5eMaKKXH5ed6ST5WOBIdnMp6eXrHccNj3m/oRM09y+D1uE0NwE7d24Hmbq59EWdmq0cqBqhUZB9tO9Qat50HAEfaBrHtUGtMjTmdON2fXi9DzennEpgnHSuSXwN4AIDyiQcA9FBKlSqpFgDKX+QMAM0AQCkNE0J65eNnANiluqb6nGaNfan2Bggh3wbwbQCYOXOm9uEJhZNZL7saO40PgqR/VV1lLE3i5L29x0l7fe9oB9ZdVWHpWqkYoFKVffTWoTaufTQcSSr60/My1FLxXAJzpDRGQgi5BcBZSuneVD6PEZTSpyilVZTSqilTpozmrYwqvKyX2sZOW3vKl3D6kWjh7W2buTe7vT/ml+ZZsuvhtMyI069VzY2cfis8e6pJZ3/6dD6XIJ5UB9uvBnArIeQEgJcgbWn9BkAhIURZDZUBUMqQTwEoBwD58UkAOtV2zTk8u4ABL+vljmd2W9a6AoATnKppNdo9bKv3xrMbQQn7q82z61FWlI3hcHwV+3A4YnuAcvq1qlk1rxRzS3LjbHNLckdlNQKktz99Op9LEE9Kt7YopT8C8CMAIIRcC+B+Suk3CCEvA6iG5FzuBLBZPmWL/PtO+fHtlFJKCNkC4A+EkF9BCrbPAfAxJE3wOYSQCkgO5A6cj70INPBWBuEIRX9E2mm0smXTOhDiPvZY9UJLe/9mM3LMsqiMXXjIsxtBKdX93QpOv1YtW++7FtsOteKtQ22xdsejSTprcMZqvc9YZ7TqSB4E8BIh5J8AfALgWdn+LIAX5GB6FyTHAErpQULIJkhB9DCAeymlEQAghHwHwFYAbgDPUUoZJXICQNpb1hanuQgQVY2JTu0pm4mJaO/NKCPHCsX5WSAA1MM9ke1WaekegtZvUArb75PTr5XFqnmlo+5A1KSzBmes1vuMZdLmSCil7wF4T/75OM5nXamPGQbwVc75/wwp80trfwPAGw7e6rilcyCIPU3x2UxRzQBpZU8510swGEqcmed6rTWPUtJqv7vqIm5GjtG52tlnKByB9s4ozndQtIJRN0Y76GUfCQRjDVHZPoFgZbX43QSUEPjdNuo8CGd7h2dnwEqrNbua0UvJNe6gaB4nr6WGl300HhkrNTgCewhHMoFgZbUQF8H/+c41GByJWP4j17S5MLRrSSat1ujcXcfameftOtZuedstVR0SJ8rgalSDI9R8xz7CkUwQlODrN5fNwgu7muL+qG3HIfJ8aO1LbG5VnOdjHJ1IMnn/Rue+f4xd48Kz66F0SFRvbyXbIXGiVGAbOXyh5js+EI5knKKe5f3tH/bGVTtXTsnBL9delvRMOJDDdiSBHH1Hotzb7ECO7bx/o5qBykAe2vq6Es6rDFivIykryobX40JEJbni9bhsp/+ORgW2dvWTrlWAnsPvHhwRar7jBOFIxiHaWZ6WhvZz6OgftiUVosblYgfVeXbWvdnV4jLqETKvbBI+bEx0JPNspP863Y8k3RXY2tUPq/1xqlYBeg7/3c/OMs8Rar5jD+FIxhmsqmkWTkhmdA6we7bz7Kx702px1Z3sxoM19abqH/RqBlbPK8HT7zcmnLPaZoX3rYtnYN60Akdm8amowObFW1irH7UTAVK7ClCc8A9r9sPtIohEacwJp7qehsdEiU2lE+FIxhlmq6OdkMwYDLELEnl23r0pWlx2VGt5NQO8bCq7WVZOxjScXuHo3Rtr9cMilasAqvyfxlf2VJbkY25JLo5oesakcjUyUWJT6UY4knGGmdlctoc4UqxGOK12eXa9GajTqrVPvnuUa7/nujmWrpWKmIaZCmwzcQyje2OtflikahWg3F8wTAFIdTf3v1yHrsEgyoty4pwIIH3mDW39KXEmQh04daSlsZUgfShV03oMhSlqTSr36hHRVjMa2Fn3plR066nW2uHV/Wcs2fVo6R5COBI/GIcjUduijQqBPD8WlRcyB7GHXz2AGx7fgftr9uOGx3fg4c0HuPemJyjJ0p/SanGtqAykbBXAur+RCPCT1w7jrg1sLVcnNMfM3ksy4puC84gVyTjkkTUL8BdzpuCtQ20YDIbx+oHWhGN2HO1Iulue3+tC/0jibNfv5c9PeBXdC6YXYCPj+AXTzSkMaymf5MfhM4lquuWTrM88Q+EIwpqXGY4mV9muh5Xe5GVF2RgKxRfuDIXCcfEW9eon1+fGLf/2Qdzxe5q60TkQTMms3OyKSE2qVkdCHTh1iBXJOOThVw/grg17sbG2helEAGDlnOKkn8fqikShsiQf1VXlcYNilo89p+HZjWgfZMdpeHY99CrbU4FVdWCp9xv/d+D86mdwJJLWWbl6ReR3Gw83TmuO8e5FqAM7i1iRjDPMZG2tqAw40rs7z+9F91DirNzncaOmtjm24jCTJVOU47VkN+KiqXn4pLmXabdKurOLrDxfS/cQsjxuhCLnVyVZHjc3ldjsrNzoM7OS+XTr4hmYPikLr9adxou7E7+bv167EMc7zmHlnGJT38tkamCEOnBqEI5knJGq/WUWOT52ZXdb/wjur9kPALimMoBaTZ0IK0ummTMj5tmNmBnItWTXIx1qvXaer3MgiN6hEEYi5rdrAnl+rF1SFjfZWFtVFjegGmU2Wc180qtruqYygIf++Cm8Lheeev+45WvZqYER6sDOIxzJOMPMLPn9hk7UNnYmvSo5fnbQ8JgP5JoFoywZnqyKWbkVLWf7hi3ZjUi3Wq/R822uO4UfvlwHAheCGkeidQxqOgeC2LS3Jc62qbYF3111EQJ5fsPMJquZT7wV8g9vnIOlFQGse+7jpK4lKuEzAxEjGWeYydoCpGB7stgJNdMoxcHTfQmtfZdfWAxtQbyLSHY7NHLiFzy7GVixnVTCe77OgSC+91IdRiJIcCKA5Bh4bZONMpeSfVwLb4VcUpANr8ftyLXSuQoXsBGOZDxiQsXdiWD7lDzr8YtghOLu5/cktPYN5Pnx69sXw+cm8Htc8LkJfn37YttbEF++bLoluxm2HWrFgzX12HaIncDQ0NaPmtpmR3qv67HzWKfuR6w3GBvFSJJ9XItevMfJawlGF7G1Nc5IZ7B9dnEe2ga6jQ/UMBKhGGG09nUyEHrpDPbgwrMbYVR1n04V244B/e05oxiJXlV9so9rMYr3OHktweghHMk4g7fMv/faC+B2uUxnxpiC08BqwYw83Ln8AgyPhPHjLYd0L6EVK3QqEPq/Xt3PtW+852pL1zKqure7d283++iayikADifYc3wuRCkMU1qNHHayj2vRi/coGV07jnaY+m6qa6QyoR+9QEI4knEGb5n/pcvKHJ+59Q2xO1iFI1LP9h//kV2NrWZwJJySgrBPT/VZsuuhV3W/al6p7t497z1PZgXDmpmvrSrDN5bOMr2SM3LYyT7OumfWe6F+H57Y3mD4PqiP31jbIvqXZAgiRjLO4MmQAIjt33cOBBOC3XaYNZntABR7l4nrRynQPXheLdipe5ucy47f8Ox68AQuFbvVvXveCsZKbOWRNQvwzn0r8Vj1Qrxz30p8e8UFONrWH/de6pGueI7RPVh5H5x43wSpQaxIxiOaHaddxzvjZq9uF0GO1528+inhzENkO0e7MQFl5u6kMuucqQVo7k5stztnqnXJlVXzSpHtIRgKn39j1cKXVvfu7axgWCizfKurm0zpSmj1fXDqfRM4j1iRjDNYszbt/n4kStEfDGM4FMUDr+y3Pftv62FnBin26svLTF1ndiAHOz4/iwdq6jEcijpyb0tnF1my61Hb2BnnRIBE4UvtCkFvYHYy+2gsz+qtvg8iaytzEY5knGE1pz4ZnaWmHnZNhmJfNa8Uk7Liq9+9mlXKikqpKO3/eXGfLDXuzL0dbWcXS/LsemzlxEi0drN1JnoqyFaxWluRSbUYVt8HJ983gbOIra1xhtXZWTLqpxdPzcNHjYkD0IWBHNQ39yAUjqB3OL5sMUSBZ9cvQfe5EGYHcmKVzU7fG+VUWvDseuRypGC0div6U05VypudpSsZYjztstGa1T+yZgGKsjzYvL8VaxaW4r7Vlxgen06FAYE5hCMZZ7D266cV+HCmjx2EXVtVhu7BEbz72VnLf5ht/exr1p7sw7pndmOYI7PefS6E6qpy1Df3MJWCc7xuREGTUmZdUVmMV/adZtqtUsgZfNV2O/EdXiaTFSpL8nFRSW7c9qW2y6A2JqLtSjias/pFP3kzNtn4zbvH8R87m1D/k5t0z3HifRM4i3Ak4xD1rE2Z9fN4cdfJhCCx2cBrcxd7a4sC6A+yU4OB87PfUDiCUCTRkfx/t1yCG+eXJlVP8jqngdXr+8/gtsvLLV2LV7ch2Ue3815DWz+zxkXpMsiKiRxpG4ytCkdzVv/iR40JK9be4Qhe/KgR666qGJV7EthDxEjGKcp+PUvPSI12QWAl8Kpt9mQVXj8Pr9uV9AC87yS74p5n18Nob95u5z0nUp2NYh68x5VV4WjO7DdznD3PLshcxIpknGOnQ53ZdMriPC/ODlhvFKVc3+keJGpK8rPQdW6AabeD3t68nc57TqQ6dw4EkeVlx2+UVV8mZzqtWTgNe04kOvY1C6eNwt0IkkGsSMY52q5wXjeBxwXk+z3wudmFHmYHmYpifpMo6frsr9fsQA4AaVbM4q1DbUmnoy6ZxX4NPLsZinJ9mFOSj6LceGl7q5331FthdlOdN9edwtWPbseP/vsA3BrZZPVqKZMznb6wkC2gybMLMhexIpkAaLWRAMR+/s22z22L4PUNsR3BnCm5eGztYvQOhXDX83vi4iBeN0FrXxA1tc3clcfG2pak5S92M2a6enYjjFYQVvSnlK0wJZ4CJGqO6cGKyfg9LvzoCxfjmsrihM8vUzOdWrqHkO/3xMXT8v0e0++DIHNI6YqEEJJFCPmYEFJPCDlICPlH2V5BCNlNCGkghGwkhPhku1/+vUF+fLbqWj+S7UcIIatV9ptkWwMh5KFUvp6xjNKzW9FIUn5eMmtynHR71azJpq+5sGwS037hlFwcbetHjteVMFuOUuA7//UJ7q/Zj7s27MXcEn7HQla8xmxcId/PniPx7HqYXUGo31c97GyFqWHFZHxuFy6bWaRbg6GOiRhJpKRDQiXZ90GQOaR6RRIEcD2ldIAQ4gXwASHkTwC+D+BxSulLhJDfA7gLwO/kf7sppZWEkDsAPArgdkLIPAB3AJgPYDqAdwghF8nP8VsAfwmgBcAeQsgWSqm+5KwAwPkBciRCoeiqWMk2umT6JGDvqQT7m4fO4s1DZwFIUiJqtOm+R9oG4XURRCkFI4ELHzR0xAY/K3GFe6+rxF0b9jLtVmnpHsKIJrNgJBy1PXO2KsWupawoOyG1ejgcMT0AG0mkpEtCJZDnR9WsolgXTQC4YlaRWI2MQVK6IqESSsTTK/9HAVwPoEa2Pw/gNvnnNfLvkB9fRQghsv0lSmmQUtoIoAHAlfJ/DZTS45TSEQAvyccKTGA320jhVJdxlbhWWoRFKMp2IgBw/Kz09bEaV3j2/WOW7Ho0tvcnZLdFqWS3y62LZ+DDB6/Hi3cvxYcPXm850K51yOEIxWv1pwxXEEYSKemUUGlo649zIoDUBlqIMI49DB0JIaSfENLH+8/E+W5CSB2AswDeBnAMQA+lVNkYbQGg/BXNANAMAPLjvQACarvmHJ5dew/fJoTUEkJq29sThfwmKsluLbx5kC0d4iRN3VKKsFWnt5NRca9n16NG0+PcyG4Ws1thWg6e7k1wbBTAT147jBse34GHN/Pl++2mC6dCQiWT5FoEyWHoSCil+ZTSAgC/AfAQpIG6DMCDAH5t4vwIpXSxfM6VAC5O6o5tQCl9ilJaRSmtmjJlSrqfPmOxmm2khdIkC0mAhBiKli8tljJ4rDq9HK2ol4Fdj3Mj7Ap9nt0sduMQpwxWjHorCKN04HSmC6fquZxqRSAwj5UYya2U0kWq339HCKkH8LCZkymlPYSQdwEsB1BICPHIq44yAMpG+ykA5QBaCCEeAJMAdKrsCupzeHaBCZJpb5vr9wLQ73+hlV+fVuDDC3cti2UQ/eNrB/G+ZntDfaxShW41rnBFxWS893nida+oMJ9MoLCovBD7mnsT7LMCOaipbbaVCZVMHCLIkZ5Rw6sFyqR2tam4l811p/BATT3cxIUIjeJfqhfZb5MgMI0VRzJICPkGpDgEBfA1ALqb5ISQKQBCshPJhhQUfxTAuwCq5WvdCWCzfMoW+fed8uPbKaWUELIFwB8IIb+CFGyfA+BjAATAHEJIBSQHcgeAr1t4TYIkCIbYA9r0fD++v3ouZgdy8NUnd8U91to3gqJcH6qrytHQ1s90IkT+70c3z4uzW3F6q+dPYzqS1fOtF7tdWMzOLPtj3Rn8sU6qwrbiCOy25lXgSbao0ZvVP7JmAW5dOJ3Z3vaDhg7mOeqkBydxMjW5cyCIH2yqkxUXpO/m9zfVpUWqZqJjJdj+dQBrAbTJ/30VxoP2NADvEkL2A9gD4G1K6euQtsW+TwhpgBQDeVY+/lkAAdn+fUhbaaCUHgSwCcAhAG8CuFfeMgsD+A6ArZD+sjbJxwpMohS2rXtmN65+dDu21Jlf0J3uHWbaOwaDqK4qR2tfMEFrlwLYeUwa4Hl74RRAFMAPXq63nWI7NZ/9OM+ux4HTxu15rQSkk40NsIoM1RjN6jfXncK65z7Gv394Auue+zjuMy/mvK88uxOYld834uDpvgTZnnBUsgtSi+kVCaX0BCxmRFFK9wO4jGE/DileorUPQ3JQrGv9M4B/ZtjfAPCGlfuaiCgy4upZX7Jig3+SuEcAACAASURBVF4PwchIYrqVV0757RjgOBrZbrQXHopQHDzdi5UXTTW8FwXldb6+n+0QX/3kVKyzoVkiEXOxELPSMk7EBtSrCgLg9zuOg0BywqxaIEXiPtfn1v3Ml18YgNtF4rLC3C6C5RcGEq5pF9Z30QlOd7O123h2gXOYdiSEkF8A+CcAQ5BWBQsB3EcpfTFF9yZwCN5+fLIV1sW5PgyOJAY0i2UJESPV3MqS/ARJ80T0g+PqHiC/eefzhC0jLWf7rQdgP2k2N6NNp36VUlPjJgSDmqC/djKwue4U7t9UBwqAUsCjSXBQf+aBPD++cWV53Pv4jaXlht8Hs84hlTUqwxwVUZ5d4BxWYiQ3UkofIIR8CcAJAF8GsAOAcCQZDG8/PhqluG7uVFOZUNsOteKtQ224cV5J3Gy+Z5gtkdIxKEmgeDgbp7uOdWBL/WlcUJyj60QIgPnT43usqx3HBw0dsQLFkUgUQRMDRiDPuiDk3NJcHOvQr5lhbSfxBtetB1uZ19h6sNXUDF29kmShdgydA0F896W6uMcjmqId9WfeORDEJk1a86baFnx31UVcZ2LGOTS09WPrwdakYkNGXMPpNcOzC5zDiiNRjv0igJcppb1SraAgk+EFT1/c3YwXdzcnVJ7PmhwfxL7x8fdi/S421rZgbkkutt53LQDg3DB7IBscAe6v2c+9px9vMSc8oP16qSvbRyIRRKm0/aVeURlxWtNn3kxXw6suKMYbn55NvD9I0iQU0YTtpFTOvFu6h0AZDcEU1I7hv/exa13cBMjxeRKy36yuUs0kDmjfCy1mtwSNyKSMtImGFUfyOiHkM0hbW/+vnJHF3gQXjDrKbHjfiS7d47SV50faBlHb2ImqigC2HWplNk3adqgVq+aVIi/Lje6h5Gop9IhSKVC68qIpzHiOHZpUzbjMSq5sP8IuYqUAgpHEOIPR4Lp6fin+5a3PE663en587Ibn5HJ9bgQZUgA5PjeiVOos2dg+gOc/OoEPjrLv/aoLArj/posTrl1WlI2hUHxTsqFQmFuvo5c4wGuspcXJLcFMFagc71gJtj8kx0l6KaURQsgghBxJRmI0AzRix9EOVFUE8PLeZubjL+9txqp5pbikdBI+atR3VMkjDZismbIWbZCYRY5X+spbSTTI9RknN4ZU2ltGg2tlST5WVAbiUp9XVAbiBj2pHmJ/LID+L9XnndzgSAQuEt+UjAB45Nb5uO7iqfjuS58kSI9omVOSh0WcAVzaaaCa39kYJQ4YZaKlYsUgWvGmHyvB9vWqn9UPbXDyhgTJYWYGaMTKOdKeMm/8UOxHz6ZeE+nwKSlri1XZ7nEBbpcLPvf5FcW8aQWoa+7Bnz9rxWuM7ajr5kqBfitbOLddVobXDujLwUSo1DoYMB5cOweC2NMUL2e/p6kbnQPBWFzj+5vq45zifZvqY04uFI4wJVJmB3LQ2D5g6EQA4OtLZzHtLd1DyPK4EYqcX5VkedzcrS2j7STee/HDGy/C6vmlYsAfJ1jZ2rpC9XMWgFUA9kE4kozCqk7RpCx3XN/sFZWBWIFaIJfdTVCxtw9a745olXeOtOOe6+YgkOfH2iVlcU7y60tn4rurLkrY/qksyccT2xK3jgBptQVYk1zx8rIGNJzoPIeqioDh4GrkxHYe60xYWUWiFDuPdeKWRdPx6enEKnsA+PR0L7pMfCZ6qwA7+mt620m89+Le6+cY3qdg7GBla+t/qn8nhBRCqkwXZBBW9pvdAH562wJEo1G8fqAVtywojUmSAMBti6fjxd2Jq5vbFqevg53SdlUvm4i1RcMrllTsViRX+obCCTYW6kZddlrz5vrcqG/uQVMnO0OsQy7OLM5jO/jivCyUF+UwH/MQwO12gVKq23PGrsS93naS03GLVNWhCOyTTD+SQQAVTt2IwBlYM0AeEQB/p0oNfefwWexr7ollF1VVBJh7+cqKxe8GgqmLtQMAll0obbO1dA8hpEnvDen0BCnwu9HFSAQo8J/vcW5WcqUg29yfibZ1sF5rXu3qqmpWEW75tw9iqcwslDTW5RcGEB/FkGIkyy8McNWQwxQIh80VnSajv8bDqbhFunqlCKxhJUbyGs5/d10A5kGSLRFkGOoZYHPnAH7z7nHT52pTNyuKc+McScUUle4UJ+7tBfCz6oXwuIDvbeKnAZtBCVCHwpGEniXquISWmZOz0XVqgGlXoxTh6ZHjdes+rqBeDeplhLFWV0pcw0xGWiDPjzkluXEZdReV5CKQ50f3oL6IJiBtox083YtJ2T7HHEU6SFajTJA6rKxIHlP9HAbQRClNriGDIGUoM8Drf/mu5XP1UjfVf7hBToJUCEB1lbRF9sq+U1x1XzPMDkhbNSc62TIXSlxCy2ecQkeeXY/tRxKD9loIEFt5GGWEmclAY6F8LrWNncy07NrGTng9bmR5XdxiRUDqpvitDbXwud3MtGcrnSjTiVE2nGD0MC3aSCn9s+q/D7VOhBCy0/nbEyRL/zlz+/tqlJm1nhKsWV64exl+vXYhbrhkKtYvZQsN6pW1HpU7JCoORQvP7naxvZzWbqYnyNk+Y1mVPL8ntq1k1ISLFSMxg/K5KAkDWnYc7WAGxT0uwO+Res74PVKcJBimzE6TVjtROoHZ/iHp7JUisIaTrXbZEUDBqHLBFLYEusLckvjH1Rk9xXk+1ikxuxldg4dfPYDvbdqPdw6fxQZG4B5AgkKwmtomqU7F63HD69ZoRLkJvB72tpNRxplybzc8vgP31+zX7SxopmOkOrPJKPMpkOfH2qqyuMdXVAbg97iQ43PD73FhWkH8ez+3JDf2uSjp2VpWzilmNiv71drF+Oghqa3v0+urkO2N34hQO7mW7iEENauZYChquv2yVayoT7NUj0XlemaQTLBdi3FzbkHaiVL2xzJtkh//esdlONU7jB++XA9CSEJGTw9nv12xu4kUxGXx8OYDWL9sdtI1LT63NNcpK8qG20UQUgVK3C7CHeQvKS3Aye7EzK1LSiXtLiv77Udb+auVfP95mREAqG/uQVlRtm7mU+dAEJtq43eFdzV2gYAC1I1oNIozffHv/ZG2QTS09aOyJB8VU/ISChJdBKiYkgeAHSxvaOvH0bZ+zA7k6Dq5jv5hpvR/R7/zIhZ21KdF5Xpm4qQjEWQg2kwihda+IL7x7MeIRKNyDwdp+FD/Ib+8jz07fHnfKay7qgIcHwVAGpTNps3qMSw3z7Kalnq6lz2DVuxW9tv3nmRX70/N9eLpv74yJiB59aPb4+7twwevZ2Y+sWIkioMc0ZGsV5pLSXLwHvQHz7+/uT5PXAabOolAm+m0ojKAPU3dzPexvoVdo1Lf0mtZft8Iu+rTonI983DSkQgFxwzk6gsDaGhPDDBTCqZarvoPubkzMesJQMzucwN6UlsN7clXvg+ptlmspKV29LNXU4rdyn67z+OGlEIQj8tNcLStH6FwhDmz/vDB65k1LnZjJMqWopWiQdbK6/2GTtTcswxejzvhfVw5pxhPbG9IuA5vOy0Z7BQ/CjITSzESQsgsQsgN8s/ZhBD1tOCbjt6ZwBGuYGQ06aH+Qx7m7Fsp9iyfflrs4hmTLD03i2s0DZXMdkgszGHPkRS7lf32L3EKMFv7RnB/zX5UP7krIa5Ao5QbV1BWV36PC36PJPFiVDzvIsByuaZGe77f4+Kuzngrr085XQOrKgIJcbO5JbnMzDg1ZgPmatSvQ4kNmSl+FGQeVupIvgXg2wAmA7gQQBmA30OSSgGl9NNU3KAgOfo5PUN4XDGrKPaHfPOlJaj55EzCMTdfWgIACDMUaBXWL5+ZMLja4XgHe1WkwFPI9bjZI7Pa/siaBfiLOVOYvVbU9JmoutS+E8EIRa6Oo6090RW3ItRuN62tKsNLHzfHYlePfXVR3OvTnl/b1MVM0eWtvH72p8/iNMrUNS5NXfEOsKlrKKYDxiKZdGGq/J9qSywFYwkrW1v3QmqPuxsAKKVHCSHme6AKRoVXOAq+PN5v6IwFdR+7/XLUfPJ/Eo557PbLAQD9I3xH8ciaBfjxf9dbu1kGn3D27AH9AexUD3s1oLarYwcba1u4VdJH2/SdGY/PWvuYKxyz200sHTHe+bxEgcqSfFykKV4kkLY1g4xKd6txi2TaNSvnBsMUks6CtVbPgszBytZWkFIa23gmhHggphAZz8FT/IGYh9LBr3MgiCxv/Fcky+syvX2xV6Nwq3BBIAePVS/EOk5diRqfph5DqfuobezUrXfwcVYkip03GLPqSYrz7Q1qHQPsOM0fP2HX8b575KypbTu9RAEtDW39CcWL2j9aoxoXvbiFUc0MC+Uz3Hmsw/K5gszEyorkz4SQvweQTQj5SwB/C+C11NyWIFkUYTu/140hnUwgNvweIFZ6uk8tyMJhRiV5+eRsVFeVY3YghykKqeYy1daMNvsooa5EdW9ZHFkTxW4la2tGob0SqXLO4NvLyWZT2/VWW1aKM82oQZ8LReJqXK6YVRSnRqDe7tRi1fFoP0NN+3gRbB+jWFmRPASgHcABAPcAeAPAj1NxU4LkUBfa9QxbV1VU6kSSyaqpb+7B4jJ2sP2qC6TArVL3oEd+tqSoy1pBhHR6j7dy0n8Vu5WsLbtpzLzUa556smI3qi5v7WPXdLDsPKejJhKlMY2uhrb+BEkbZbuThZWAOeszjFLA5yax4kkRbB+bWFmRZAN4jlL6NAAQQtyyjS2CJBgVnGhs9cFxqW4ikOfHrMnZOKJaVWh7uvNY98zuuDoHNVsPteGe6+Zg5zFjDa6ArF/Fm1l7XIDP7UaExtdD8PynYrfS3/vwGXaGkxE8Z1UxJY+p3qs4VqOVIG/LjGVXFAG0TleLshJTtjW1bD3Yyq3dMBsw532Gf3/zJbhsZtGYEpAUxGPFkWwDcAMAJfKYDeAtAFc5fVMC+/AGAissKZdWErWNnXFOBIjv6a4Hz4kAQFvfMGpqm9FokJEFnB+WeIOyi7ikUZjG75H4CDDCGNN8qsNYVdKsLLDyydmoPam/ReQmiFMn1pPuaOkeQp4/vqBQ0eoK5PkNV4K8LTOWnaUIwEJZuQyOsD83nt1swLyhrR9tfexV4jWVxY4WGPIy+QSpw4ojyaKUxv7yKaUDhBDjdbMgzSSf/5Dlk7aT9MQBqyoCcIGrJK/Lqd4g7q8xJy/f0i0teFkrCLeLYCQSxYi8ylAPYG6OfotbE1dRV0nz4hLzpk/CH+sS06DVGIzTcZjR4tKLU/C2zFh2Vu8TLR4XYppl86YVMI/h2c3E0bRxETXaXvXJkqnKxeMdKzGSQULI5covhJAlAER6RYaxev40U8fdeMlU3L6EvVfvkcfaRZwYh2JPvkrEmNOqdN1H1ixAzT3L8HfXV+LnX7o0oU9IXMYPT7+FY9eLS7x5QN+JsOBlgAHn4wpqYUX1tpxRnIJXvMiys3qfsFCcWGkBO7GAZzdyikZbrUqveicYDeVigYSVFcn3ALxMCDkNaTOhFMDtKbkrgW3MdkicVZwDStmqNspEvjif09KVY08F2kwmRWAyGo0CJP7+1QMYT7qFZ9ebWR8zsQXHYuvBM9zZtp7ci1FG2fEOdliSZW/pHkKY03FRgajeR6t9X4w00IyyxqxkARqRbJahwD5WerbvIYRcDGCubDpCKbVWNi1IC+q9/87+Yfxs6+cJx+T5PLFAtpZLp0uDH0/xNRVKsDzmTJUC0J0DQdy3sU5WvFVWFTQmMWK2tzgPvZl1ab4fPUN2ckr05ee6B0dwtK0fuT533H0bZZRZ0cMKhSNgSKrFkeVxxwZbOz0/9JyiUa8QdepxsgjtrtHD0JEQQq6nlG4nhHxZ89BFsnzDf6fo3gRJoOz919SyK9v/9d0GUM5Ap1R//+lT9pbOnz4947gSLA+lf/nOYx1xsukKP/mreZg3fVLSgVW9mXWvzcb0q+fz3yO93uNGGWVVFQFMK/DFSc1PK/AxVwy8FYYa9WBbWZKPuSW5cUkW6l4oPHgti41WyErqsRMrBqsK0QLnMLMi+QsA2wH8FeMxCkA4kgyGNyNUS8drUeIMTZwtFJ49Few8JgX8eSmvwXCUqbBrB97MOsvNX1noJbw2dQ6alkjRSpzo9d1oaOtP6Fdypm8kJm2jhvf5+9wEfo87YbBtaOtnZuqxrm0W5bU89tYRvHmwLeFxvdRiq1hRiBY4h6EjoZT+AyHEBeBPlNJNabgngYMUcbav9BiQhR4pZ4jk2VPB2X4pUHpNJVvGnGe3C2tmzSsABPRz5F7e28JcuZmtquf13bBSlc9b3fB0vFLVF72yJB8LZkxiOpJzI+FYQzCnVibCgaQXU1lblNIogAesXpwQUk4IeZcQcogQcpAQ8l3ZPpkQ8jYh5Kj8b5FsJ4SQJwghDYSQ/ZossTvl448SQu5U2ZcQQg7I5zxBCJmQfVF4Mt7KjN4KSg+Qyziz2dmBHO6WmdNcfYHUsZEn+w7AsOe6HtsOteLBmnpsO8Svv+HJrRiR7WX/eRXleE3Zef3kzZyvPled7VZzzzI8smYB6k524w+7m1B3Ml4PzW5fdDMy8rytvqffb8TXnt6Fq36u32pXobaxE7966whqG40LWgXpwUrW1juEkPsBbAQQW/tSStnt4yTCAH5AKd0n9y7ZSwh5G8BfA9hGKf05IeQhSPIrDwL4AoA58n9LAfwOwFJCyGQA/wCgCtIkcC8hZAultFs+5luQVInfAHATgD9ZeF1jHr3ced6WkB5neqUZOE8+veaTM0x5+VRQMfV8/cKSWZPjpNWPtw/ihsd3xB7nqffyuPHx92KChhtrWzC3JBdb77s24bhsnwfdeh28OEwvZAd5zdSB6MVQjM7X64j41PvHUZTtiW2NaV+3nRiJ2doNlhIxAIxEaKwz5A9ertdV/133zC58IKdGP7G9ASsqA3jh7mXcexOkByt1JLdDEmr8M4Ba1X9cKKVnKKX75J/7ARwGMAPAGgDPy4c9D+A2+ec1ADZQiV0ACgkh0wCsBvA2pbRLdh5vA7hJfqyAUrqLUkoBbFBda0LAy51vaOtHfXMPCrOtN8FUtLZK861vizlN14Dk1JTXORKhCIajGInQ2ICioFe7oWXbodaEAe1I2yBzZdLZZ68OgVdNblQHYqRMrCfayJOoV38/WP3gldetFyNhYaV2g6VErCUUoTh4mq1YXdvYmfCZv9/QKVYmGYAVRzIPwG8B1AOoA/CvAOabPZkQMhvAZZBWDiWUUmVK2wqgRP55BgD1nkmLbNOztzDs2uf+NiGklhBS297ebvaWxwSsOoGRcBQ3P/E+1j2z23QFuZqOQWmb4kTX6NebfixL0bd0DyFklMcKc2q3APDWocS9ep49aDMkpMR3tBjVgRjJxCtV6Fq8Hrfp16/lZblo0YpEPWBNRv6DBrN/e+zdaT2lBcHoYsWRPA/gEgBPQHIi83B+VaELISQPwCsAvkcpjVPAk1cSKY3eUkqfopRWUUqrpkyZksqnSjusOoEolbYL+oNhwxoCFsGIJLr4xoHkdbuSpWKy1PY1FI6YkiEx2stXWC7HXszY/Tajbn+1kK0ywOt/rtiN4hShMHubLRSOcOMnRkyfJBWZWpGoB6zVbhTnGReyelzA/OlsORaj942HNn5jpy2wQB8r+x6XUkrnqX5/lxByyOgkQogXkhP5T1XNSRshZBql9Iy8PXVWtp8CUK46vUy2nQJwrcb+nmwvYxw/YTBTJ2AHPdFFM1wxuwguALtPsJtbmUWRkTfzOpVe4zW1zcjxAqxQQq6s2lgxhb3nz7JPyvPhbL+1WNO0Ah+31qaqIoAVlYE4GZQVlYFYHYhRHYle9bldvr50FgD91Q4Ls7UbDW396BhgZ7/53IDHJSk4/0v1Im58xOh9Y6GN36xdUoZNe1uEFpfDWHEk+wghy+TYBQghS2EQI5EzqJ4FcJhS+ivVQ1sA3Ang5/K/m1X27xBCXoIUbO+Vnc1WAP9bye4CcCOAH1FKuwghfYSQZZC2zNZDWi1NGMz0m3CaRTPy8c3lFbrbZnuSdCAKR1qlBayZmfaRtvjgO4tBWRJYb1avpTTfb9mRnB0I6fY5f+HuZXh1XzNeP9CKWxaU4rbLy+MP0Fl92c2sUtDWvqidlB01A6PaDZZoo9/tAkUUj311saW6jxfuXobaxk7sONqBlXOKdZ0Iqw2wch9W2wIL9LHiSJYA+IgQonwjZgI4Qgg5AGmHaiHjnKsBfBPAAUJInWz7e0gOZBMh5C4ATQDWyo+9AeBmAA2Q+pz8D0gX7yKE/BTAHvm4R1TZYn8L4D8gydr/CRMsY6uVEwj2uIBsryfplQWLk13nUF1Vbiv+YpUzcg1Hc7ezKy8rmlJaxWAzRKIUO4914pZFbGFM9eD6zuGz2NfcE8vKMipYNFqxaB/zuBC3xZnn9+BnX16A4VAkodixvoUd6K5v6dVVM+DVbvBEG3+5dhGWXxiInWNlIK+q0F+FKLC0t7QILS5nsOJIbrJ6cUrpB+ALDq1iHE8B3Mu51nMAnmPYawFcavXexgu87YL7brgI18yZghc+Ou54qq5H2x81hVwuKw2b2V+3gtlaDgBo6bLnxPY2daF8ck7CTNvIUZgpCtSrfFc/NjuQg3XPfYywKo4RikbjBnE1FxSzV7hau9meH7zXMhyKxFXTs15HsrDiN1qEFpczWBFtbErljQjscU3lFEhZ1fGsnl+KypJ8/LTT+cwrj9t6SrFd3HJObGmBMzPGLDm9hLfCYdk7Bu2t6jbsbELN3lMJe/FGjsKsk+NVvmsfq5pVFJc2q9eDnZecobZb6flh9Fr06mV4mHU8rPjN2qoybKptEVpcDpO+EUGQEoy2OToHnc9MmVmUvj+8oKxp/ymntsAqw/KA2MMp6mPZ7aYURuj5pAX1XrzR4PpZK7tm47PW/rjtpW2HWvHWoTbcOK+Eu+3U0NbPrL3gaWcZ1biw4g56cYZ9J9mxsn0nuzErkGuoOabFjONROxpW/IYnDyOwj3Ak4wC9bQ5F7sQq+X5+fKV32Pm4Cw+fHJ8wu7U1Z2ou7ll5oWH8xmpL2WSJRGlsL96oMt3MvZmtyreqnfXpabYT+/R0P2673HrPj54h9mvpGQpbvjczYpc8R6O+N6HF5TxW6kgEGUxRrg9zSvITRBoLs+zpRL1491JUlbM7JBblpK/ivVyWGbm41Nze+azJOaiuKjc8bjVnBs+y2xAHSCAUobGMMKOsK97763O7UN/cg1f3NTOr8p/ZcSyhNoK3+vG4wKyl4OUVKHarPT++tJidbPClxdMtZ58ZFUsaKQIIUodwJOOAzXWncNXPt+FrT+3CVT/fFid8d7LbXhOqReWF3FyXnnMjaRNt/PSMNAh81tpncKTEzMnmBCULdZyhdoD1uu05Yy1KplhlST6yPfEjdraHxGbVPefYqcZPbGvAumd2475N7NXWz978DFc/Gi98yFv9/ODl/Vj75E4s/1n894X3mSt2ozbBWpTaDzVGtR88jByP1ap8gXOIra0xTudAED/YVCcHQ6UZ7/c31cX2rCdleXAuZF24sb65B2c58umH2wbTkvoLAGfkJluHzphzJM99ZC4nZOtBdibb2qd2IdfniQsin7PZ2EqLMuC9uq8ZQ+H4yMtQmOLVfc247fJy5PjYf5ZR6BeKRqJAJBo1FY+JUCAiR9C/t/H892X+NPbKT2232vPjhbuX4cWPGrF5/xmsWTgN666qAGB9262pk63TpfR9Sba+RmAfsSIZ4xw83ZeQaROOSnYAmDeDLTdhxLpndqOld/QlJE7Kel+5nMHVLoMjbOcQlQPkavFBp/V7/v2jE7p2s9t4PNRaV7wViZooPd9uwEzWFiCtTBaVF5qKNax7Zhd+vOUQ9pzoxo+3HMI3n9kFwHphpZE+WlGuD9rMdBex15NHYA3hSMY8vGFOsp/usbe1lWwh42PVC3GxLFmiZVaRHzdcMhWlecbV6sqrW1rB1sayi89t/NVXBuQ8m3EmLcoM3M+RG1HsyRZfhqJRhMIR1NQ2c7OwtDTJ2252Z/W83ik8xd7/2i2tHN2akd/tItyB/8Z5Jbr2lu6hhAlHrs/DFJAUOIvY2hrjzJ8+CV43iZMs97oJ5k+XAuXDNrO2kuW/P2lBFmfAnJqfjf95/Rx86/mPDa8jS21xtZ7sYmawHgiGUVaUjcl5fvQOJ19ZrwzGty6cho8ZEjK3yiKPZjLUXEiMZ+T7pS25K2YVofrJXZbubZYstVNZko9JWW70Dp9fsU3KcuvWa+il5G7lNAx7ePOnIIQANH4i5CLgZoCtmlfK7JWipD5bTQQQOIdYkYxxAnl+/PKri+D3uJDjc8PvceGXXz0vfHflrCKDK6SGj451oe4UO66x52QPvvK7D3F2wMS2izwuHGh2RrtLYchEmi8F0D04EuvPkgzq2p7TnNiTYj/Vpd+zA2AHxf/XzRfjxb+5Mk7U0CzZchfIbYda45wIAPQOR7gdJI0ypS4ozmOeF4pKCtVaRWd1dhuLrfddi2fXL8HtVWV4dv2SuJRnJRHA7yHI8brh9xBRcJgmxIpkHKAX/JzJkbwYbczK2ytj2nsme06sWzoTi8sLDZMBGtvNrTDqmnswYkeLH8BN80twwyUlCbU9fUNsB6rYX623J2B9uncYHhNbdiwULS29OISd/vNzprIdiR4svTM1q+aVcgswJb9EZGXKCdl1e1QQK5JxAi/42cspCBtr3LKALxioJpDjMVVHEjbQYFJYXF6IgM1g7U3zS1BdVR5zIkoc4WLONtF1c6cCAAZsZom19w/b7kei9PSw0qcFMI6p2JG2t5tlpVTdB8NRnBuJIBjmd2sUOItwJOMUpXnP4dPm0mYzndsuL4fXxATzYOuAqevdfKmxY1pRGUBlST4GQzYH9oGRWAD64VcP4IbHd+D+mv348RZ2Gx8lDhSO2ssT+689Lbhrw15MK7Du+JQVgJU+LcB5WuRV8AAAIABJREFUiR416m08I6cwSZPIoLznduAF1UWwPfWIra0xgpHaqvrxDxo6YqJ6qZCRB6SsrHTVkgBS9k/IxPh6rUG3PIWTJgaXPU3d6BwIItfjgp2u4P/8xmeWjv+8tQ8rL5qCuVNycYaRen3FzALcfuVsbP+sFW98epZxBQltT3YzPL71MO5bfYmlPi0KehI9lSX5Cc2o1GjjMcp7bieuketzJySXDIeiyPU5m6ghSEQ4kjGAkdqq+vGRSARRKgUt9fowJEu6+pEomO3LvaDcXHJBw1njlYuS/tvNiWk4jVK938upcQmDoLqqPCWV2jX7TuO+1ZdY6tOihqdE3DkQTEj/1SOZ/iCDI5GEpl0E/JohgXOIra0MR622qi2UYz0eDNO4VODxAq9PhpbG9n7UmxhobzcRR1FSR4dG0pNCPbVASvut5GQ6KfaqWc5XapdNlp7b6erwncc6LRV0mknXrW3sxK/eOoLaxngHFQpHEp6LQn81JXAG4UgyHEVtVY26crmlewghm1lFdvGNQjKM2Zf4g5f3Y90zuw2PU2Q69FD6dqTLLX/5sjIAwPwZbLFMxW70XpTaiJGsnCMF+itL8hPOn1bgsx232NfUpfu4Nu5VlO3RXY2se2YXqp/chSe2N6D6yV2xKnkgNb3sBeYQjiTDMSqyCoUjCbn4gCS/nu9Pzc7lCEXaRBsVzPamV/cA0eP+jfsMj1H6djjlN59dvwSPVS9EzT3LEq5JcF7Ko5vT9VKx8zKz/uaqWXh2/RK02oiRzCiUViS1jZ0J55/pG0mY/ZvleLv+FqI27nWmb4Rbs8KrklfujfcdMfvdEdhHOJIMx0htlTfb+vubL8GLdy9Fca69dFAj0hkfAYBzDlfov3WYH6xWU9fcAyfSFdwugsUzi1BdVQ6vx408jZPP85+X8viokV18qdh5+lnzpk8ypa3F4niH9D3ixaLMxqjUbK47Zas48uW97EmK0b15Pe4EGXw3cV4VQZCICLaPAfQKDnmz0/KibCwqL0QkMjoSKU5zxKSMvFlmFmbjUxOpwovLCxMCuHbI8bpjQWSjVebcqbnYw5BQmTtV0i4b5lTlD4+EsexCc1lrWhaVTYr7l/e4WZTYnZ1w3bRJ7BjJyjnFeGJ7A9MOSKt3r8eFiGrS4fW4hERKGhArkjFCY/sAth1uQ6Nmq8Co217f8PgINJ7td7aobMokYz0rpabBiRjJUCgcG9ACeX4UabplqWMDvMWXYj/AqQ06cLoPlSX5uKbSeq+P4vysuH95j5uFFdtTQwB4OHuG31g6i2k36m0SyPOjSiMJpNefXuAcYkUyBlj3zK7Y3vAT2xuwojKAF+5eBoCfTTM7kIP65p60BYpTzSyHZ5WtvcZ1JDuPdzpWFU3I+VFz26HWhFoPJTawal4pzg2zYxyKfcH0AmxkPL5gegE6B4KobbKuS3aguRuLygvR0c+Oz2jt2rombf941qpLDQUQpkgQYVQXM7J44e5lqG3sxI6jHVg5pzguJdlqf3qBcwhHkuHoBRirKqQZs/aPcVqBD+ue+xhelyuFlSTppSlJaXUtrSZ6raj7uiRLluf81paRntW+5l7m44q9d5i9tdU7HGb2VDfDe0c7sO6qCuxqZGdZ7WrsiulbaeuaCrM9sQC9un/8L76yEN97qU73To60DcLrAlwuFyilqJpl3C6gqoLdYdFqoyyBc4itrQzHKMDY0NYf50QAaXar1JWMF3gqsnYpzjebIuvMmk4dAzHqq1Gcy96KUewtHKe64/N2hMIR3ZUAjytmSivbC4rZPWQUO6uuSZvldaRtENsOteLWxTPw11ext6nUhKJAMBzFSISa0sbi1ZGIDomjh3AkGc5KjuSHYp8o/aizvc5+VXO95hbjSl+XZFHv1S+eya6+V+zTONt4it3NiT3sPtGN6id34YpZRbEsP23HQB5K598b57M1yBR7S/cQwiYSOJRV17RCa1uS4UhUVxtLr47ESPdLkDrE1laG08uR51DsR86wt0HGG799NzFbh8W3rp6FvmAEG2tbdI/r42wPaak76UwfFPVefUv3EPL9nrgVY76c/hvI86O8kB3YVuxVswrx4u6TzGOU56q5Zxm8HjfeOngGv33vuOH9KauAbk7vle7BEQTy/AiFI6aKQ5XV1Zkea4KJ4Si/Et1omxfQ1/0SpA6xIslwXt7LHhAV+58brOf3j0XMtgx++sMmQycCAO0mg+hP7Thm6jgzKKvHsqLshG3H/uD5rK7GLvbgq9jNDOQnOs9hUXkhviRXyxuhrJb04gzKdY1Qdy1st5Ftx3sOszUulSX5cfL9gtQjHEmG03OO/Yeo2IuyUlNwmCyPVS909Hoet7P5ZwVZ5hbjbQ6mHSv1H7xVjmKfX8qOByl2M5XaVqu5lVRco+pwXrzhn26dx+xaOCWfHe9ZNGMSfrT6IuZjvNoont6aWR02QeoQjiTDGQiyp5+KvctmJXOqMdNcyhrOflVdxFzwwEmZGaX+Qy9rCwDOhdlOU7GbqdRu7ZMcoNkY2p6TPbFrs+RblOfkxSHWXVWBR6sXJXQu5MVIblk0DQFObQqvNoq3Ekuz1JyAgYiRZDh/taAUnzJSUP9K7hgYpeOlUkSfC4tzsK+l37HrBU02qyop8OPAaWeeV4kbXMCZ9Sv2vRxdK8XOq/VQ0yFv3XlM+t9SOYst1+dmKuiqe3pYiUN4tZolKrvVLCuhpZW5pHRFQgh5jhBylhDyqco2mRDyNiHkqPxvkWwnhJAnCCENhJD9hJDLVefcKR9/lBByp8q+hBByQD7nCUJMTjPTgNJWtaEtuUFoWeUUXbvPZo/uVGNGyt0KLrdzekk1tc3oMdljxON2OSLaqI4bNHPiPYr9SBtbukWx82o91FxTKWX1KRpaRrT2S0H2wZEIsjQZclleV0JPD6M4hPL9Ly9iD/LXVE6xnGXl9bgTstBc41xLy6lxJNWkekXyHwD+DcAGle0hANsopT8nhDwk//4ggC8AmCP/txTA7wAsJYRMBvAPAKogTY72EkK2UEq75WO+BWA3gDcA3ATgTyl+TYY8/OoBbNh1Pqtm/fKZeGTNAlvXer2OHTh+va4Fi8oLMX96Pg5zBp7RxIyUuxWGTGZZmcGK4KSX2K8kWXdlGY6cHcSahdPiZOtPdgwyj1fseT43Bhk6KXnyquDwKfOZejx9Ki1KHUlZUTazy6BWr0qvY6f2+8/is9Z+Se3YwpsbCktN29RE6fjtN+LkOJJqUjqdpZTuAKCdPq0B8Lz88/MAblPZN1CJXQAKCSHTAKwG8DaltEt2Hm8DuEl+rIBSuotSSiE5q9swyjS09Sf8EW3YedL2jOLtz9p17UdNdPobDZwuhmyxmEbqFPWn7Fe2v/hxC/ac6MaPtxzCw5sPxOy816LYB8Ps906xHzht7Eie+eA4amqbUZjjS9CnYqGEZYwSAQCpsv3qR7dj3TO7cfWj27Gl7lTsMdb3n8V3N9Zh+c+2WfpbyYR+I50DQdQ39zgmncPD6XEk1YzGvkgJpfSM/HMrAKXMdwYAtX50i2zTs7cw7AkQQr5NCKklhNS2t7MHZqcwSp+0yoJp7AwexZ6u7n2jjZuz155qLnOoKlo9CORwiisVe4QzwVbsUzmZUGpe2tOC+2v244bHd6BiSi5q7lmGv7u+EjdczC5wPSVXy//n7ibm44rdqGOn2e95JEoxwpEG5l1jtGMkeg7UaZweR1LNqG6wyyuJlEeLKaVPUUqrKKVVU6awYw5O4ZRMgzLzaWhnb4OckKt/j3MeH2/wpNNTjTZekAz/ubsJNbXNOMdJM1IaxWZ52Xv+Po8L9c09uPlSdvU5jw07T6J3KISZk3PA2wVSCjRzfezdbsVu1LHTCTkS3jW8HndC8N7rJgkxklTEFYwcqNOMNbmX0cjaaiOETKOUnpG3p5QOQ6cAqHNGy2TbKQDXauzvyfYyxvGjihJA3LAzfm/TSnGUWhSPt0XUOTCCeoeaLo0Fzo3SC92497Rj1/r3j9izfQVFIuvS6ZPw/rHEzK2+4Qi+9vQuDI9YjwnctWGv7uOz5Fn9nVfNxmsHEjsU3nnVbAD8jp2hcAQ1tc1YXF6Y8P23giLdr0aJx+T63MwYiTp+k6q4AksMU3GgqZCpd2IcSSej4Ui2ALgTwM/lfzer7N8hhLwEKdjeKzubrQD+t5LdBeBGAD+ilHYRQvoIIcsgBdvXA/jXdL4QHsnINKhnPnoKrqd7g44HtCcKj1UvxD++dgD9wcxKnc6SZ9aDIXZGGQVwzoYTMcPlss5XYQ5bzFKxKx07H1Cp/1bNKkL1k+c1r9Yvn4l37luJuuYeeFzA9zaZT274oEGS7lcGZ/WkKhiOIKLxJJEojcm38OIK65fNTnoANmpGlgrGktxLqtN//wvATgBzCSEthJC7IDmQvySEHAVwg/w7IGVdHQfQAOBpAH8LAJTSLgA/BbBH/u8R2Qb5mGfkc44hAzK2FOzKNBg1BFIzntR9jXDyi1pdVY4RbbPwDOC03CPlyJn0J1A0yzGSDxrYMUS1/dbFM/Dhg9fjxbuX4sW/uTJB/0qZRVdXleO2y8tNBfsVKICd8mpMu51kFFNJZVzBqOV1qhgrci8pXZFQSr/GeWgV41gK4F7OdZ4D8BzDXgvg0mTuMdMwagg0UXH6HeEIBowqXrkmKDIKn39IHqSL8zgdEjX2QJ4fgTw/amrZ/dXVPUC0zagKc3yoa+7B8Y4B/P8MQcmOAamexmxvFUVSJdVxBb2W1xOdzKxmm8BoZz6C8YGZpLPpsrqvz2w5uoMoQezlFwaYEinLL2SvKswO3lUVAXz/xrmxZmzVVeX4MkdQ8hq52NbspEqRVEmHjHwgz49F5YXCiWgQjiQDuXXxDPz2a5fh5gWlWMH5AyZwVgdKkFqiFKi5Zxkeq16Ii6eym0cpGVXLKoy7BFrlb66ahceqF+LZ9UuYjyuDdyDPj9/csTjusd/csZg7cPIG76Jcn2G9RWVJPi4qiX8v5pbkxgZ+7aTKx/HGaqf1yJoFeOe+lXiseiHeuW9lxhbwjTfESJSBqHu087i4NA8//8oi3PbbD8dNX/ZM5IJADo47UPCmfEbVVeX4p9c/ZR5zolNKV3VSDkYhy+eOCWleVJKLz1VdNdWDNwD8YGNd3Lk/2FiHWxczS7QAJAaFD57pw9WPbo8F43/xlYXM8xva+uPuA5C6K6p7rGu3k36z7XPDTKbKkvyMjymMN4QjyTBYzXtYjISjWFReiHy/C32ZuOE/Tpg/Lc8RRwIAbx5sQ1VFACOcDoOK/Vi789XL0ShFfXMPQuGI7uD9+NbD0OYhhCjw+NbDuG/1JdzrK4M3K+vwgVf24+rK4oRVzQecXjofNHTEOQIlHgNITuvWhdNj8RZW73Y9+RZBahCOJMPgNe/RMjlXCjAKJ2IdXoCYRUufcwVnpQXSoDazKAefnU10TjNlgcP2PnaXwmT4/Y5G/OfuZgyF2Jl+SnD8j/Xsupk/1p/WdSQKVuotivPYqcY8OxCfDvzU+8cTVjvqx/VWQwJnETGSDIPXo11LquoJnMLpxlZOYkW08ZOTzrUyHgiGUVPbjCFO6nGUSjGAgqzUqNn2B8Pc3h1KnKGAU9nOs2uxUm+x/EL2d11rVyrVaxs7davL0119LjiPWJFkGFUVAayoDOB9g+2tsw7OlFNBdVW5pQF7IvDrbfoqvCd7pC0nJ7sysnATQF2SoY4z9HJUlnl2LYE8P6pmFcVtz14xq4i5xWTUHx5IrFRPkEhRrXbSXX0uOI9wJBmIOu/+lb3NONWbOLAU5vKX/5mAle0jI5zubZKpTJVrNXK8LgQ5cRQn8Hpc+OWXLsXO4124cV5JXFfDkoIsZr+UkgJ2fYmWhrb+hBjf+w2d2HaoFd3nQnEV2noFhJUl+cxK9ZCmKHE4HImtdkaj+lwgIRxJhlJVEUBVRQB7GjuZjqQ4wx2Jk6uRiSIFc8EUKRV2ZiAP3UnI17NwEyDH54lJmiiyJRtrW+L0qKqXlKH2ZOIAX72EXfOhhecc1FpfyvMZ1aCYqUhXS6aw5FvSUX0uEI4k4znG6TdytK1/wszUJ4oUTJPczTDX53zo8suXzcC65bMRCkfidLGAeD2qMz3sDDWeXYuZKnL18+kJE5q5VpQCB0/3YuVFUwGI6vPRQgTbM5xBjnx6x7kwvvr7j9J8N4JU0tYnaW19loJmZYdP92JReSG3CZQy+3+dofyrZ9dSWZIPr4kqfuX59AoIWcWObOKfUFSfs0llUy6xIslQlFz4QR1xQZ6InWBskp8lpXTPKMhC16B1Z0IAlOZ7caY/UT34nFw2z5vlzw7koL65Bzl+dsbYpBxzQ8WLHzUm1KGwUN+HXgGhuthxdiAHdzy9Ky7zzOMC5k8vMHVvE5lUp0ULR5KBqD90wcRhdrEUI7E7QSjMcmNqQQ7O9CemLOf7pZgaaztpRWUA6577WLf/DU1Q4GKzef8Zw2Os6l+pHc2v1i7GD2vq4SYuRGgU/1K9SKw8DLBSJGoX4UgyDLP9SATjj8lyz48gr9euARVT8rB6XgnqTyU6kpsvLYn9rJ3lr3vuY8PvW5jXWlHDVRVF2HMise/7uivLsHjm5KT7aogYiHXSkRYtHEmG0NDWj7rmHmR53aakswXjj1a5fmRKbhZOdCam4BpD4ecUDoaplEatDL7KLL++ucfU9212IM/UHZRzjls8c3JM6ytZ1JIpAmPSkRYtHEkGoC26crvMbSMIxhdTZNmbXE6cwgiv24UQp/7kV29/jt//+XjC/rhZqfbbLjO3n25GVl6ZNNldnSR7/kQjHWnRwpGMMqyiK207UcHo4QbgcgGhNCwQD7dJAfb8LHt/lldXFseaY2mJ0PNp1Or9ce0gEwxHmDGa4nxzBYmVJfkJygzqPuzJ9lRPVU/28U6qtwRFNHeUcaINqMAaVlZ8EfCbUvmJpClWNXOSI/cVlgfwwaC9GMmpriEEOeniapT9cQV169xffIU9KHf0x2+1KfpXDW3xSsWdA0HsaYqPkexp6kbnQJDbU511DVaaqtnzBWxSmRYtViSjjNImVJA+rK74ePqYFJKmWH1zD2odEHfM9kpbWod0Bka3i3Dv/5OWHnQOJab+ahkcCSfsjyurk22H25jn1Lf0xqRU9FYFLd1DCGmUIUPhKFq6h3CU87rUbXn10lSNJFUEo4dYkYwySptQQebC29WSxXox4FDl/dWVkurtvFJ+XYSeEyzK9WF+qXFQPEoTBROVVUDXADvIPxSUvqdGq4JQOALtzliESnZe/KQox2tK3TfVPdkF9hErEgukIsg3bGIrQpCZKEHx4+3OVKLPCkj9SP7+5kuw/Ui75fN3N3Zjd2Ni6i0L3iqA5xR3NnbFztO73m75uMR768K9189JqGGZW5Ibp8Ol3UZUp6kaSaoIRg/hSEySqiDfRgdVcgXphRBp1Js3vQD1JkQWr5tbjC8umI7/3NWET1oSt8K2f9aGu1deyBwwnUaZxZutW5ozNS/uPN71jFDXsBTleOOcCICE1Yw2TVXb1lc4kcxAbG2ZIJVBvtZeO/UCgkzA55H+fO665gJTxy+bLdVSDIywtzPbVcHlR9YsQM09y/B311finhUVSd3ntIJ4pWj1LF4pVjPi3uvmAJCysq6pjG9vq87KWj2/NOFcrb2yJB/VVeXcbV2PC8j3e5DldTHTVJXzhRPJHMSKxASpDPLNKMxC+6CIk4xFCvxSooTZFUSHPHBOzmYnWKjt6u2moSS3P8/0jeDZ9UsS+oEA5upIXESKvwDSCqaWk5VlNRuIt4p56VvL4PW4ReX6GEKsSEyQyiBfxRRzFcOCzGMkfH6AV6vY3rmMrVib55NiKh2ciYNi17aMDXPi62555m4mm7n7XIg5i1fqSLK8LuT7PfB5XPBrAhW5Pk8sXZi1glGnE+tNurSw1H3XL5+JqoqAUO8dY4gViQmMiqySoaXLXJ8HgXP83fWV2HGkFXWnkguSBzUyt4rsCC9gPUnW0qqckodjHYmfe6U8qWBpI7F4at0SFOdnoawoG92DI9y4A6A/6VEXq+X63Ljl3z6IC1ao4xRGchtWJ10i5jE+ECsSE+gVWSVLQwp6Twj0+fcPT+DAmeTf98tnFTHthdns+Zlinymr/GpR7Ga2m1ZUBrBqXmls5q7EDVbNK2XO8o0GaKVYrbIkH2s13RDXVpXFVgeBPL/u47xVht7zi5jH2EesSEyQSvXM7mF7VcwC+zjVcfFvrmEHwWub2Ns7tU09uO3ychRzilAVO08bafqkLOw42oGVc/5ve/ceY0V5xnH8+9tdEFhBVBRQUIgKuq2AsmKtlxIXUSwRbamC1dQ2ak1qIxhra2tam2hsWuMFtWqD16hYvFtLBGNtUCpyE0RALUWriyCWIrhKufn0j3nPOns4l92dw87Z3eeTkJwzZy7PLnvmeed9Z96nD7WD98+5D0jWyt/YsI2Zi+ubLJu5qJ4r6oaw/957Ff086fFd++SJpBnaYvZM1/6s35L7irRXniuSzPI1eaoUxpfnmxupUAKJK1QsqpBijabmNqpae3zXPnnXVjMUu5x3HddlJw9m1KDc/fvzVud+aPDUoQcWXD62pm/Oz7OXp1EytlijyRtVLhdPJM2wsWEbMxY2fXBwxoIPSzJG0qfaLwrbWuYZheznK3Lp17s7+1XnXm/TF9tzLu9SVUlV1jerqiJaDlBX02+3Y/fv1bVxLqs0Zd/Flf0sR7HPXefUIc5iks4AbiOa9Xu6mf2ulPtf8dFmdmQ9crtjl7Hio82cMiR367O5ptQN4drnVibah2u+bl3g4YuPZ8fOXUy8Z37R9U86vA8D9+3OCys27PbZ90bmLtQ0YN/uVFVWsDPWcq+qrGhstW9s2MamrU3HaTZt3dmqZzH2hGJTjnuVQpet3V+RSKoE7gTGATXAZEk1JT5KC5c337hhByXeh2u+Iw7oyfCBvXk/zzhFXOZuo7qafgzt2/ROq6F9q/NeQRRrtRd7FqMcFOtWS6PbzZWvjnBFMgpYbWZrACQ9BkwAStbM/9pBvaiqgPjs2FUV0fKk6jdtpedeVSW7k6gjy36WpzWmjBkC5H+uId8T4LOnjualleuZs/Jjxtb0LdoNVajV7uMMrqPpCInkYCA+gFEPHB9fQdKlwKUAhxyS+6njQvbfey9uPncEP3tiGZWqYJd9yR8mDi9Ja6y5pU47qxMH78c5Iwc0ntg3NmxrPDmPnzaXdVtyj1PkEr+KyDeTbKEEUVfTr0XjGPlqi7dF6VPn2pLM2ndZV0kTgTPM7OLw/kLgeDO7PNf6tbW1tmjRolYdK34SK+WX/rmla3c7qazb9AXPvLmOs4f156Y577Kjnf43ZV9FVJC/vkcui68dU/B3/cySD3l++XqOO6Q3N85+d7fPrz+rhuUfbcl7FZFm/e899ffk3J4gabGZ1eb8rAMkkhOA68zs9PD+GgAzuzHX+kkSyZ5U7KRyy+xVPPvmeiYM68fMxfVNWuLdq8TW2IRM+3SrZHPsQcfs93HZ23YRTZJW/15dmxxraN9q3vn487z7Htq3mjvPH9nk5Jz9s8V/lqmnH9X4fsiBezNn1VeD2tMmjWisjtccv352+W5XGF7P27nS6OiJpAp4F6gD1gILgfPNbEWu9cs1kbRUpiU+/uh+nH3swN1a1tn9+fHPgSbrZu9r0XsbmzxBnb3vYsdKImkrPc0rDOc6sg6dSAAknQncSnT7731mdkO+dTtKInHOubZUKJF0hMF2zGwWMCvtOJxzrjNq98+ROOecS5cnEuecc4l4InHOOZeIJxLnnHOJdIi7tlpC0ifAvwus0gf4TxuF01IeW+t4bK3jsbVOR43tUDM7INcHnS6RFCNpUb5b3NLmsbWOx9Y6HlvrdMbYvGvLOedcIp5InHPOJeKJZHd/SjuAAjy21vHYWsdja51OF5uPkTjnnEvEr0icc84l4onEOedcIp5IAklnSHpH0mpJv0g7njhJ90naIOmttGOJkzRQ0suSVkpaIemKtGOKk9RN0gJJy0J8v007pjhJlZLekPR82rFkk/S+pOWSlkoqq+myJfWW9ISktyWtCjWJUidpaPh9Zf5tkTQl7bgyJE0N34O3JM2Q1K1k+/YxkugLTVTT5DSiUr0LgclmVrK670lIOgVoAB4ys6+nHU+GpP5AfzNbIqknsBg4u4x+bwKqzaxBUhfgVeAKM5ufcmgASLoSqAV6mdn4tOOJk/Q+UGtmZfdgnaQHgVfMbLqkrkAPM/s07bjiwjllLVG11kIPQLdVPAcT/f3XmNlWSTOBWWb2QCn271ckkVHAajNbY2bbgceACSnH1MjM5gL/TTuObGa2zsyWhNefAauA5pc03MMs0hDedgn/yqLlJGkA8G1getqxtCeS9gFOAe4FMLPt5ZZEgjrgX+WQRGKqgO6hGGAP4KNS7dgTSeRg4MPY+3rK6ITYHkgaBBwDvJ5uJE2F7qOlwAbgRTMrl/huBa6mZSXs25IBcyQtlnRp2sHEDAY+Ae4P3YLTJVWnHVQOk4AZaQeRYWZrgZuAD4B1wGYzm1Oq/XsicYlJ2ht4EphiZlvSjifOzHaZ2QhgADBKUupdg5LGAxvMbHHasRRwkpkdC4wDfhK6V8tBFXAscJeZHQN8DpTbmGZX4Czg8bRjyZC0L1Evy2DgIKBa0gWl2r8nkshaYGDs/YCwzBURxh6eBB4xs6fSjief0P3xMnBG2rEAJwJnhXGIx4BTJT2cbkhNhRYsZrYBeJqo+7cc1AP1sSvLJ4gSSzkZBywxs4/TDiRmDPCemX1iZjuAp4BvlmrnnkgiC4EjJA0OrYlJwHMpx1T2wmD2vcAqM7s57XiySTpAUu/wujvRzRRvpxsVmNk1ZjbAzAYR/a39zcxK1jpMSlJ1uHmC0G00FiiLOwbNbD3woaShYVEdUBY3d8RMpoy6tYJ9FfBCAAAEGUlEQVQPgG9I6hG+t3VEY5ol0SFqtidlZjslXQ7MBiqB+8xsRcphNZI0AxgN9JFUD/zGzO5NNyogallfCCwP4xAAvzSzWSnGFNcfeDDcQVMBzDSzsrvVtgz1BZ6OzjdUAY+a2QvphtTET4FHQqNvDfDDlONpFBLvacCP044lzsxel/QEsATYCbxBCadL8dt/nXPOJeJdW8455xLxROKccy4RTyTOOecS8UTinHMuEU8kzjnnEvFE4pxzLhFPJM61gqSDwn357ZqkWknTwuvRkkr2tLPrPPw5EuccAJKuAxrM7Ka0Y3Hti1+RuE5H0gWh4NVSSfeEGYIbJN0QimDNl9Q3rHtYeL9c0vWSGsLyQZlCY5IukvSUpBck/VPS72PHGivpNUlLJD0eJrjMF9dxkv4RYlggqWc4zith+yWZK4Zw9TBX0l8VFWS7W1JF+OwuSYuUVcwrz/5HS3o+zN58GTA1/F5OlvRemEsNSb3i752L80TiOhVJRwHnASeGWYF3Ad8HqoH5ZjYcmAtcEja5DbjNzI4mmjAwnxFhv0cD5ymqHtkHuBYYE2bSXQRcmSeursCfiQpvDSeaZG8r0fT3p4XtzwOmxTYbRTRdSA1wGPCdsPxXZlYLDAO+JWlYgf0DYGbvA3cDt5jZCDN7Bfg7Uc0UiOYEeypM+OdcEz7Xluts6oCRwMIwl1R3opP1diAzD9diovmSAE4Azg6vHyWq6ZDLS2a2GUDSSuBQoDfRSX5eOFZX4LU82w8F1pnZQoDMdPxh7qY7JGWS3pDYNgvMbE1YbwZwEtFsuOeGGiJVRPON1RDVF8m1/zzhAFHRrauBZ4jms7qk0Mqu8/JE4jobAQ+a2TVNFkpX2VcDhrto+XdjW+x1ZnsRFdOa3NpgganAx8Bwoh6E/8U+yx7gNEmDgauA48xsk6QHgFbV5jazeaFrbTRQaWZlMQOwKz/eteU6m5eAiZIOBJC0n6RDC6w/H/hueD2phceaD5wo6fBwrGpJQ/Ks+w7QX9JxYd2eikqi7kN0JfEl0UzLlbFtRoXSBxVE3V6vAr2Iij1tDuM844rsP+4zoGfWsoeIrsTub+HP7joRTySuUzGzlUTjFnMkvQm8SNT9k88U4Mqw7uHA5hYc6xPgImBG2P414Mg8624nSga3S1oW4uoG/BH4QVh2JFGSyFgI3EFUV+I94GkzW0Y0RfjbRAlgXpH9x/0FOCcz2B6WPQLsS/nV13BlxG//da4AST2ArWZmkiYBk81sQhnENRq4yszG7+HjTAQmmNmFe/I4rn3zMRLnChtJNNgt4FPgRynH02Yk3U7UNXZm2rG48uZXJM61MUlPA4OzFv/czGanEY9zSXkicc45l4gPtjvnnEvEE4lzzrlEPJE455xLxBOJc865RP4PHH8B1NqDvDwAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'engine_capacity', 'price_usd' ,kind='scatter')\n","#as we show this is a good feature"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":296},"id":"12a_8lCTuNL4","executionInfo":{"status":"ok","timestamp":1654721155061,"user_tz":-180,"elapsed":2092,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"4ab5f905-fb94-43a6-f751-1daa06848c9b"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":26},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAchklEQVR4nO3dfZQddZ3n8fcnzwESEpKQwTzYKFGMgFF7IazuDooDAV3CDuqAOokuh+wozoPMjsQZVxwczyLODsqu4jCHHIhnZxBhByIEY4QwuKPBNAMmPIi0IZAETEKeQ0hI6O/+cX+NN8293bdu1b39cD+vc+5J1bd+VfWrDvQnv6q6VYoIzMzM6jWsvztgZmaDm4PEzMxycZCYmVkuDhIzM8vFQWJmZrmM6O8ONNvkyZOjra2tv7thZjaoPPzwwy9GxJRKy1ouSNra2ujo6OjvbpiZDSqSnq22zKe2zMwsFweJmZnl4iAxM7NcHCRmZpaLg8TMzHJpeJBI2iBpnaRHJXWk2nGSVkp6Ov05MdUl6XpJnZLWSnpX2XYWpvZPS1pYVn932n5nWleNOpbrVjzJWV9fxXUrnmzULszMBp1mjUjeFxFzIqI9zS8G7ouIWcB9aR7gPGBW+iwCboBS8ABXAWcApwNXdYdPanNZ2XrzGnEAs75wD99ctZ4N2/fzzVXrmfWFexqxGzOzQae/Tm3NB25J07cAF5bVl0bJamCCpBOAc4GVEbEjInYCK4F5adn4iFgdpefhLy3bVmGuW/Ekh3o8bf9Q4JGJmRnNCZIAfiTpYUmLUm1qRLyQpn8DTE3T04CNZetuSrXe6psq1I8gaZGkDkkd27Zty3wAS366IVPdzKyVNOOb7e+NiM2SjgdWSvpl+cKICEkNfbtWRNwI3AjQ3t6eeV+vHO7KVDczayUNH5FExOb051bgnyld49iSTkuR/tyamm8GZpStPj3VeqtPr1AvVNukozPVzcxaSUODRNLRksZ1TwPnAI8By4DuO68WAnel6WXAgnT31lxgdzoFtgI4R9LEdJH9HGBFWrZH0tx0t9aCsm0VZvYbxmWqm5m1kkaf2poK/HO6I3cE8I8R8UNJa4DbJF0KPAt8NLVfDpwPdAL7gU8BRMQOSV8B1qR2V0fEjjT9GeBmYCxwb/oU6ujRozLVzcxaSUODJCLWA++oUN8OnF2hHsDlVba1BFhSod4BnJK7s704eeoxmepmZq3E32yvwSObdmWqm5m1EgdJDZ56fnemuplZK3GQ1GDbS4cy1c3MWomDpAbjx1S+lFStbmbWShwkNRhW5TmQ1epmZq3EQVKDkcMqB0a1uplZK3GQ1KCrysijWt3MrJU4SGrQNmlsprqZWStxkNTg7W+YkKluZtZKHCQ1eOXQ4Ux1M7NW4iCpwU+f2ZmpbmbWShwkNXjr8ZUfF1+tbmbWShwkNXh+98FMdTOzVuIgqcHeA69kqpuZtRIHSQ32HXg1U93MrJU4SGqwv8rdWdXqZmatxEFSg6NGVn44Y7W6mVkrcZDUYPSIyj+manUzs1bi34RmZpaLg6QGb/2dcZnqZmYDTeeWvdzesZHOLXsL37ZP8tdg5IjhmepmZgPJl+5cx9LVz702v+DMmVw9/9TCtu8RSQ2e2bovU93MbKDo3LL3iBABWPqz5wodmThIarD2+V2Z6mZmA8WjGyv/nqpWr4eDpAajh1e5a6tK3cxsoJgzo/LrLqrV6+HfhDV48/HHZKqbmQ0UJ00dx4IzZx5RW3DmTE6aWtzNQr7YXoPt+yo/nLFa3cxsILl6/qksmNvGoxt3MWfGhEJDBBwkNfn1iy9nqpuZDTQnTR1XeIB086mtGoyucpdvtbqZ2UCzfd9BfrFxV0POpHhEUoMp48ewceeBinUzs4Hurkc3c+Udaxk5bBiHurq49qLTuGDOtMK27xFJDd42tfJF9Wp1M7OBYvu+g1x5x1oOHOpi78HDHDjUxefvWFvoyMRBUoPn91R+gVW1upnZQLFp58uMHHbkr/qRw4axaWdx13ibEiSShkt6RNLdaf5ESQ9J6pT0PUmjUn10mu9My9vKtvGFVH9K0rll9Xmp1ilpcSP6P/O4sZnqZmYDxfSJYznU1XVE7VBXF9MnFvf7q1kjkj8Fniyb/xpwXUScBOwELk31S4GdqX5daoek2cDFwNuBecC3UzgNB74FnAfMBi5JbQv1H2ZNyVQ3MxsoJh0zmmsvOo0xI4cxbvQIxowcxrUXncakY0YXto+GX2yXNB34IPBV4ApJAt4PfCw1uQX4MnADMD9NA9wO/O/Ufj5wa0QcBJ6R1Amcntp1RsT6tK9bU9snijyG/7H8sar1S854Y5G7MjMr3AVzpvGekyazaefLTJ84ttAQgebctfUN4PNA9w3Mk4BdEdH9ntpNQPftA9OAjQARcVjS7tR+GrC6bJvl62zsUT+jZwckLQIWAcycObPn4j7tqXJNqlrdzGygmXTM6MIDpFtDT21J+hCwNSIebuR++hIRN0ZEe0S0T5ni01FmZkVq9IjkPcAFks4HxgDjgW8CEySNSKOS6cDm1H4zMAPYJGkEcCywvazerXydanUzM2uCho5IIuILETE9ItooXSy/PyI+DqwCPpyaLQTuStPL0jxp+f0REal+cbqr60RgFvBzYA0wK90FNirtY1kjj8nMzI7UX99svxK4VdLfAI8AN6X6TcB308X0HZSCgYh4XNJtlC6iHwYuj4hXASR9FlgBDAeWRMTjTT0SM7MW17QgiYgHgAfS9Hp+e9dVeZsDwEeqrP9VSnd+9awvB5YX2NXXGQVU+urhqEbu1MxskPA322twOGPdzKyVOEhq0JWxbmbWShwkZmaWi4OkBqOVrW5m1kocJDWIKoFRrW5m1kocJDV4pcrFkGp1M7NW4iAxM7NcHCRmZi2gc8tebu/YSOeWvYVv2+9sNzMb4r505zqWrn7utfkFZ87k6vmnFrZ9j0jMzIawzi17jwgRgKU/e67QkYmDxMxsCHt0465M9Xo4SMzMhrA5MyZkqtfDQVKD4RnrZmYDxUlTx7HgzCPfDLvgzJmcNHVclTWy88X2GryasW5mNpBcPf9UFsxt49GNu5gzY0KhIQIekZiZtYSJR49i1tRxTDy6+BdgeERiZjbE3fXoZq68Yy0jhw3jUFcX1150GhfMmVbY9j0iqcHEsZXztlrdzGyg2L7vIFfesZYDh7rYe/AwBw518fk71rJ938HC9uEgqcHOlyu/wqpa3cxsoNi082VGDjvyV/3IYcPYtPPlwvbhIDEzG8KmTxzLoa4jnzB7qKuL6RPHFrYPB4mZ2RA26ZjRzDzuyNB443FjmXTM6ML24SAxMxvCOp7Zzq+2vHRE7aktL9HxzPbC9uEgMTMbwh58+sVM9Xo4SMzMhrA3TT4qU70eDpIajKjySt1qdTOzgeJwlTe5VqvXw0FSg67IVjczGyjaJlUeeVSr18NBUoNqwe1XtpvZQPebPQcy1evhIDEzG8Je3PdKpno9HCRmZkPYe0+anKleDwdJDao9UctP2jKzgc7vIxkgqj1Ry0/aMrPBYFC/j0TSGEk/l/QLSY9L+utUP1HSQ5I6JX1P0qhUH53mO9PytrJtfSHVn5J0bll9Xqp1SlrciOMYU+VViNXqZmYDzbX3PsEX71zHtfc+Ufi2G31q6yDw/oh4BzAHmCdpLvA14LqIOAnYCVya2l8K7Ez161I7JM0GLgbeDswDvi1puKThwLeA84DZwCWpbaGmjBuTqW5mNpC0Lb6HH/3yRQ4cDn70yxdpW3xPodtvaJBEyb40OzJ9Ang/cHuq3wJcmKbnp3nS8rMlKdVvjYiDEfEM0Amcnj6dEbE+Il4Bbk1tC7VxV+Xb5KrVzcwGikU3P5SpXo8+g0TSXkl7qn1qWH+4pEeBrcBK4NfArojovsSwCeh+Vdc0YCNAWr4bmFRe77FOtXrPPiyS1CGpY9u2bX112cxsyHiws/LDGavV69FnkETEuIgYD3wTWEzpF/V04ErgGzWs/2pEzEnrnA6cnKvHdYiIGyOiPSLap0yZ0uzdm5n1m7ltEzPV65Hl1NYFEfHtiNgbEXsi4gYynEaKiF3AKuBMYIKk7jvGpgOb0/RmYAZAWn4ssL283mOdanUzMwM+d+7bMtXrkSVIXpL08XSqapikjwMv9baCpCmSJqTpscDvAU9SCpQPp2YLgbvS9LI0T1p+f0REql+c7uo6EZgF/BxYA8xKd4GNonRBflmGYzIzG9LWbdyZqV6PLEHyMeCjwJb0+Uiq9eYEYJWktZR+6a+MiLspnRa7QlInpWsgN6X2NwGTUv0KSqfSiIjHgduAJ4AfApenU2aHgc8CKygF1G2prZmZAQ9Uee9ItXo9av5CYkRsIOMdURGxFnhnhfp6StdLetYPUAqoStv6KvDVCvXlwPIs/TIzaxVnzZrMj5/cWrFelJpHJJKulTRe0khJ90naJukThfXEzMwKd+qMyhfVq9XrkeXU1jkRsQf4ELABOAn4i8J6YmZmhRto10i6T4N9EPh+ROwurBdmZtYQP6pwWqu3ej2yPLTxbkm/BF4GPi1pCuCvdpuZDWBHjag8XqhWr0fNW4qIxcC/B9oj4hClW38LfxyJmZkVZ3+Vl7NXq9ej5hGJpAVl0+WLlhbWGzMzK9TW3fsz1euR5dTWvyubHgOcDfwbDhIzswGr88XKgVGtXo8s3yP54/L59I31WwvriZmZFW7imBFs2//61/BNHFPcew3zXG15CTixqI6YmVnxJh49OlO9HlmukfyA0rtEoBRAsyk9tsTMzAao4VXe5FqtXo8sY5u/LZs+DDwbEZuK64qZmRVt886XM9XrkeUayb/0tlzSzyLizPxdMjOzohw8VPk232r1ehT5ql2/wNzMbICZPL7ytZBq9XoUGSTRdxMzM2umV1+t/Ku5Wr0eRQaJmZkNMDv3v5KpXo8ig0R9NzEzs2aaOfGoTPV6ZAoSSW+U9IE0PVbSuLLFf1hYr8zMrBDHHj0yU70eWV5sdRlwO/D3qTQduLN7eUQ8VlivzMysENOrjDyq1euRZURyOfAeYA9ARDwNHF9YT8zMrHCnvOHYTPV6ZAmSgxHx2tUZSSPwnVpmZgPar7fty1SvR5Yg+RdJfwmMlfR7wPeBHxTWEzMzK9xjm3dlqtcjS5AsBrYB64D/CiwHvlhYT8zMrHAbtld+XHy1ej2yPGtrLLAkIv4BQNLwVCuuN2ZmVqi9Bys/CqVavR5ZRiT3UQqObmOBHxfWEzMzG5SyBMmYiHjt6kyaLu7+MTMzK9wJ40dlqtcjS5C8JOld3TOS3g0U9xxiMzMr3I69lR+FUq1ejyzXSP4M+L6k5yk9DuV3gD8orCdmZla4g1W+pFGtXo8s7yNZI+lk4K2p9FREHCquK2ZmNhj1GSSS3h8R90v6/R6L3iKJiPi/DeqbmZkNArWMSH4XuB/4TxWWBeAgMTNrYX0GSURcJWkYcG9E3NaEPpmZ2SBS011bEdEFfD7rxiXNkLRK0hOSHpf0p6l+nKSVkp5Of05MdUm6XlKnpLU97hJbmNo/LWlhWf3dktalda6X5PeimJklY4Znq9cjy+2/P5b031I4HNf96WOdw8CfR8RsYC5wuaTZlB63cl9EzKL0RcfFqf15wKz0WQTcAKXgAa4CzgBOB67qDp/U5rKy9eZlOCYzsyFt1IjKiVGtXo8st//+AaVrIp/pUX9TtRUi4gXghTS9V9KTwDRgPnBWanYL8ABwZaovjYgAVkuaIOmE1HZlROwAkLQSmCfpAWB8RKxO9aXAhcC9GY7LzGzI2nPw1Uz1emQJktmUQuS9lALlJ8B3al1ZUhvwTuAhYGoKGYDfAFPT9DRgY9lqm1Ktt/qmCvWe+15EaYTDzJkza+2ymZnVIMuprVuAtwHXA/+LUrDcUsuKko4B7gD+LCL2lC9Lo4+GvtckIm6MiPaIaJ8yZUojd2Vm1nKyjEhOSdc6uq2S9ERfK0kaSSlE/k/Zd062SDohIl5Ip662pvpmYEbZ6tNTbTO/PRXWXX8g1adXaG9mZk2SZUTyb5Lmds9IOgPo6G2FdAfVTcCTEfF3ZYuWAd13Xi0E7iqrL0h3b80FdqdTYCuAcyRNTBfZzwFWpGV7JM1N+1pQti0zM2uCLCOSdwM/lfRcmp8JPCVpHaUzVKdVWOc9wB8C6yQ9mmp/CVwD3CbpUuBZ4KNp2XLgfKCT0ntOPkVp4zskfQVYk9pd3X3hndJ1m5spPdb+Xnyh3cysqbIESebbaiPi/1F6wGMlZ1doH8DlVba1BFhSod4BnJK1b2ZmVowsD218tpEdMTOzwSnLNRIzM7PXcZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5eIgMTOzXBwkZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5eIgMTOzXBwkZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5eIgMTOzXBwkZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLJeGBomkJZK2SnqsrHacpJWSnk5/Tkx1SbpeUqektZLeVbbOwtT+aUkLy+rvlrQurXO9JDXyeMzM7PUaPSK5GZjXo7YYuC8iZgH3pXmA84BZ6bMIuAFKwQNcBZwBnA5c1R0+qc1lZev13JeZmTVYQ4MkIh4EdvQozwduSdO3ABeW1ZdGyWpggqQTgHOBlRGxIyJ2AiuBeWnZ+IhYHREBLC3blpmZNUl/XCOZGhEvpOnfAFPT9DRgY1m7TanWW31ThfrrSFokqUNSx7Zt2/IfgZmZvaZfL7ankUQ0YT83RkR7RLRPmTKl0bszM2sp/REkW9JpKdKfW1N9MzCjrN30VOutPr1C3czMmqg/gmQZ0H3n1ULgrrL6gnT31lxgdzoFtgI4R9LEdJH9HGBFWrZH0tx0t9aCsm2ZmVmTjGjkxiX9E3AWMFnSJkp3X10D3CbpUuBZ4KOp+XLgfKAT2A98CiAidkj6CrAmtbs6Irov4H+G0p1hY4F708fMzJqooUESEZdUWXR2hbYBXF5lO0uAJRXqHcApefpoZmb5+JvtZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5eIgMTOzXBwkZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5eIgMTOzXBwkZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5eIgMTOzXBwkZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5TIkgkTSPElPSeqUtLi/+2Nm1koGfZBIGg58CzgPmA1cIml2//bKzKx1DPogAU4HOiNifUS8AtwKzO/nPpmZtYyhECTTgI1l85tS7TWSFknqkNSxbdu2zDs4+fijMtXNzFrJUAiSPkXEjRHRHhHtU6ZMybz+D694X6a6mdlAcfzRIzLV6zEUgmQzMKNsfnqqFWrDNR98bQRy8vFHseGaDxa9CzOzwv38v5+bqV4PRURhG+sPkkYAvwLOphQga4CPRcTjldq3t7dHR0dHE3toZtb/Tv/KCra+dJjjjx5RV4hIejgi2istK25s008i4rCkzwIrgOHAkmohYmbWqoocgfQ06IMEICKWA8v7ux9mZq1oKFwjMTOzfuQgMTOzXBwkZmaWi4PEzMxyGfS3/2YlaRvwbI5NTAZeLKg7g0WrHXOrHS/4mFtFnmN+Y0RU/EZ3ywVJXpI6qt1LPVS12jG32vGCj7lVNOqYfWrLzMxycZCYmVkuDpLsbuzvDvSDVjvmVjte8DG3ioYcs6+RmJlZLh6RmJlZLg4SMzPLxUFSgaR5kp6S1ClpcYXloyV9Ly1/SFJb83tZrBqO+QpJT0haK+k+SW/sj34Wqa9jLmt3kaSQNOhvFa3lmCV9NP1dPy7pH5vdx6LV8N/2TEmrJD2S/vs+vz/6WRRJSyRtlfRYleWSdH36eayV9K7cO40If8o+lB5F/2vgTcAo4BfA7B5tPgN8J01fDHyvv/vdhGN+H3BUmv50KxxzajcOeBBYDbT3d7+b8Pc8C3gEmJjmj+/vfjfhmG8EPp2mZwMb+rvfOY/5PwLvAh6rsvx84F5AwFzgobz79Ijk9U4HOiNifUS8AtwKzO/RZj5wS5q+HThbkprYx6L1ecwRsSoi9qfZ1ZTeRDmY1fL3DPAV4GvAgWZ2rkFqOebLgG9FxE6AiNja5D4WrZZjDmB8mj4WeL6J/StcRDwI7OilyXxgaZSsBiZIOiHPPh0krzcN2Fg2vynVKraJiMPAbmBSU3rXGLUcc7lLKf2LZjDr85jTkH9GRNzTzI41UC1/z28B3iLpXyWtljSvab1rjFqO+cvAJyRtovReoz9uTtf6Tdb/3/s0JF5sZc0j6RNAO/C7/d2XRpI0DPg74JP93JVmG0Hp9NZZlEadD0o6NSJ29WuvGusS4OaI+J+SzgS+K+mUiOjq744NFh6RvN5mYEbZ/PRUq9gmvTP+WGB7U3rXGLUcM5I+APwVcEFEHGxS3xqlr2MeB5wCPCBpA6VzycsG+QX3Wv6eNwHLIuJQRDwD/IpSsAxWtRzzpcBtABHxM2AMpYcbDlU1/f+ehYPk9dYAsySdKGkUpYvpy3q0WQYsTNMfBu6PdBVrkOrzmCW9E/h7SiEy2M+bQx/HHBG7I2JyRLRFRBul60IXRERH/3S3ELX8t30npdEIkiZTOtW1vpmdLFgtx/wccDaApLdRCpJtTe1lcy0DFqS7t+YCuyPihTwb9KmtHiLisKTPAiso3fGxJCIel3Q10BERy4CbKA1/Oyld1Lq4/3qcX43H/HXgGOD76b6C5yLign7rdE41HvOQUuMxrwDOkfQE8CrwFxExaEfbNR7znwP/IOlzlC68f3Iw/8NQ0j9R+sfA5HTd5ypgJEBEfIfSdaDzgU5gP/Cp3PscxD8vMzMbAHxqy8zMcnGQmJlZLg4SMzPLxUFiZma5OEjMzCwXB4lZGUkTJH2mv/sBIOnq9CXQLOu0S7q+UX0yq8S3/5qVSa8EuDsiTulRH5Geq2ZmPXhEYnaka4A3S3pU0hpJP5G0DHgCQNKdkh5O7+pY1L2SpH2SvirpF+lhh1NT/SOSHkv1B1Ptk2k7KyVtkPTZ9L6XR9K6x6V2N0v6cJq+Rr99H8zf9rLtsyTdnaaPS/tZm7Z7Wqp/Ob2z4gFJ6yX9SbN+uDY0+ZvtZkdaDJwSEXMknQXck+afScv/S0TskDQWWCPpjvTN76OB1RHxV5KupfQ49r8BvgScGxGbJU0o288pwDspPY6jE7gyIt4p6TpgAfCN7oaSJgH/GTg5IqJsO9W23e2vgUci4kJJ7weWAnPSspMpvWNmHPCUpBsi4lDdPzVraR6RmPXu52UhAvAnkn5B6dlbM/jtAw1fAe5O0w8DbWn6X4GbJV1G6REd3VZFxN6I2EbpNQQ/SPV1Zet2203pfSg3Sfp9So+16G3b3d4LfBcgIu4HJknqfu/GPRFxMCJeBLYCU3v9KZj1wkFi1ruXuifSCOUDwJkR8Q5KbxIckxYfKns+06uk0X5E/BHwRUqh83AaXQCUPz25q2y+ix5nCtK1mdMpvUTtQ8AP+9h2Lcr3/1p/zerhIDE70l5Kp3sqORbYGRH7JZ1M6dHyvZL05oh4KCK+ROmJsjP6WqfCNo4Bjo2I5cDngHfUuO2fAB9Pbc8CXoyIPVn3b9YX/yvErExEbFfp7YCPAS8DW8oW/xD4I0lPAk9ROr3Vl69LmkXp/dj3UXpn+JzeV3mdccBdksak7VzRy7bLXzj2ZWCJpLWUToctxKwBfPuvmZnl4lNbZmaWi4PEzMxycZCYmVkuDhIzM8vFQWJmZrk4SMzMLBcHiZmZ5fL/AVplD4yMCO/YAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'transmission', 'price_usd' ,kind='scatter')\n","# as we show this feature is not good enough"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":296},"id":"KZzp-0PruNdt","executionInfo":{"status":"ok","timestamp":1654721155062,"user_tz":-180,"elapsed":27,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"5eafcd92-9820-4905-f171-08c8c2920166"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":27},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbI0lEQVR4nO3de9RddX3n8feH3InkRgJiLoYOsRKpKD6FUC+1RDHQDmFmvEBRUhcLuhRddmytsXUNDgxr6XRaW7pUGkvGBG25TZVUg2nkWgtBHioEgsU8hlsiJIGEJFwCJHznj/N78BD2TvblnPOck+fzWuusnPPZe5/z20/g+WRfzt6KCMzMzKo6ZKgHYGZmvc1FYmZmtbhIzMysFheJmZnV4iIxM7NaRg71ADpt6tSpMXv27KEehplZT7n77rufjIhpWdOGXZHMnj2b/v7+oR6GmVlPkfRI3jTv2jIzs1pcJGZmVouLxMzManGRmJlZLS4SMzOrpe1FIulhSfdJukdSf8qmSFotaX36c3LKJekySQOS1ko6oel9FqX510ta1JS/I73/QFpW7VqXb9/+EB+6/Ha+fftD7foIM7O2GNi8i+v6H2Ng866Wv3enTv/9nYh4sun1YuDGiPiypMXp9eeB04A56XES8A3gJElTgIuAPiCAuyWtiIjtaZ7zgTuBlcAC4IZWr8DxX/ohO3bvBeCuh7fzF//yIPd+aUGrP8bMrOX+x/fuY/maR195fe7Js7h44W+07P2HatfWQmBZer4MOLMpXx4Na4BJko4CPgCsjohtqTxWAwvStAkRsSYa18Nf3vReLfPt2x96pUQG7di911smZtb1BjbvelWJACy/49GWbpl0okgC+BdJd0u6IGVHRsTj6fkTwJHp+XTgsaZlN6Zsf/nGjPxVJF0gqV9S/9atW0uvwHfuzP4eTl5uZtYtvn7z+lJ5FZ3YtfWuiNgk6QhgtaT/aJ4YESGprXfXioglwBKAvr6+0p81ZmR23+blZmbd4udbni2VV9H234QRsSn9uQX4LnAisDntliL9uSXNvgmY2bT4jJTtL5+RkbfUtAnjSuVmZt3irL4ZpfIq2lokksZLOmzwOXAqcD+wAhg882oRcH16vgI4N529NQ/YkXaBrQJOlTQ5neF1KrAqTdspaV46W+vcpvdqmTcdOb5UbmbWLd581IRSeRXt3iI5EvixpHuBnwA/iIgfAl8G3i9pPfC+9BoaZ11tAAaAbwKfBIiIbcAlwF3pcXHKSPP8fVrmF7ThjK3/8vaZpXIzs25x2/onS+VVtPUYSURsAI7PyJ8C5mfkAVyY815LgaUZeT9wXO3BmpkdhI6fMbFUXoWPFhewat0TpXIzs24xKuekoLy8ChdJAet++XSp3MysW2za/nypvAoXSQHbn9tTKjcz6xbrN+8slVfhIingxDdOKpWbmXWLrbteLJVX4SIpYOOO3aVyM7NuMevwQ0vlVbhICnhq1wulcjOzbnHCrMml8ipcJAWMGjmiVG5m1i22P/dSqbwKF0kB/ma7mfWqyYeOKpVX4SIpwN9sN7Ne5S0SMzOrZfeL2V9TyMurcJEUcM9j2V88zMvNzLrFfb/M/r5IXl6Fi6SATjS6mVk7nDr3yFJ5FS6SAm56MPuuinm5mVm3mD/39Uwc++ozTCeOHcH8ua9v2We4SAp4OV4ulZuZdYuBzbvYsXvvq7Idu/f23D3be9740dlX28/Lzcy6xY8Hsu87kpdX4SIp4Pk92VseebmZWbfY8Vz2NbXy8ipcJAW8dXr2DWDycjOzbvFYzuXi8/IqXCQFHDlhbKnczKxb7H05e89JXl6Fi6SAbc9mbwLm5WZm3WL8mOxLoeTlVbhICpgyfnSp3MysW/Tl3DcpL6/CRVLA9MnZ1+3Py83MusXTz2d/cTovr8JFUsBLe/aWys3MusUdOaf55uVVuEgKWHn/E6VyM7NusXZT9jUB8/IqXCQF+A6JZtarjjnidaXyKlwkBUw9LPugel5uZtYtPvKbs0rlVbhIiogol5uZdYl7H91eKq/CRVLA7Ru2lcrNzLrFD3KO5eblVbhIChg3ckSp3MysWxx71IRSeRUukiKkcrmZWZf4wmnHlsqrcJEU8J+mjiuVm5l1i8k5V+DIy6twkRSwfXf2Fw/zcjOzbnHHL54qlVfRkSKRNELSTyV9P70+WtKdkgYkXS1pdMrHpNcDafrspvf4QsoflPSBpnxBygYkLW7H+N/369NK5WZm3eLJZ3aXyqvo1BbJZ4CfNb3+CvDViDgG2A6cl/LzgO0p/2qaD0lzgbOAtwALgK+nchoBfA04DZgLnJ3mbaljp2df3CwvNzPrFu86JvsfvHl5FW0vEkkzgN8F/j69FnAKcF2aZRlwZnq+ML0mTZ+f5l8IXBURL0TEQ8AAcGJ6DETEhoh4EbgqzdtSX/yntaVyM7NuceMD2af55uVVdGKL5K+BPwUG76JyOPB0RAxeenIjMD09nw48BpCm70jzv5Lvs0xe/iqSLpDUL6l/69atpVfg0aezNwHzcjOzbvG9tY+Xyqtoa5FI+j1gS0Tc3c7POZCIWBIRfRHRN21a+c258Tn3f8nLzcy6xcyJY0rlVYxs2TtleydwhqTTgbHABOBvgEmSRqatjhnApjT/JmAmsFHSSGAi8FRTPqh5mby8ZV7MuWx/Xm5m1i06cdZpW7dIIuILETEjImbTOFh+U0ScA9wMfDDNtgi4Pj1fkV6Tpt8UEZHys9JZXUcDc4CfAHcBc9JZYKPTZ6xo9Xq8lHNJrbzczKxbdOKs06H6Hsnngc9KGqBxDOSKlF8BHJ7yzwKLASJiHXAN8ADwQ+DCiNibtmg+BayicVbYNWleMzMD5uWcnZWXV9HuXVuviIhbgFvS8w00zrjad57dwIdylr8UuDQjXwmsbOFQX2PcSMi6K+W4jv30zMyqeXJXzvdIcvIq/M32AkYekv1jysvNzLpFJ+7w6t+EBTzz4sulcjOzbvHg4ztL5VW4SArI+yH5h2dm3W7XC9lnZ+XlVfh3YQFTxmcfDMnLzcy6xbuPmVIqr8JFUsCel7PP883Lzcy6xZTXjS2VV+EiKWDn89mbgHm5mVm3eP6Fl0rlVbhICjgk50aIebmZWbe4Z1P2QfW8vAoXSQEjc35KebmZWdd4OWfPSV5egX8VFpC3B8t7tsys22146vlSeRUuEjOzg9hvHT25VF6Fi8TM7CA2bUL22Vl5eRUukgLG5vyU8nIzs27x883Plsqr8K/CAsaMGlEqNzPrFjOnZG955OVVuEgK2JFzKYG83MysW9y/cUepvAoXiZnZQezBzc+UyqtwkRQwZVz2Lqy83MysW7x+UvYurLy8ChdJAa+fOK5UbmbWLd4z54hSeRUukgI2bMneBMzLzcy6xT2PPFUqr8JFUsDunPtX5eVmZt3iZ09kn+abl1fhIjEzO4hNGT+qVF6Fi6SAvEPqPtRuZt3udeOyb8CXl1fhIilg3OhyuZlZt3j86d2l8ipcJAW8lPO9w7zczKxbzJ5yaKm8ChdJASOUfQervNzMrFu8+Q0TS+VVuEgKGDEi+97sebmZWbd4+pnsXVh5eRUukgJ2vVAuNzPrFnc+vL1UXoWLxMzsILZ3b/aek7y8ChdJATMmjimVm5l1izGjsn/N5+VVuEgKGD86+3zrvNzMrFu8IeeagHl5FS6SAn654/lSuZlZt3jp5exrOeXlVbS1SCSNlfQTSfdKWifpf6b8aEl3ShqQdLWk0Skfk14PpOmzm97rCyl/UNIHmvIFKRuQtLgd63HEYdmXW87Lzcy6xawp40vlVbR7i+QF4JSIOB54G7BA0jzgK8BXI+IYYDtwXpr/PGB7yr+a5kPSXOAs4C3AAuDrkkZIGgF8DTgNmAucneZtqfFjc3Zt5eRmZt3izLe/oVReRVuLJBoGr7U+Kj0COAW4LuXLgDPT84XpNWn6fElK+VUR8UJEPAQMACemx0BEbIiIF4Gr0rwtNbB5Z6nczKxb/Pl315bKqzhgkUjaJWln3qPA8iMk3QNsAVYDvwCejog9aZaNwPT0fDrwGECavgM4vDnfZ5m8fN8xXCCpX1L/1q1bDzTk13huT7nczKxbPPtSubyKA+6biYjDACRdAjwOXAkIOAc4qsDye4G3SZoEfBd4c50BVxERS4AlAH19ff46uplZC5XZtXVGRHw9InZFxM6I+AYldiNFxNPAzcDJwCRJgyU2A9iUnm8CZgKk6ROBp5rzfZbJy1tq/Ojsa2rl5WZm3eLw8dnbC3l5FWWK5FlJ56RdVYdIOgfY7y22JE1LWyJIGge8H/gZjUL5YJptEXB9er4ivSZNvykiIuVnpbO6jgbmAD8B7gLmpLPARtM4IL+ixDoVMvKQ7MLIy83MusXenNN88/IqylTS7wN/kx4B/FvK9ucoYFk6u+oQ4JqI+L6kB4CrJP0v4KfAFWn+K4ArJQ0A22gUAxGxTtI1wAPAHuDCtMsMSZ8CVtG4z9TSiFhXYp0K2ZFzT9283MysW+x8Pvv3VF5eReEiiYiHKXlGVESsBd6ekW+gccbVvvlu4EM573UpcGlGvhJYWWZcZmbDxSFAVmW08pTdwu8l6X9LmiBplKQbJW2V9NEWjqVr+Va7ZtarRufcyTUvr6JMKZ0aETuB3wMeBo4BPte6oXSvvBsh+gaJZtbtDiH7WG5eXu0zihvcDfa7wLURsaNlozAzs7Z45sXsbzzk5VWUOdj+fUn/ATwPfELSNKB1t9gyM7OeVHiLJCIWA78F9EXESzRO/W355UjMzKy3FN4ikXRu0/PmSctbOSAzM2udUUDW1VBGtfAzyuza+s2m52OB+cC/4yIxM+taeZfUauGltkp9j+TTza/TN9avauFYzMysB9X5TsqzwNGtGoiZmfWmMsdI/pnGpVGgUUBzgWvaMSgzM2sN8atf3PvmrVLmGMn/aXq+B3gkIja2cCxmZtZied8WaeX9NMocI7l1f9Ml3RERJ9cfkpmZ9ZJWXrdrbAvfy8zMekQri8R3HjQzG4ZaWSRmZjYMtbJIfLtAM7NhqFSRSHqjpPel5+MkHdY0+WMtHZmZmfWEMje2Oh+4Dvi7FM0Avjc4PSLub+3QzMysF5TZIrkQeCewEyAi1gNHtGNQZmbWO8oUyQsR8eLgC0kj8ZlaZmbDXpkiuVXSnwHjJL0fuBb45/YMy8zMekWZIlkMbAXuA/4QWAl8sR2DMjOz3lHmWlvjgKUR8U0ASSNS9lw7BmZmZr2hzBbJjTSKY9A44EetHY6ZmfWaMkUyNiKeGXyRnh/a+iGZmVkvKVMkz0o6YfCFpHcAz7d+SGZm1kvKHCP5I+BaSb+kcTmU1wMfacuozMysZ5S5H8ldkt4M/HqKHoyIVt4/3szMetABi0TSKRFxk6T/us+kN0kiIv6pTWMzM7MeUGSL5LeBm4D/nDEtABeJmdkwdsAiiYiLJB0C3BAR13RgTGZm1kMKnbUVES8Df1r2zSXNlHSzpAckrZP0mZRPkbRa0vr05+SUS9JlkgYkrd3nLLFFaf71khY15e+QdF9a5jJJvi+KmVkHlTn990eS/iSVw5TBxwGW2QP8cUTMBeYBF0qaS+NyKzdGxBwaX3RcnOY/DZiTHhcA34BG8QAXAScBJwIXDZZPmuf8puUWlFgnMzOrqczpvx+hcUzkk/vkv5a3QEQ8Djyenu+S9DNgOrAQeG+abRlwC/D5lC+PiADWSJok6ag07+qI2AYgaTWwQNItwISIWJPy5cCZwA0l1svMzGooUyRzaZTIu2gUyr8ClxddWNJs4O3AncCRqWQAngCOTM+nA481LbYxZfvLN2bk+372BTS2cJg1a1bRIZuZWQFldm0tA44FLgP+lkaxLCuyoKTXAf8P+KOI2Nk8LW19tPW+JhGxJCL6IqJv2rRp7fwoM7Nhp8wWyXHpWMegmyU9cKCFJI2iUSLfafrOyWZJR0XE42nX1ZaUbwJmNi0+I2Wb+NWusMH8lpTPyJjfzMw6pMwWyb9Lmjf4QtJJQP/+FkhnUF0B/Cwi/qpp0gpg8MyrRcD1Tfm56eytecCOtAtsFXCqpMnpIPupwKo0baekeemzzm16LzMz64AyWyTvAG6X9Gh6PQt4UNJ9NPZQvTVjmXcCHwPuk3RPyv4M+DJwjaTzgEeAD6dpK4HTgQEa9zn5OI033ybpEuCuNN/FgwfeaRy3+RaNy9rfgA+0m5l1VJkiKX1abUT8mMYFHrPMz5g/gAtz3mspsDQj7weOKzs2MzNrjTIXbXyknQMxM7PeVOYYiZmZ2Wu4SMzMrBYXiZmZ1eIiMTOzWlwkZmZWi4vEzMxqcZGYmVktLhIzM6vFRWJmZrW4SMzMrBYXiZmZ1eIiMTOzWlwkZmZWi4vEzMxqcZGYmVktLhIzM6vFRWJmZrW4SMzMrBYXiZmZ1eIiMTOzWlwkZmZWi4vEzMxqcZGYmVktLhIzM6vFRWJmZrW4SMzMrBYXiZmZ1eIiMTOzWlwkZmZWS1uLRNJSSVsk3d+UTZG0WtL69OfklEvSZZIGJK2VdELTMovS/OslLWrK3yHpvrTMZZLUzvUxM7PXavcWybeABftki4EbI2IOcGN6DXAaMCc9LgC+AY3iAS4CTgJOBC4aLJ80z/lNy+37WWZm1mZtLZKIuA3Ytk+8EFiWni8DzmzKl0fDGmCSpKOADwCrI2JbRGwHVgML0rQJEbEmIgJY3vReZmbWIUNxjOTIiHg8PX8CODI9nw481jTfxpTtL9+Ykb+GpAsk9Uvq37p1a/01MDOzVwzpwfa0JREd+JwlEdEXEX3Tpk1r98eZmQ0rQ1Ekm9NuKdKfW1K+CZjZNN+MlO0vn5GRm5lZBw1FkawABs+8WgRc35Sfm87emgfsSLvAVgGnSpqcDrKfCqxK03ZKmpfO1jq36b3MzKxDRrbzzSX9I/BeYKqkjTTOvvoycI2k84BHgA+n2VcCpwMDwHPAxwEiYpukS4C70nwXR8TgAfxP0jgzbBxwQ3qYmVkHtbVIIuLsnEnzM+YN4MKc91kKLM3I+4Hj6ozRzMzq8TfbzcysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq+WgKBJJCyQ9KGlA0uKhHo+Z2XDS80UiaQTwNeA0YC5wtqS5QzsqM7Pho+eLBDgRGIiIDRHxInAVsHCIx2RmNmwcDEUyHXis6fXGlL1C0gWS+iX1b926taODMzMbSqNL5lUcDEVyQBGxJCL6IqJv2rRppZefNWlMqdzMrFv8wx/OK5VXcTAUySZgZtPrGSlrmdsWv69UbmbWLfqOPpx3H3P4q7J3H3M4fUcfnrNEeYqIlr3ZUJA0Evg5MJ9GgdwF/H5ErMuav6+vL/r7+yt91nu+/CMeffoFZk0a4xIxs57S/9BT3Lb+Sd4zZ2qlEpF0d0T0ZU0bWXt0Qywi9kj6FLAKGAEszSuRulweZtar+o5u7VZIs54vEoCIWAmsHOpxmJkNRwfDMRIzMxtCLhIzM6vFRWJmZrW4SMzMrJaeP/23LElbgUdqvMVU4MkWDadXDLd1Hm7rC17n4aLOOr8xIjK/0T3siqQuSf1551IfrIbbOg+39QWv83DRrnX2ri0zM6vFRWJmZrW4SMpbMtQDGALDbZ2H2/qC13m4aMs6+xiJmZnV4i0SMzOrxUViZma1uEgySFog6UFJA5IWZ0wfI+nqNP1OSbM7P8rWKrDOn5X0gKS1km6U9MahGGcrHWidm+b7b5JCUs+fKlpknSV9OP1dr5P0D50eY6sV+G97lqSbJf00/fd9+lCMs1UkLZW0RdL9OdMl6bL081gr6YTaHxoRfjQ9aFyK/hfAr9G4G+W9wNx95vkkcHl6fhZw9VCPuwPr/DvAoen5J4bDOqf5DgNuA9YAfUM97g78Pc8BfgpMTq+PGOpxd2CdlwCfSM/nAg8P9bhrrvN7gBOA+3Omnw7cAAiYB9xZ9zO9RfJaJwIDEbEhIl4ErgIW7jPPQmBZen4dMF+SOjjGVjvgOkfEzRHxXHq5hsadKHtZkb9ngEuArwC7Ozm4NimyzucDX4uI7QARsaXDY2y1IuscwIT0fCLwyw6Or+Ui4jZg235mWQgsj4Y1wCRJR9X5TBfJa00HHmt6vTFlmfNExB5gB9CeO8Z0RpF1bnYejX/R9LIDrnPa5J8ZET/o5MDaqMjf85uAN0n6N0lrJC3o2Ojao8g6fwn4qKSNNO5r9OnODG3IlP3//YAOihtbWedI+ijQB/z2UI+lnSQdAvwV8AdDPJROG0lj99Z7aWx13ibpNyLi6SEdVXudDXwrIv5S0snAlZKOi4iXh3pgvcJbJK+1CZjZ9HpGyjLnSfeMnwg81ZHRtUeRdUbS+4A/B86IiBc6NLZ2OdA6HwYcB9wi6WEa+5JX9PgB9yJ/zxuBFRHxUkQ8BPycRrH0qiLrfB5wDUBE3AGMpXFxw4NVof/fy3CRvNZdwBxJR0saTeNg+op95lkBLErPPwjcFOkoVo864DpLejvwdzRKpNf3m8MB1jkidkTE1IiYHRGzaRwXOiMi+odmuC1R5L/t79HYGkHSVBq7ujZ0cpAtVmSdHwXmA0g6lkaRbO3oKDtrBXBuOntrHrAjIh6v84betbWPiNgj6VPAKhpnfCyNiHWSLgb6I2IFcAWNzd8BGge1zhq6EddXcJ3/AngdcG06r+DRiDhjyAZdU8F1PqgUXOdVwKmSHgD2Ap+LiJ7d2i64zn8MfFPSf6dx4P0PevkfhpL+kcY/Bqam4z4XAaMAIuJyGseBTgcGgOeAj9f+zB7+eZmZWRfwri0zM6vFRWJmZrW4SMzMrBYXiZmZ1eIiMTOzWlwkZl1C0pck/clQj8OsLBeJWY9KV1UwG3IuErM2k3Ruuu/DvZKulDRb0k1N93aZlbHM29JFE9dK+q6kySm/RdJfS+oHPtPxlTHL4CIxayNJbwG+CJwSEcfT+OX/t8CyiHgr8B3gsoxFlwOfT/PcR+PbyYNGR0RfRPxle0dvVoyLxKy9TgGujYgnASJiG3AyMHjnwSuBdzUvIGkiMCkibk3RMho3Kxp0dVtHbFaSi8Ss9zw71AMwa+YiMWuvm4APSTocQNIU4HZ+daHPc4B/bV4gInYA2yW9O0UfA27FrEv5rA+zNkpXmr0UuFXSXhr3Q/808H8lfY7G5cqzrr66CLhc0qE0LuNe+wqtZu3iq/+amVkt3rVlZma1uEjMzKwWF4mZmdXiIjEzs1pcJGZmVouLxMzManGRmJlZLf8fjWSaiOtQCBcAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'color', 'price_usd' ,kind='scatter')\n","#as we show it is a weak feature"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PkxajCEJuNne","colab":{"base_uri":"https://localhost:8080/","height":297},"executionInfo":{"status":"ok","timestamp":1654721155062,"user_tz":-180,"elapsed":20,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"445b1bd0-a58f-4d5d-ea54-73a3e99a22ef"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":28},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZMAAAEHCAYAAABr66s0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deXwV5bn4v885WQlbCBiQhKUNVFGBSqqgYlu1ar1e8VaqXSy2tervtr3VbqK9frrY29tqW9t69XZT75UuImIr1GuLC1rFghI0gOBCBCRBCBDCEiDbOe/vj5kT5pzMnHVOzknyfD+ffDLnnXfeeWZyMs+877OJMQZFURRFyYRArgVQFEVR+j+qTBRFUZSMUWWiKIqiZIwqE0VRFCVjVJkoiqIoGVOQawH6mtGjR5tJkyblWgxFUZR+xbp16/YZY8Z47R90ymTSpEnU1dXlWgxFUZR+hYi8E2+/LnMpiqIoGaPKRFEURckYVSaKoihKxqgyURRFUTJGlYmiKIqSMVlXJiKyXUQ2iki9iNTZbaNE5CkR2WL/LrfbRUTuFpEGEdkgIqc7xrnG7r9FRK5xtM+yx2+wj5VsX5OiKIrf1G1r4a4n36RuW4vr/pa2DtY3HqClraOPJUuOvnIN/rAxZp/j8y3AM8aYH4nILfbnhcBHgSn2z5nAL4EzRWQU8B2gFjDAOhFZboxptftcB7wEPAFcDPy1by5LURQlORqaD1PfeICZ1SOpqRwWte/q+9awqsFSInevbGBuTQWfPWsST25u5sJplbR1hvjGI+sJGwgI/PTjM5g2brjneLkgV3Em84AP2dsPAs9hKZN5wCJj5cVfIyIjRWSc3fcpY8x+ABF5CrhYRJ4Dhhtj1tjti4DLUWWiKEoe8e3HNrJozY6ezwvmTOD2eacB1owkokgivNDQwgt228N1TVH7QsBXFtdHtTnH86JuWwvPb9nHuVNGUzu5It1L8aQvbCYGeFJE1onI9XZbpTFml729G6i0t8cDjY5jm+y2eO1NLu1RiMj1IlInInV79+7N9HoURVGSpqH5cJQiAVi0egcNzYcBeH7LPrfDUsI5nhtX37eG+b9ew90rG5j/6zV85r41GZ8zlr5QJucYY07HWsL6koic69xpz0KyWqHLGPMbY0ytMaZ2zBjPbACKoii+U994IG77uVNGZ/U8XjMfL9tMumRdmRhjdtq/9wB/Bs4Amu3lK+zfe+zuO4Fqx+FVdlu89iqXdkVRlLxgZvXIuO21kyuYW5P5spPXeR6rfzel9nTJqjIRkTIRGRbZBi4EXgOWAxGPrGuAZfb2cmCB7dU1GzhoL4etAC4UkXLb8+tCYIW975CIzLa9uBY4xlIURck5NZXDWDBnQlTbgjkToozmv/vCbJbeMJuvnFfD0htm877Ksqj+iR7UwYBQXlbkui8UDqXUni7ZNsBXAn+2vXULgD8aY/4mImuBJSJyLfAOcKXd/wngEqABOAp8DsAYs19Evg+stfvdHjHGA18E/hcoxTK8q/FdUZS84vZ5p7Fg9qS43le1kyt6DOMrvvohntm8u8eb6/xpY3nslUYe37ibU08czv2rtnO4o7vn2CGFQVa/3UJ7V6jX+FXlZb3OFa89XbKqTIwxW4EZLu0twPku7Qb4ksdYDwAPuLTXAadmLKyiKEoWqakclpEL79ypJzB5zDDKioL86vmtUfuOdoX48kOv9nxeMGcCN54/labWY4wocX/Mjx9ZkrYsbgy6FPSKoij5SEtbB02tx6gqL+WTv13NW81HAMs1eNzwIvYf7SIoAUImzFUfqObhtY0EJUB3OExnKNqHadHqHTy8tomiYICjXd1up2PrvqO+yq/KRFEUJccsq9/Jwkc3UBgI0N4VoiscrRx2Heq0tyw7x+9W76CoIAACYQ9f2I7uMB3dYc9z+uVFFkGViaIoSg5paetg4aMbaO8K0473w9+JgbiKIhYhOv5ibk2F74GLmuhRURQlhzS1Hsv6OQqCgmAplQDw8drqBEekjioTRVGUHFJWFKS9K/lZRjLMramgpDDAsOICigsCdIUMkejwMFY6Fr8TRuoyl6IoSg5596D7zOSm82vYdbCd4cVBfvti3PLrFATg51fNpL0r3OMaHDHoP/tGMz9/pqHXMX96pYnrzn2vL9cAqkwURVFyjHvVjNMnjuLcqVb6p8c37nIY4XvTHYaTxg6Pcj2uGFpMxdBifvlcb0UCsO6dVq7LQOpYdJlLURQlhwwpdH8M79jX1lPfZPW3PsLPr5zOBSefwE3n11AcjFZAxUHhSKd7RPusieUptaeLzkwURVFyyPYW93iP25ZvBo7XN/ndF2Zz+enVtLR1WEGLjtgSCQhV5aWu43zs9Cp+8MQbru1+ojMTRVGUHOKVoNHJCw0tPPZKI0vrGmk90smdV0zvMbCXFAa484rpVAwtdj22Ymgx58QkkpxbU+HZP110ZqIoipJDIokgF63eEbffTUs29GwvmDOBx798TlSuL69Kjg3Nh11T0Dc0H/a1QqMqE0VRlBzjTAT57oGj3PW0u9E8wqLVO3jopR0UBoOETJgPTBoVpTCclRfj1VPxU5noMpeiKEoeUFM5jPm11Zz13uTSnHSFrQSPHd2m18zDWXkxUT0Vv9CZiaIoSh4QWaZqPtTuy3h/frWRyaOHMaliiOt+r/on6aLKRFEUJcd8+7GNverEZ8q9z22Lu3/Tu4d64lj8QJe5FEVRckhD8+GkFEkAKAy6Bzimh0e64TTRmYmiKEoO8TKQxxIGwiF/FEBhUDjlxBG+jBVBlYmiKEoO8dsQ7kVRMEBBUAiFDT+e7x2Xki6qTBRFUXKIW5zJgjkT+OCUMTy5uZlxI0pcEzWmgrOMb1V5qe+KBFSZKIqi5BxnnMnM6pEsWr2daxety3jcgIAYqJ04qifxY7ZQZaIoipIH1FQO64lk98uzK1LS9yuL6zlxRAnbW472ipD3C1UmiqIoecSqhn1ZGXf+r9f0bDsj5P1CXYMVRVHyiNFD/Q0mdMMZIe8XqkwURVHygJa2DtY3HqA75G8JXy+SdUlOFl3mUhRFyTHL6nfyjSX1gNAV9jeY0AvNzaUoijKAaGnr4MbF9fanvlEk4H9uLl3mUhRFySFPbtqdk/OufrslcacUUGWiKIqSBRqaD7O0rjGhoXvrvrY+kiia13epzURRFCWvic0CHM8V96JpY/ntC9v7SLLjDCkq9HU8nZkoiqL4iFvQYTxX3NrJFcyNqdHuZ25gLy46Zayv4+nMRFEUxUfSKZP7uy/Mpm5bC89v2ce4ESV87/HNtHcddxEOyPFodoC5NRWsfaeVwkCAY13ddKfoTbxgzgTfo+D7RJmISBCoA3YaYy4VkcnAYqACWAd8xhjTKSLFwCJgFtACXGWM2W6PcStwLRACvmKMWWG3Xwz8AggC9xljftQX16QoiuJGsmVyI5UVY9OblBYGohQJWIrkPy6bxsZ3D3HhtErOnza2R/m8Z/QQblqyISUZayeOSql/MvTVzORG4HVguP35DuBnxpjFIvIrLCXxS/t3qzGmRkQ+Yfe7SkSmAZ8ATgFOBJ4Wkan2WPcCHwGagLUistwYs7mPrktRFCWKmsphvK+yjDebj/S0va+yLEphxNpUxg0vYtehzrjj3rbceqw9XNfE1Moy3nKMP6IkyMH2UNIyfmVxPWfXjPY18WPWbSYiUgX8E3Cf/VmA84CldpcHgcvt7Xn2Z+z959v95wGLjTEdxphtQANwhv3TYIzZaozpxJrtzMv2NSmKorjR0tbB4+vfjVIkAG82H+mxmbjZVBIpkljeihk/FUUS4XvLXkv5mHj0xczk58DNQEQtVwAHjDHd9ucmYLy9PR5oBDDGdIvIQbv/eOB4lrLoYxpj2s+MFUBErgeuB5gwYUKGl6MoitKbZfU7WfjoBoyH/SJiM/E7jUm6vLi1H8WZiMilwB5jTOaJ+TPAGPMbY0ytMaZ2zJgxuRRFUZQBSEtbBwsf3UB7V5gOj9xaEZtJX1VWTMS0ccMTd0qBbC9znQ1cJiLbsZagzsMylo8UkcisqArYaW/vBKoB7P0jsAzxPe0xx3i1K4qi9BlNrccoDHg/Tp3eU5HKik7GDU8ttUmq/d3YsvtQxmM4yeoylzHmVuBWABH5EPANY8ynReQRYD6WgrkGWGYfstz+vNrev9IYY0RkOfBHEbkLywA/BXgZyx17iu0dthPLSP+pbF6ToihKLFXlpXSFo2ckRUH41iUnc07NmF5uuLGVFWsqh/V4Z5UVBvjhirfinq/1WDf3L5jF+qaDzKgawQ2/X5eye/Dutq7UDkhAruJMFgKLReQ/gFeB++32+4HfiUgDsB9LOWCM2SQiS4DNQDfwJWNMCEBEvgyswHINfsAYs6lPr0RRlEFPxdBi7rxiOjc/uoHCQICucJg7r5jOZTPHex4TqawYoXZyBbWTreDF//772wmN6v/6h1coLgjSEQqnrEiygRjTd1kq84Ha2lpTV1eXazEURRmAtLR10NR6jKry0pTdbjOJG0mHESUB1n/3o0n3F5F1xphar/0aAa8oiuITFUOLk1YiTsVz4+JXWdXgr3dVIkaU+JubS5WJoihKH+CMeN+06xAL7SWxju4wnX1UXdHJnrbUYlsSocpEURQly8RGvAcDQihsaCd3xo6a0UN8HU+ViaIoShaILGN1dYd6RbyH+qg0bzxGDSv1dTxVJoqiKD4TiYYvDARo70491UkyFASE0sIgRzu7CaWhmwp8znOvykRRFMVHnNHwqSxj3XrRVNbuOMApY4fyi2e3Juz/5Q+/l6ryIWzb18a9zyXuH0vDXn8rPKoyURRF8ZFINLxTkQiQaPIQCVR8+vU9SZ3n3ufepqQgyLHO7sSd3TD+Tk1UmSiKovhEQ/NhXt3R2ss7KxsWkq6QoSuUpiIBSov9zaalykRRFMUH3Dy2hhQGOdYVojsPDO6xtPjsGqw14BVFUTLErUZJKGz44cdO4yfzT8uRVPEJ+5z9RJWJoihKhnjVKGnvCjF5zDASWScCPntWJcP4kf66BqsyURRl0NLQfJildY1RVRCdn5MlXt33qvJSigvjP2rLigq47ZKTuKq2iotOPiGlc0c4a/JISgqED9WMoiTB+QCMz0tvajNRFGVQEmvjiK2rvmDOBG6fl9wSVaRGyaLVx8dz1jC5claVawR8hKNdIf7jiTfSvhaAf2yzZkfPNeynUKCkMEBhIMDhDncjfeuxgZGCXlEUJWe42Thi66ovWr2DBbMn9apF4oVbjRKw4k4eWtsY1dcYQ3FBgKJggM5QmA6fc8h3GfjiOZM4b9o4Pv7LF+l0GX7f4Q5fz6nKRFGUQUeyddgjdduTJbZGCcCmdw/SFROiHjbw049Pp3pUGau27OHHT25J+hzJ8uQbe/nqRSdTWhSgs723NikpUtdgRVGUjEi2Drsf9dp3th5zbW/Y00Z7V5iigmDG53BjVvUI7nryTcrLijnY3luG6nLNzaUoipIRbjaO91WW8WaMzSSVWYkXXktYP3+mIeOx4/H7l5vi7g9rBLyiKErmuNk4nDVH0lEkbsefUzPab9F9QTTRo6Ioij/E2jjcbB7JEusdFvEGc5sF5QNn14zxdTxVJoqiKBni5h22aPUOQmH4l5kncvu805g6ZijLNuziWEcXr+3yN2NvOkweXebreKpMFEVRMsTLO+wPL+3gDy/toLRAONadX/m5/HZH1gh4RVGUDEnk9ZULRTL//eM4edwwPjBhuOv+nfuPuLaniyoTRVGUDInYRfKJpa/u4vVdh1m745Dr/lVb9/t6PlUmiqIoPnD7vNP4+ZXTmTVhRK5FSYrLp4/zdTy1mSiKovjA1fetYVVDS67FyBk6M1EURcmQum0t/U6RxOYLyxSdmSiKoqRJS1sHTa3HWLG5OdeipMzI0kJfx1NloiiKkgbL6ndy89INBANCVxputrdeNJUjXWH+unEXW/b661mVDCef6O7llS6qTBRFUVKkpa2Dbzyyvlc24FS465kGggGhoyvko2TJU1U+xNfxVJkoiqKkiFtaeYDbLjmJQ+3dnDtlNCOHFFHfeICSwiC3/mljryJVmQYNnnbiMEqKChhRUsDTb+xN+fiLThmb0fljyaoyEZES4Hmg2D7XUmPMd0RkMrAYqADWAZ8xxnSKSDGwCJgFtABXGWO222PdClwLhICvGGNW2O0XA78AgsB9xpgfZfOalL4hshZdVV5KxdDiXIujKDG4Z0ksKy5g5JAiRg4p6snz1dLWQVfY32hzgI3vplZa2IlfGZGdZHtm0gGcZ4xpE5FCYJWI/BX4GvAzY8xiEfkVlpL4pf271RhTIyKfAO4ArhKRacAngFOAE4GnRWSqfY57gY8ATcBaEVlujNmc5etSssiy+p0sfHQDhYEAXeEwd14xnctmjs+1WIrSwyke9oZb//xaz3Yk0WPF0GImjCrtVcmxr7l/wSxaj3alnRE5EVlVJsYYA0QymhXaPwY4D/iU3f4g8F0sZTLP3gZYCtwjImK3LzbGdADbRKQBOMPu12CM2QogIovtvqpM+iktbR0sfHQD7V1h2rHe5m5+dANn14zWGYqScyIp5ts73euqO1m0egeVw4oZPzL3igTglR2tfPPik7M2fkJlIiKHsRSAK8aYuC4BIhLEWsqqwZpFvA0cMMZE/hpNQOS1czzQaI/bLSIHsZbCxgNrHMM6j2mMaT/TRYbrgesBJkzIr5QHSjRNrccoDAR6FAlAYSBAU+sxVSZKTolNMZ8M2SjHmy4HjyVWgJmQUJkYY4YBiMj3gV3A77AWDD8NJIzHN8aEgJkiMhL4M3BSJgKngzHmN8BvAGpra/MrdacSRVV5aa/15a5wmCqfS4wqSiq4pZjvb5xUOZT1jQeyZodMJQL+MmPMfxtjDhtjDhljIstSSWGMOQA8C8wBRopIRJFVATvt7Z1ANYC9fwSWIb6nPeYYr3aln1IxtJg7r5hOSWGAYcUFlBQGuPOK6TorUXKKV4p5J4U+Vy70m+8+vpmr73uJs+9YyfJ6/x+TqdhMjojIp7G8sAzwSSDuQqCIjAG6jDEHRKQUy1B+B5ZSmW+PdQ2wzD5kuf15tb1/pTHGiMhy4I8icheWAX4K8DLWDGmK7R22E8tIH7HFKP2Uy2aO5+ya0erNpeQNXinmb/zwe/jHtlbOmlzOL57d2sdSRbP0htlsbzlKy+F2frjirV77u8P0uCdnww6ZyszkU8CVQLP983ESP7jHAc+KyAZgLfCUMeZxYCHwNduQXgHcb/e/H6iw278G3AJgjNkELMEyrP8N+JIxJmTbXb4MrABeB5bYfZV+TsXQYmZUj1RFouQFbinmp1aW8Ytnt7J2e2vOFUmE+bXVHOlK7IYcsUP6SdIzEzveI+llLfuYDcD7Xdq3ctwby9nejqWk3Mb6AfADl/YngCdSkUtRFCVVbp93GgtmT6K+8QDlQwq5dtG6XIsUxYrNzdROrqCsMPEcIRt2yKRnJiJyp4gMF5FCEXlGRPaKyNW+SqMoitIPeGVHa65F6EVZURCArS1HE/YtDorvs/5UbCYXGmNuFpF/AbYDH8OKbv+9rxIpyiAnEsuQreAyxZt49z4d1+C+ZOUbu1mxuZnqEYmVxMH2EI+90sjlp1cn7JssqSiTSN9/Ah4xxhy04gkVRfGL2AdWJIpayT7x7n1/cA3esNOKD399V3JpVh6ua/JVmaRigH9cRN7Aypv1jO2p1e6bJEq/pqH5MEvrGmloTj9f0GDH7YG1aPUOvad9QKJ77+UaXBAQigsCFAb734v1gSMdvo6XigH+FhG5EzhojAmJyBFSNMgrAxN9m/YHrwdWfeMBXe7KMonuvZdr8OLrzqSwIEhVeSk3LX6VF/pRtcV3D/o7F0hamYjIAse2c9ciPwVS+hdeb3QLZk/SB2CKeD2wvNoV/5hU4V7bw6s9QiQ7MMDvvjCbum0t3LOygee27PNdRr/p7Pa3jkoqy1wfcPzMxUrIeJmv0ij9jnhvdEpquMUyZCNVuNKbwoJgr6WqwqBQWGB5SCX7Pa+dXMGO/blP6pgLUlnm+jfnZzvX1mLfJVL6Ffo27S/OWAb15uo7qspLrfK7joJXwYBQVhRkfeMBzxlK+ZBCltY19vytntm8m+ZD/cOU/N7R+VPP5Agw2S9BlP5J5G160epom4k+BNMnUlRJ6TsiOeFudtTRubK2ikvvWdXzeW5NRZRNZGplWVTg4oiSIAfbc1OCNx0+PWeir+OlYjP5C8dT0QeAaVgpTpRBjr5NK/lKKhU7nTnhyoqCXHrPqqi6Omvfae3Jf+UWAd+fFAnA7gOJgxtTIZWZyU8c293AO8aYJl+lUfot+jat5BvpVOysGFpMxdBi1jcecK2rU1gQZH5tNfeuzJ86Jenyx5cb+epF/hXLSsVm8vd4+0VktTFmTuYiKcrAQuvZJ0+m0f+Re11WFMyoYudgqKvTHfZ3JuVn2d4SH8dSlAGB1rNPnkzjlZz3uqM7RCAQ452VRMVOp+KPtaE46+pcdMpYfvxk7zTv/Ynq8qG+juenMtEKhoriQOvZJ0+m8Upu95pQ9CMp0czCTfG/uPC8lGaVN374Pfzh5Ub2HelK2DfXtLR1+jpeKnEmiqKkQKSevZNs1JEYCGQar+R2r4uDQlFBchU7ncrocEc37V1hbn50A4BrXR0vuX7x7NZ+oUgAjnX7WxPez5lJ/0tOoyhZZDCsu/tFpvFKbvdaAsL/ffkcjnSGEs4sIsoo1uDutSw2EOKoJo2KH92fKinNTERkoohcYG+Xiohz/vkZXyVTlH6O1rNPnkyj/73udU3lsKQqdqaq+N3k7W8Yn7O+izHJmTpE5DrgemCUMea9IjIF+JUx5nxfJcoytbW1pq6uLtdiKIMI9eZKHr+8udK518vrd/YyuMdzllhWv5NvPrIeESEcDpNEtdy84j8um8bVZyUfdy4i64wxtV77U1nm+hJWqd2XAIwxW0TkhBSOV5RBSSR2QUlMpvFKmdxrZ9BiImUUsbF0hgz91fdo72F/076ksszVYYzpMf+LSAH99S4qiqK4UDG0OGpZzKtOj5vBv7/x0Fp/Y85TmZn8XUS+BZSKyEeALwJ/8VUaRVGUPiTesli8uBc3G0t/o2Joka/jpaJabwH2AhuBG4AngNt8lUZRFKWPWFa/k7PvWMnV973E2XesZHn9zp59iSovxhr8CwP9z5n1Gxe+z9fxUpmZlAIPGGN+CyAiQbvN32xhiqIoWSZRQGkyVS+dNpZVW/b2u4j4XQf8jXdKZWbyDJbyiFAKPO2rNHlOS1sH6xsP0NLmb+1kRRms5Op/KlFAabJxL9v2tvHM683s6Sc1TJz88u9v+zpeKjOTEmNMW+SDMaZNRPyNesljNMeSovhLLv+nEsWV1FQOY2plGW81H6+a+L7KsihPs6vvW8OqflTzPZZun00+qcxMjojI6ZEPIjILGBR5IbxSLegMRVHSI9f/U4kCShuaD0cpEoA3m4/02EzqtrX0a0UC8JGTx/g6Xiozk5uAR0TkXazUKWOBq3yVJk9JNdWCoijxyYf/qXhxJYlsJn/b1NwnMmYV8de1OZV6JmtF5CQg4gLwpjGmf2Q0yxDNsaQo/pIv/1NeQY5eNpNJFUNY33iAscP7/0vk0c4+TvQoIucZY1aKyMdidk0VEYwxf/JVojzErT605lhSlPTJ9/+pmsphvK+yjDcdS13jhhdx9QMvUxgI0BkKIfTvqO2u7r4vjvVBYCXwzy77DDDglQmklmpBUZTE5MP/lFcusIbmw1GKBGDXISsBSGRprsBeJTKmV+mUfkFZSaGv4yVUJsaY74hIAPirMWaJr2fvZ2iOJUXxl1z+T8WLcE+mjkp/VSIRqn1eUkzKAmOMCQM3pzq4iFSLyLMisllENonIjXb7KBF5SkS22L/L7XYRkbtFpEFENsR4j11j998iItc42meJyEb7mLtFfM6rrOQlXjmT8gGNR8odyX4vvCLcn9m8m6V1jZQPSfzW3p8VCcCIvp6ZOHhaRL4BPAz0zP+MMfvjHNMNfN0Y84pd+2SdiDwFfBZ4xhjzIxG5BStVy0Lgo8AU++dM4JfAmSIyCvgOUIu1tLZORJYbY1rtPtdhZTN+ArgY+GsK16X0MzKtFZ5NNB4pd6TyvfCaeVy7aF3PdmmBcKzbeH7u76x6uyWlFPSJSMU37Cqs5I5/B+ocP54YY3YZY16xtw8DrwPjgXnAg3a3B4HL7e15wCJjsQYYKSLjgIuAp4wx+20F8hRwsb1vuDFmjbEKsyxyjKUMQBLlTMoluY6dGMyk+r1IplJirOIYSIoEICD+Xk8qymQacC+wHqgH/gs4JdmDRWQS8H6sGUSlMWaXvWs3UGlvjwcaHYc12W3x2ptc2mPPfb2I1IlI3d69e5MVWclDMq0Vnk205nvuSPV7MRAqJWbK3sP+vuSkssz1IHAIuNv+/Cm77cpEB4rIUOBR4CZjzCGnWcMYY0R8VpExGGN+A/wGrEqL2TyXkl0yrRWeTfIldmIwks734vZ5p7Fg9iTqGw9QPqQwaolrMPDuAX+VSSozk1ONMV8wxjxr/1wHnJroIBEpxFIkf3DEpDTbS1TYv/fY7TuBasfhVXZbvPYql3ZlgJJprfBsojXfc0e634uaymHMr63m/Gljex0/oiTou5z5RHfI3+RcqdSA/z1wj23LQETOBL5kjFkQ5xjBmr3sN8bc5Gj/MdDiMMCPMsbcLCL/BHwZuATLAH+3MeYM2wC/Doh4d70CzDLG7BeRl4GvcNwA/1/GmCe8ZNIa8AODTGuFZxOt+Z47Mv1e1G1r4fkt+5hRNYIvPfQq7f2tsHsKDCkUNn//kqT7+1kDfhbwDxGJWLkmAG+KyEas1arpLsecDXwG2Cgi9Xbbt4AfAUtE5FrgHY4vlT2BpUgasOqkfA5r8P0i8n1grd3vdocX2ReB/8VKif9X1JNrUJBprfBsovFIuSOT74XTE6+jO0SgHxa8SoVkJxLJkooyuTjVwY0xq7CSQrpxvkt/A3zJY6wHgAdc2utIYrlNURT/STQT6OtZWuz5kp2puBXL6veBJAk45m9qrpQSPb7j76kVRenPJIrr6OuYm9jzfbkC9RUAACAASURBVGBiOS840sS7xZ1ElE1JYbBXFuP+nnurr0llZqIoygAkndmDV1zHgtmTqKkclrAsbjauIfZ8L8TUG3HKB72VYewSiiqS1FBloiiDmHRnD4nqffR1vZKm1mOEwokf/xH53JShAYqCUFxQwLGubt8rEQ50VJkoyiAlk9lDoriObMXceNlAurpDdCVh4ygfUsjSukaaPWq2f+uSk3n/hFF0dYeY/+s1Gck62FBloiiDlExmD5G4jkWro20mkQd8NuqVxLPRbG85mvD4qZVlCQMTq8uHMMNWiLH1TJT4qDJRlEFKprMHZwS5m7eUn/VKEtlovGZK9y+YRevRrqQj3J9+vbmn/0BXJMU+ez6rMlGUQYofs4dEcR1+xdwkstHUVA5jbk1FlNF9bk0F508bC8DSukbX42N5aG0TD61tStxxAOB33kpVJooyiMmHaofJkMhG09LWwdp3WqP2rX2nlZa2DiqGFudF7rZ8w9+ivanl5lIUZQBSMbSYGdUj81aRQOLcW4kyNrsdP9Bzb/U1OjNRFKVfEM9Gk4z95/Z5p3HZ9BOjcm8p/qHKRFGUfoOXjaZiaDFXzqqKMtJfWVsVNdtaVr+Tm5euJygBukIhgsHBvTDjb9FeVSZKnpLPWYGzTabXnuj4XN5bv3N1Ra5lUsUQlqyLNpwvqWvisuknsr3lKJMqhvD1JfV2IKJlLYidyQw2Zk4Y7ut4qkyUvCOfa7xnm0yvPdHxuby3fufqir2W2CS/Xd1hDTyMw+Zd/pa6HtzzPCXvyOca79km02tPdHwu760z2v5wRzftXWFufnQDLW3pVftzu5bYbCoDPOlvxhzpyl0NeEXJOvlc4z3bZHrtiY7P5b1N5G2VKoPh+9Df0GUuJa/I5xrv2SbTa090fC7urdOmkU60fax9J1IJ8T2jh2RNZiU9VJkoeUWinE8DmUyvPdHxfX1vY20ac2sqWPtOa9LR9rHHjxtexK5DnZ6fY8cvDgoH2/0OzVO8SLoG/EBBa8D3D9Sbq394c3l5ZzU0H+aCnz3fq//SG2ZTWBBM6M3ldXwsP79yOt1heq4lIs++w+1J5eIa7Gz/0T8l3dfPGvCK0mfkc433bJPptSc63q97G887y8umsb3lKPNrqxOOnaxNZOu+o3ztwvf1fI7kArvryTeTOn4wM36EvxkPVJkoygDHz5mI0wYSrxZKtuw/sZw7ZbRr+wlDi5I6fjBzyaljfR1PlYmiDGD8jCuJHaswGB3Y4ayF4of955yaClY5sgAXCji9WccNL6J2coXr8e+k6SU2mJgxodzX8VSZKL7gd2SzkjmJaoBkOlZsZcOucJiu7hBL6xqZWT0yYb2TeLS0dVAXkwU4Nixi16FO6ra1uNpgOrvU8J6Iu5/ewqUz0g8ajUWViZIxfkc2K/6QqAaIH2MVBoWSgiBd4TC1E8ujIs4js6B0ltbcqkC68YnfrqG0sKDX9+7Ase6UzznY2N7ib/EvVSZKRmRSR1zJDpFZ4qQK91iMdOJKvI556AtnUlgQdK2Znu4sCNyzALvRHYbDHZbiuPnRDUwbN5wjnSE+MHEky9a/m/J5BxNTTxjq63iqTJSMyKSOuOI/sbPE2OqD6caVeNlAIjYLr0qG6cyCoHcVyPbuUK9ltVi6Q2EuufsFiguCdHTrMlcizj3pBF/HU2WiZESmdcQV/3CbJa59p5WlN8xme8vRjL254tlA0vXeiudpdtnM8Zw4oqSn/sgNv19nZ/11x9pn6AzpElcytB7pTNwpBVSZKBnhRx1xxR+8ZomFBcGkYjuSwStGJR3vrVQzHM+tqeClbS0IAUImTNj0Tu6oJE8w4G9qRlUmSsbkuo64epJZpDtLzOT+OWcWqXhveXmafXDKGFqPdlE+pLDX/shynRBGdUjm7Dl41NfxVJkovhCJPO5r1JPsOOnMEjO5f14zi2SW0ry8w5JJgaKKxB9Wb9vv63iqTJR+SUPzYVY17OU/n3idzhDqSWaTyiwxE0+8ZGNYvGwigyELdL4zosTfwr1ZrWciIg+IyB4Rec3RNkpEnhKRLfbvcrtdRORuEWkQkQ0icrrjmGvs/ltE5BpH+ywR2Wgfc7eIxNRaU3JFS1sH6xsPpF38KB7ffmwjF/zseb77F0uROMmkRkayZPPa/KBiaDEzqkcmVAhuNUaCAeHZN/b0XFvdthbuevJN6ra1RPVLpjZK5O/0jaUbuOBnz/PtZRt77l15WREL5kxI5/IUn5g7dYyv42V7ZvK/wD3AIkfbLcAzxpgficgt9ueFwEeBKfbPmcAvgTNFZBTwHaAWa4a7TkSWG2Na7T7XAS8BTwAXA3/N8jUpCcjm0pPbG7GTbHuSpXNt+ZoB2c3GcqQjxHeWb+K2Za8xYVQpbzVbgW13r2xgbk0Fv/vCbCCx95bXzGXxy40U20GOH5jobzoPJTXeM8bfOJOszkyMMc8DsQtz84AH7e0Hgcsd7YuMxRpgpIiMAy4CnjLG7LcVyFPAxfa+4caYNcbKo7/IMZaSI/wuzxqL1xtxcTBASWEgq55k6Vyb29t5vhCxsZQUBigrDva0H+kM0d4V7lEkEV5oaOmZodRUDmNuTXRerLk1FT3K0uvv1BkyPffOGf+i9D3vHvB3Bp+Lsr2Vxphd9vZuoNLeHg84I5+a7LZ47U0u7b0QketFpE5E6vbu3Zv5FSie+F2eNRavN+KfXjmDFxeel1Xje6rX1h/q2V82czwvLjyP7/3zKZQVBRP2f37LPsBSrKu3RiuD1VtbehSr2kTyn32H230dL6c14O0ZRdadM4wxvzHG1BpjaseM8XedUIkm20GMkXgGJwvmTODSGSdm3eie6rXlSz37hubDLK1r9FRiFUOL+fBJJxBKolBeJOX7pncP9Qog7A5b7eD+dwqoRTOvGD2sxNfxcqFMmu0lKuzfe+z2nYAzsqrKbovXXuXSruQQ59LJsOKCrCw93T7vNJ7+6rn8ZP50nv7quWmnVE+VVK8tH+rZJ7vM5nZtI0qiZyrRKd+9FM/x9lkTR1EUFIoLAhQFhatnT4gaP6dvsgonjvTXtpgL1+DlwDXAj+zfyxztXxaRxVgG+IPGmF0isgL4z4jXF3AhcKsxZr+IHBKR2VgG+AXAf/XlhSjHcQa+ubmn+m2EzlUlxlRcb72iwsvLiljfeCDrQZappqB3Xptb4sZdhzppaD5MTeUwTjlxBIVBicqXVRgUhhQGWVrX2FM8qzN0fPFhSV0Tj3/5HI50hljTsJcfrnjL/4tWkia2Hk2mZFWZiMhDwIeA0SLShOWV9SNgiYhcC7wDXGl3fwK4BGgAjgKfA7CVxveBtXa/240xEaP+F7E8xkqxvLjUkysHeHk4RR6UfhZoygdSCdCMjQrftOsQZ9+xsk+CLNNJQR+5tkSJGyuGFvPTj8/gm0s3EAwIobDhjEnRKehjn1WFgQBHOkPMqB7Jd//yGkpuOaemH7kGG2M+6bHrfJe+BviSxzgPAA+4tNcBp2Yio5IZiQLfvN6OL5t+omtRo4FIZBbV1+n6M1lmKx/iHtDmbL9s5njKioI8ubmZ004czm3LN0f1jU3y67Qv1Yweyqs7DiaUQ8kO6WaPjodGwCsZ0dR6jO5QtCW2OxTuSUHv9XbsVdQoHfI1jiOWvk7Xn0np3NajXQnbr75vTU9Z3YeTkOfK2qqe6zxl/HAeeUVNnH3JyNICLjplLBdOq+T8af7WfwdVJkqGdHWHXL16uux6El5vwbFFjdJ9O++LJTS/Ekn2Vbr+dJMvOkk0q6nb1hJVnz0ZltQ1ceP5U6kYWkx1uXvhLiV7HDjWzcN1TTxc15SV/xN1qFAyYnuLe+bRSLubi6jbWno6cSh9EcexrH4nZ9+xkqvve4mz71jJ8vr036a9vMEA39KzuHlv1VQOY35tdUqzNi8X7MgYj9WnXsXQ+Xd++vXmlI9X/CMb8U46M1EyIpl1eefb8aSKIVz9wMuEuo6/oaf7dp6sgTndmUU2bByx3mCrGvalbJD3up5Uvbecx7nNXNxmNXXbWnh+yz52pZG+3Pl3fuWd1pSPV/xlxabdvi4LqzJRMiLZdXmnK69fxbSSUWSZ5AnLlo0j4jGVjrKKdz3pKNdfPP1W3GVC59/NaSNJh1B3mNYjnTz7xh6KCnRRZKChykTJmFTX5f0qppVIkWU6s8i2jSNVZZXoelJVrh3d3b2yLnvNZNKxkcTSZeCCnz2f0RiKf5w5eZSv46kyUXwh1SDC2FiNdJei4imyTGcW2S5JXFVeytGu6Kf50a6Qp7JKdD3pKFc3nDOZyBJYX6eAUbJLUKCwIHEutlRQZaLknExT1peXFTGlchjlZUVR7X7MLPyYRXkpytYjnYRiipiHwobWI52u5/G6nrKiYE9EvZtyjZz/4LHOXsrIjZLCAC1tHb2WwJSBQ2FBwHcvQlUmSk7JdCkqniLya2aRSUliP2wcTjlir+fKWVVces+qXuNHjneevzMUIkZ3IURn2RLg649sIBw2dMV2Vvo1hQEoccR2+R3bpMpE8YV0AwebWo9hYh5aJmySWopKRhH5ZZ+JPa8fZXHTiVB3Xk9ZUZBL71nlOb7b+QsC2IkXjyufaeOGs6phH9/7y2YM0BEbOKQMCB66bnZWs06oMlEyJpPAwbKiIB0xeTc6Qiap2hrJ2kQymVnEksqSXKY2Di8i17O+8UDc8d3OX1pYwL2fPp0RpYVRD5U3dh/Kfi0IJadsbznK/NrqxB3TRP3zlIzINHDwSGeIksLor2FJoZUQMBHJ2kS86pgnS6RueUPzYddKiw3Nh12DDpORb9bEURQXBCgpCFBcEKB24qiENeYj+8uKgnHH9zr/kMIAW5oP03qks+f+LPFI7KgMHLJd+kBnJkpGJLvu77UM5mUETMY4mIxNxBkbEVvHPBmiXWlDBFwqPF1y9ws9dc1TsdlElqGcy0pff2Q9AYGiYO/xYuXpCoeZOKqUNx3ldT8wsbxn/Mj5v/ZwPUZADNROjM7sO3Z4EbsPdSZ9P5T+STYSO8aiykTJiGTW/eMtg2VqJI9nE3GLjYjUMT9e5MkbV1famCW5djuSvzN0PM/YiSNK2N5ylJnVI+PK57YMFakP0tHdO2+ZmzxvutRpj9QcAbjn2S10O+qZxt4PVSQDkwVzJqSVky0TVJkoGZFo3T+ZFB/pGMljZzpux0Tqlbu1J6NM3B72xUHBiFAcDNARCiPGRNl8ukPhqDf/iOJM1tU3lkQ2EDcis8JnNu/mrRhlowwe+rqAnCoTJWNun3cal00/kee37OPcKaOjHtRey2CrGvZxpDPUozxSMZIna/A/d8po7l7Z4NqeDG4PewkI/2dXC4x4UzlnK7GOUPFyY8XOyjpDYULhcNQYiWwgbkRmhY+sUzvIYCWZnGx+owZ4JWOW1e/k6gde5n9e3M7VD7wclVnXaxnsh399I61MvKkY/GsnVzC3JnoGMremIqlZCXhn+a2pHMYMe0bk3F/gUQY1XvT4ZTPH8/vPn8Hnzp7EH649g7uunOmZVRiIOl9xgvxW40b4G5Sm9C/6OmuBzkyUjEgUS+G2DBYMCB3d4R7DcypBiskY/J1LYL/7wuyeTLexs6ZkSLQEl6huOsT3onHOsu5e2cCCORO495Pv58nNzVw4rZK2zlCvrMIvLjyPptZjrNqyhx8/uaXXmH9+tYnJo4fy3tFlrucsDAgBu9RutwYm9ktig03dKB9S2JMZoS+qmaoyUTIimVgPZ4qPksIgt/5pY09hLLf+bkQCBSdVuBdVijywvZbA4imRWPuLmz0mnmzO/anEjXjNsiLHP1zX1NPuVNQvLjyPGdUjadzvngb+3ue2esoKcP25kwkGArS1d/HAP96J21fJL4YUBQmFDT+eP50TR5Tw/JZ9jBtRwreXb+px3gAICPzrH1+lOJheiqJ0UGWiZIRXLENXd4ildY29PEnGDi9OOV/Wsvqd3Lx0Q8/b2NyaCl5weCVFHtjp1POIVT5TK8uijNZu9ph4EfDx7EexrGpwdxCIR1f38ZLIc95bkdQbaiyJlI2Sn1x39kQunVkV9b2rnVxBS1sHty3bFNU3bKCzO0xnGrP/dFFlomRExdBirqytinobnzCqNGq5J/YBPbemgrXvtCblCtzS1sHXlqyPSoj4j637WXrD7B7324iiSDXXlZvyifV+ilVGiSLgnft/88JW7rxiuucy2eg0/rFD5nhJ5IqhxXxm9gRNxjgIKBT4938+1XWfW8LQXsf7UIcnEapMlIxoaetgiWM5Bno/kGM/v9DQwtIbkssTtPrtFtfMuq82HqB8SHSW4FRzXa3YtNvzvE4iyiiRfchtf7wgxJ3703PbXfnmHgoLgpQVBVmyrinxAUq/RoCfXjXTc38yhnY/6/B4ocpEyYhkYx9iSTZP0D6PlCI/eOKNnu3IUlS6ua4SEVFGiexDqQYh/m1zenXQf/ncVu5/YbvlRqz28wGPwfreTBs3PMqdPkL5kELX44qCEpWZIdtGeFUmSkZUlZfS3p04j1YsyeYJOqcmcUzIotU7OGNSBXPeW5FS1ceLThnLj598K+7YTmWUKNdWMnEgXd1hNr17iBGlhUwfP4JXGw8mvL5YDNAR0sy+gw2vtD2tR7tc+3/rkpN5/4Ry9eZS+g/GxH89fl9lWVTaD7fZgpdR22224cZXH64nEBB+PD+6nkc8vGYyXsWlqspLuXJWVZSN4sraKoAeF8zaieVxy9uGDHzhwbUUFwTpVIWgJIlb2p5EpQzOqRmtEfBK/6Gp9RilhQVRrr7Digv44cdOpb0r7Olu6ySRUfv2eafxwSljeHJzM6edOJzblm/uJUdX2EDY8NUl6z2XA9yYNXEUf1yzw5EIcVRUGorY4lKxEe6/X7ODh9c2URS0ItiTqQXSGTI9DwVFSQc/Shn4jSR6qxxo1NbWmrq6ulyLMWBoaevgzP98OuohWxCAl751QVJT65a2Ds6+Y2XPmxdYKehfXHhez/Gx7ruxM51YCgJW3Y5E/vUtbR3U/sfTvSoN1t12QY9BPVY2RckHYv9HIP0CdckiIuuMMbVe+zWdigKQsIZGPEQk7ud4RIzWTiJvXeDuvvtm8xHuXzCLeTPGuY7ZHSaq3ojXNa1+u6VXjIax271kU5Rscf+CWfxk/nQ+f9ZE1/1BISrNTuzLWk3lMObXVvf5jCSCLnMpKVUPjBCxIxw81tnLZmJMcmV3IXHQY/OhdtfjWo928W/nTWHZ+l1xxzdh02Pwjix7RWR/p6XN9Zh9be2esilKNlgwZwLnTxsLQEPzSNfMBA9fn92yu5miymSQk0wd9Vicyqe9q7uXHaE7fDywzgvnlDy2nklsASc3vNwhY+kIGa5bVNdT8/zKWVU8XNdIUAJ0eyiKkaWF3PXkm5w7ZTR3XjGdry+pB6xcVqpaFL+4f8EsWo929VqW8rKBpJpXrq9RZTLISbaOegTXglEu/N/GXZ5ffrf8WZHkhV7JEmNpPdpF69HksqI6k0oeP6+3srtpyQbASrw4oiSIZTIZXLZFJfu0Hu3yjLVKxcU9XxgQC8IicrGIvCkiDSJyS67l6U8kW0c9QrJ2hLrt+13bvfJntR7pZEb1SF5Ksk77zOqRtBx2XwLzk4PtqcfQKIObIo9SBLEkirXKtQ0kVfq9MhGRIHAv8FFgGvBJEZmWW6n6D141O7yWuJK1IxiPXEFeKUyOtyf+R4y4Pa7d0bf1GhQlEee9bzSP/L+z+MHlp0b9T8XW1cmF6262GQjLXGcADcaYrQAishiYB/QORlBcSaVsbmx1wCMd3a6LXRecMtZjBK/lIqvdKyrdbX350tPG8vTre+JcmeVG/M7+Y1FxIomS4ilKupz13tHMqB7JjOqRXHzq2Kj/qWy77uaagaBMxgPO+qRNwJnODiJyPXA9wIQJE/pOsn5EKmVzncqnrCjIBT97vlefz8yZ5HrsRaeMcy3odNEplpuvl/Ex4uni5PLTq7njb2+w61BnT9u44UX81ydPj0oB74xgf7FhH99cuoFgQOgOmYRR6CNKgrrUpSSFAP9yelXP59j/qb6uyd7X9PugRRGZD1xsjPmC/fkzwJnGmC+79degRf9ZXr+Trz1cTxhr3fSuq2bGdS3+9rKNvZRFbM2QVN7iHnulkcc37ubS08Zy+emJk0c6lcsvnnmrlyyx9UiclRqvfXBtlHIpFOhK4V9oREmQtvZQz706YXhRlDJU0idW8S+YM4Hxw0t4bMMuLp8+jhs+PKXXd+XXz27p2f/ff3876vjSAqErZHqyI8x5b3Qdnbk1Fby0bT/GgAj85OMzsl6AKpckClocCMpkDvBdY8xF9udbAYwxP3Trr8okO8QrGOVGPk35U5Xl9//YxrINu5g3fRxXnzU56vhFa7b3Uk6nV4+MeoDF3qtnNu/uKdN7/rSx/OAvr/H4a7u59NSx/Ps/n8ptf1rPXzc189FTKnln/7FeD7RdB47SsO8YNaNLefob53Hpz59j0+4jnDK2jMdv+hCTbvm/nv53f2ImX1lcHyWfW94zwapD48w0EKs4SwuEY460xeNiFGPs2LFFzWIf/rGfY8eL/Ty3poLPnjUp6t5l+r2K/dvG/q1ix0/1e9+fGQzKpAB4Czgf2AmsBT5ljNnk1l+ViZJtsq0oM6lpD70Vf7wHYqyii/0cK0uia4/tn+hz7HiZXruSPgNemQCIyCXAz4Eg8IAx5gdefVWZKIqipE4iZTIQDPAYY54Ansi1HIqiKIOVfh9noiiKouQeVSaKoihKxqgyURRFUTJGlYmiKIqSMQPCmysVRGQv0LtYwHFGA/v6SJxUyWfZIL/ly2fZIL/ly2fZIL/ly2fZIDX5JhpjxnjtHHTKJBEiUhfP/S2X5LNskN/y5bNskN/y5bNskN/y5bNs4K98usylKIqiZIwqE0VRFCVjVJn05je5FiAO+Swb5Ld8+Swb5Ld8+Swb5Ld8+Swb+Cif2kwURVGUjNGZiaIoipIxqkwURVGUjBnwykREHhCRPSLymqNthoisFpGNIvIXERkec8wEEWkTkW842i4WkTdFpEFEbsmFfCIySUSOiUi9/fMrxzGz7P4NInK3iCQupu6jbPa+6fa+Tfb+kmzJlqp8IvJpx32rF5GwiMzMlnwpylYoIg/a7a9HavLY+/Lhe1ckIv9jt68XkQ85jsnGvasWkWdFZLP9XbrRbh8lIk+JyBb7d7ndLva5G0Rkg4ic7hjrGrv/FhG5JlPZ0pTvJPu+dojjmWLv8/Xvm4Zsn7bv2UYR+YeIzEhbNmPMgP4BzgVOB15ztK0FPmhvfx74fswxS4FHgG/Yn4PA28B7gCJgPTCtr+UDJjn7xYzzMjAbq67RX4GP9rFsBcAGYIb9uQIIZku2dP+2dvtpwNt5dO8+BSy2t4cA2+2/db58774E/I+9fQKwDghk8d6NA063t4dh1SuaBtwJ3GK33wLcYW9fYp9bbFlesttHAVvt3+X2dnkO5DsB+ADwA+xnit3u+983DdnOitwT4KOOe5eybAN+ZmKMeR7YH9M8FYgULn8KuCKyQ0QuB7YBzuJaZwANxpitxphOYDEwLxfyuSEi44Dhxpg1xvomLAIu72PZLgQ2GGPW28e2GGNC2ZItDfmcfBLrb5gv984AZWIVeisFOoFD5M/3bhqw0j5uD3AAqM3ivdtljHnF3j4MvA6Mx7r2B+1uDzrONQ9YZCzWACNt2S4CnjLG7DfGtNrXdHFfy2eM2WOMWQt0xQzl+983Ddn+Yd8bgDVApIh9yrINeGXiwSaO35iPA9UAIjIUWAh8L6b/eKDR8bnJbutT+Wwmi8irIvJ3EZnrkK+pj+Tzkm0qYERkhYi8IiI350C2ePI5uQp4yN7Oh3u3FDgC7AJ2AD8xxuwnf75364HLRKRARCYDs+x9Wb93IjIJeD/wElBpjNll79oNVNrbXvcp6/cvSfm8yKp8ach2LdYMLy3ZBqsy+TzwRRFZhzUVjBSW/i7wM2NMW64Es/GSbxcwwRjzfuBrwB8lxt6TQ9kKgHOAT9u//0VEzu9j2eLJB4CInAkcNca85nZwjmQ7AwgBJwKTga+LyHvySL4HsB4mdVgVTf+BJW9WsV/uHgVuMsYccu6zZ0I5jWvIZ/lSlU1EPoylTBame84BUWkxVYwxb2AtyyAiU4F/snedCcwXkTuBkUBYRNqx1oidb7hVWPXm+1Q+Y0wH0GFvrxORt7FmBDs5Pj3Nqnxx7l0T8LwxZp+97wmsNfnf95VsCeSL8AmOz0ogP+7dp4C/GWO6gD0i8iJQi/VmmA/fu27gq5F+IvIPrLX4VrJ070SkEOth+AdjzJ/s5mYRGWeM2WUvY+2x23fifp92Ah+KaX8uB/J54SV3n8omItOB+7DsXS3pyjYoZyYicoL9OwDcBvwKwBgz1xgzyRgzCesN7D+NMfdgGSaniMhkESnCeiAt72v5RGSMiATt7fcAU4Ct9vT1kIjMFhEBFgDL+lI2YAVwmogMsdf+Pwhs7kvZEsgXabsS214C1hpzX8kXR7YdwHn2vjIsI/Ib5M/3bogtFyLyEaDbGJO1v6091v3A68aYuxy7lgMRj6xrHOdaDiwQi9nAQVu2FcCFIlJuey9daLf1tXxe+P73TVU2EZkA/An4jDHmrYxky8RzoD/8YL2F7sIyfjVhTeVuxHqzegv4EXYmgJjjvku058Uldv+3gX/PhXxYBtFNQD3wCvDPjnFqgdds+e5xu6Zs3zvgalu+14A7sylbmvJ9CFjjMk5O7x0wFMt7cBOwGfhmnn3vJgFvYhlzn8ZKRZ7Ne3cO1jLMBvu7Xm/fhwrgGWCLLccou78A99oybARqHWN9Hmiwfz7n071LVb6x9j0+hOW80ITluOD73zcN2e7DmmFG+tal+93TdCqKoihKxgzKZS5FURTFX1SZKIqiKBmjykRRFEXJGFUmiqIoSsaoMlEURVEyRpWJLnDV/AAAA1NJREFUoiiKkjGqTBSlnyFWKYKspoMRkedEpDab51AGFqpMFMVHIhkK0jx2UKY3UgYGqkyUQYuI3C4iNzk+/0BEbhSRb4rIWrGKBn3Psf8xEVknVtGh6x3tbSLyUxFZD8zxONd2EblTrCJEL4tIjd3+vyLyKxF5CbhTRGaKyBr73H+W40WMZolVmGo9Vn2RyLifFZF7HJ8fF7t4lVjFjV6xj3vGbisTqzDWy2Jln55nt5eKyGKxinP9GSsVvqIkjSoTZTDzAFY+qUg+qk9gpeeegpXJdyYwS0TOtft/3hgzCyuFyFdEpMJuL8MqKjTDGLMqzvkOGmNOw0o78nNHexVwljHma1g1QRYaY6ZjpQb5jt3nf4B/M8bMIAlEZAzwW+AK+5iP27v+HVhpjDkD+DDwYzvv1r9iZVM+2T7nrGTOoygRVJkogxZjzHagRUTej5UE8FWsiniR7VeAk7CUC1gKZD1WEaFqR3sIK0trIh5y/HbOYB4xViGxEcBIY8zf7fYHgXNFZKTdHilc9bskzjUbK4vzNvtaI4WwLgRuEZF6rAy6JcAErMqLv7f7bsDK7aQoSaNrtMpg5z7gs1jJ+B4Azgd+aIz5tbOTvXR0ATDHGHNURJ7DehADtBtjkqnvYTy2j6QluUU30S+FJV4dbQRrtvJmVGPmpduVQY7OTJTBzp+xSrl+ACs9+Qrg82IVF0JExtup2UcArbYiOQnrzT9VrnL8Xh270xhzEGiV4xU0PwP83RhzADggIufY7Z92HLYdmCkiARGpxlqeA2v2dK5YlRERkVF2+wrg3+xU5dizMrDK9X7KbjsVmJ7G9SmDGJ2ZKIMaY0yniDwLHLBnF0+KyMnAavt524aVWv9vwP8Tkdex0rGvSeN05SKyAavA2Sc9+lwD/EpEhgBbgc/Z7Z8DHhARAzzp6P8isA0rdf3rWEtzGGP22k4Cf7LtQXuAjwDfx7LXbLDbtwGXAr8E/se+vtexCsIpStJoCnplUGM/UF8BPm6M2ZLF82zHqrOxL1vnUJRcostcyqBFRKZhFU16JpuKRFEGAzozURQfsWM0Jsc0LzTGZFwuVlHyGVUmiqIoSsboMpeiKIqSMapMFEVRlIxRZaIoiqJkjCoTRVEUJWP+P5KwGTdGXr7zAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'year_produced', 'price_usd' ,kind='scatter')\n","# as we show it's a good feature"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"W5DxSp4XuNv3","executionInfo":{"status":"ok","timestamp":1654721155063,"user_tz":-180,"elapsed":16,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"eb27f945-27b8-48c9-8209-78e2ee7d8983"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":29},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZQd5X3m8e/TUkstkIRWt7EWJEbyIjDB0AEUvGCTgMAJsgfbwcER8eHAJMaZxIljyDJmjMc5NpnEE3K8hNgMKCcOYGMbJcFRFJbgcQymASFABtMRiyTQgnYJ7f2bP+7b5Kp1S7pVt7r76vbzOadPVz21vdWS+qeqem+9igjMzMyKahvqBpiZ2bHNhcTMzBriQmJmZg1xITEzs4a4kJiZWUNGDnUDBtuUKVNi1qxZQ90MM7NjyqOPPvpqREyttWzYFZJZs2bR3d091M0wMzumSHoxa5lvbZmZWUNcSMzMrCEuJGZm1hAXEjMza4gLiZmZNWTAC4mkFyQ9KWm5pO6UTZK0TNJz6fvElEvSTZJ6JK2QdEbVfq5I6z8n6Yqq/My0/560rQbqXO5duY5rv/ME965cN1CHMDM75gxW99/3RsSrVfPXAfdGxBclXZfmrwUuAuamr7OBrwFnS5oEXA90AQE8KmlJRGxJ61wFPAzcAywAflD2CVzw5Qf42fpdANzRvYa3dB7P0k+dV/ZhzMyOOUN1a2shcFuavg34QFW+OCoeAiZIOhG4EFgWEZtT8VgGLEjLxkfEQ1F5H/7iqn2V5t6V614vIn2eXb/LVyZmZgxOIQngXyQ9KunqlHVGxCtpeh3QmaanAaurtl2TsiPla2rkh5B0taRuSd0bN27MfQJ/8r0VuXIzs+FkMG5tvTMi1kp6A7BM0jPVCyMiJA3o6FoRcTNwM0BXV1fuY23YsT9XbmY2nAz4FUlErE3fNwDfA84C1qfbUqTvG9Lqa4EZVZtPT9mR8uk18lJ1jh+VKzczG04GtJBIOl7SuL5p4ALgKWAJ0Nfz6grg7jS9BFiUem+dA2xLt8CWAhdImph6eF0ALE3Ltks6J/XWWlS1r9KcffKkXLmZ2XAy0Le2OoHvpR65I4FvRcQ/S3oEuFPSlcCLwEfS+vcAFwM9wGvAxwEiYrOkzwOPpPVuiIjNafoTwK3AGCq9tUrvsXX86NpXHlm5mdlwMqCFJCJWAT9XI98EnF8jD+CajH3dAtxSI+8GTm24sUfw1s6xuXIzs+HEn2yvwzPrd+bKzcyGExeSOqx8ZWuu3MxsOHEhqcNLm/bkys3MhhMXkjqM76j9Y8rKzcyaTc/6HXynezU963eUvu9hN9RuEe0jRuTKzcyayWe//ySLH3rp9flF82dyw8K3l7Z//5e6DuM72nPlZmbNomf9jkOKCMDiH79U6pWJC0kdJhxf+/MiWbmZWbNYvrp2p6CsvAgXkjpMGVu7YGTlZmbN4vQZE3LlRbiQ1GH6xONy5WZmzWJO5zgWzZ95SLZo/kzmdI4r7RguJHWYNqEjV25m1lQG9P3qLiR1eerl2g+lsnIzs2bhh+1NYtzo2t18s3Izs2bhh+1N4oVNu3LlZmbNwg/bm8SqjbULRlZuZtYsJmZ8TCErL8KFpA5jRtX+MWXlZmbN4umXt+fKi/Bvwjps3lV7bPas3MyseWR12SqvK5cLSR1GVEZ4rDs3M2sWp7zpBNr6/apqUyUviwtJHSYel3GPMSM3M2sWW3bto7ffxUdvVPKyuJDUYVLGq1CycjOzZuHuv03i3DlTcuVmZs1i1uTar3LKyotwIanDG8aNzpWbmTWL9pEjGNHvGckIVfKyuJDU4calz+TKzcyaxfSJY2gfeeiv+vaRbUyfOKa0Y7iQ1OH5DbU/eJiVm5k1i8ljR3PjpafR0d7GuNEj6Whv48ZLT2Py2PLuqHio3TqM6RjBvt0Ha+ZmZs3uktOn8aYTOnjwuVd599wpdM2eXOr+XUjq8NbOcTz8wuE9HN5a4vv8zcwGSvWY7Tfd1+Mx24dC/wdVR8vNzJqFXyPfJB7L6G+dlZuZNYulT6/LlRfhQlKH9pG1Lz2ycjOzZrFp595ceREuJHWYOXFsrtzMrFlk9c4qs9eWC0kdTp5cu791Vm5m1iwuPOWNufIiXEjq8PS62p8XycrNzJrFnM5xLJo/85Bs0fyZzCmx1+mgFBJJIyQ9Lukf0/xsSQ9L6pF0h6RRKR+d5nvS8llV+/jDlD8r6cKqfEHKeiRdNxDtnz2l9jtpsnIzs2Zy5kmTDpnv6jffqMG6Ivkd4KdV818CvhwRc4AtwJUpvxLYkvIvp/WQNA+4DDgFWAB8NRWnEcBXgIuAecBH07ql+uA7pufKzcyaxaade/md25cfkv3325cfWw/bJU0H3g98I80LeB/wnbTKbcAH0vTCNE9afn5afyFwe0TsjYjngR7grPTVExGrImIfcHtat1TfePC5XLmZWbP43N1P5cqLGIwrkv8DfAboTfOTga0RcSDNrwGmpelpwGqAtHxbWv/1vN82WfkhJF0tqVtS98aNG3OfwIq1O3PlZmbN4kerNuXKixjQQiLpl4ENEfHoQB7naCLi5ojoioiuqVOn5t5+fEftz4tk5WZmzWLeieNz5UUM9Lu2zgUukXQx0AGMB/4SmCBpZLrqmA6sTeuvBWYAaySNBE4ANlXlfaq3ycpLM6p9FOw5/H7iqHaPkGhmze25ddtz5UUM6BVJRPxhREyPiFlUHpbfFxGXA/cDH0qrXQHcnaaXpHnS8vsiIlJ+WerVNRuYC/wEeASYm3qBjUrHWFL2eZw+rXY3uazczKxZrNu5P1dexFC9/fda4HZJ/wt4HPhmyr8J/K2kHmAzlcJARDwt6U5gJXAAuCYiDgJI+iSwFBgB3BIRT5fd2LYRtV8Xn5WbmTWLEcDhg2BU8rIMWiGJiAeAB9L0Kio9rvqvswf4cMb2XwC+UCO/B7inxKYe5uWtr+XKzcyaxYkTRrNm6+G35k+c4FekDKpXd+7LlZuZNYuOkbV/zWflRbiQ1GF0xsAjWbmZWbNYs3VPrrwIF5I6vLyt9g88KzczaxYnju/IlRfhQlKHcaNrP0rKys3MmsXkcRmvkc/Ii3AhqcOokbX7N2TlZmZNIyJfXoALSR32HqjVeS47NzNrFpt21e4UlJUX4UJSh137DuTKzcyaxYQx7bnyIlxI6tDbmy83M2sWQe1bWFl5ES4kddiXUTCycjOzZrFmS0b334y8CBeSOmT1zXKfLTNrdgej9v94s/IiXEjqkPUkxE9IzKzZTTqudjffrLwIF5I6HJdx6ZGVm5k1i7Gja39MISsvwoWkDlPHH5crNzNrFr0ZnxfJyotwIanDui213/KblZuZNYueDbWHBM/Ki3AhqcPejMKdlZuZNYtRGW/5zcqLcCGpQ0fGTykrNzNrFjMmjsmVF+FfhXU4Y9akXLmZWbM4fvSoXHkRLiR1+PGqzblyM7NmcfLU2p2CsvIiXEjqkPUoxI9IzKzZnTZ9Yq68CBcSM7MWNi3jWUhWXoQLiZlZCzvlTSfQ1m9U8DZV8rK4kJiZtbAtu/bR2+8+fG9U8rK4kJiZtbDlq7fmyotwITEza2Gnz5iQKy/ChaQOHSOUKzczaxZPra195ZGVF+FCUoc9B2t39M3KzcyaxfeWv5wrL8KFxMyshb0j4xZWVl6EC4mZWQt755wpufIiXEjq4IGtzOxY9cKm2sNdZOVFuJDU4bWMMXWzcjOzZnHM99qS1CHpJ5KekPS0pM+lfLakhyX1SLpD0qiUj07zPWn5rKp9/WHKn5V0YVW+IGU9kq4biPNoz+iclZWbmTWLOZ3jWDR/5iHZovkzmdM5rrRjDPQVyV7gfRHxc8DpwAJJ5wBfAr4cEXOALcCVaf0rgS0p/3JaD0nzgMuAU4AFwFcljZA0AvgKcBEwD/hoWrdUU8ePzpWbmTWTM0+axOiRbXSMbGP0yDa6Tip3CIwBLSRR0TeeY3v6CuB9wHdSfhvwgTS9MM2Tlp8vSSm/PSL2RsTzQA9wVvrqiYhVEbEPuD2tW6qXt+3NlZuZNYtNO/dy7V0r2Huglz0Hetl7oJfP3LWCTTvL+/111EIiaYek7VlfdWw/QtJyYAOwDPgPYGtE9D1hWANMS9PTgNUAafk2YHJ13m+brLx/G66W1C2pe+PGjUdrsplZy1izZTftbYf+qm9va2PNlt2lHeOo/Y4iYhyApM8DrwB/Cwi4HDixju0PAqdLmgB8D3hrIw0uIiJuBm4G6Orq8qcIzWzYmD5xDPt7ew/J9vf2Mn2IXiN/SUR8NSJ2RMT2iPgaOW4jRcRW4H5gPjBBUl8Rmw6sTdNrgRkAafkJwKbqvN82WbmZmQGTx45mwphDrxkmjhnJ5LHlPePNU0h2Sbo83apqk3Q5sOtIG0iamq5EkDQG+CXgp1QKyofSalcAd6fpJWmetPy+iIiUX5Z6dc0G5gI/AR4B5qZeYKOoPJBfkuOczMxa2r0r17Fu+6GvjH9l+z7uXbmutGPkKSS/BnwEWJ++PpyyIzkRuF/SCiq/9JdFxD8C1wK/J6mHyjOQb6b1vwlMTvnvAdcBRMTTwJ3ASuCfgWsi4mB6jvJJYCmVAnVnWtfMzIB/Wbk+V15E3Z/NjogXyNkjKiJWAO+oka+i0uOqf76HSoGqta8vAF+okd8D3JOnXWZmw8UF8zq5o3tNzbwsdV+RSLpR0nhJ7ZLulbRR0sdKa4mZmZXu/HlvPOwXfVvKy5Ln1tYFEbEd+GXgBWAO8AeltcTMzEr3/cdW09sv6015WfIUkr7bYO8Hvh0R20prhZmZDYjvPl67I2tWXkSe99f+o6RngN3Ab0maCuwprSVmZla63oP9r0eOnBdR9xVJRFwH/ALQFRH7qXT9Lf11JGZmVp5n1+/MlRdR9xWJpEVV09WLFpfWGjMzK9Wufftz5UXkubX181XTHcD5wGO4kJiZNa22tjY47HF7X16OPJ8j+e3q+fSJ9dtLa4mZmZXunSdP4Z9/uqFmXpZGStIuYHZZDTEzs/L92vxZufIi8jwj+QcqY4lApQDNo/LaEjMza1KPPv9qZv7uN08t5Rh5npH876rpA8CLEXH45+7NzKxpfOsntT94+K2frOZTF76tlGPkeUbyb0daLunHETG/8SaZmVlZDvQezJUXUeZQux0l7svMzErwls4TcuVFlFlIPPKgmVmT2bm39udFsvIiyiwkZmbWZDbs2JsrL6LMQqKjr2JmZoOpc1ztIXWz8iJyFRJJJ0n6xTQ9RtK4qsW/XlqrzMysFHsP1n7qkJUXkWdgq6uA7wB/naLpwPf7lkfEU6W1yszMSvGeubU/wZ6VF5HniuQa4FxgO0BEPAe8obSWmJlZ6R5fvTVXXkSeQrI3Ivb1zUgaiXtqmZk1tSfX1B6DMCsvIk8h+TdJfwSMkfRLwLeBfyitJWZmVro3nlD7I35ZeRF5Csl1wEbgSeC/AfcAf1JaS8zMrHS/dtbMXHkRed61NQa4JSL+BkDSiJS9VlprzMysVE+9vD1XXkSeK5J7qRSOPmOAfy2tJWZmVrrnN+3KlReRp5B0RMTrg/ym6eNKa4mZmZVuwpj2XHkReQrJLkln9M1IOhPYXVpLzMysdO+aU/vzIll5EXmekfwu8G1JL1N5HcobgV8trSVmZla6XfsPH6/9SHkRecYjeUTSW4G3pOjZiCjv9ZFmZla649tr33jKyos4aiGR9L6IuE/Sf+236M2SiIjvltYaMzMr1apNtTvWZuVF1HNF8h7gPuBXaiwLwIXEzKxJzT95End0Hz4q+vyTJ5V2jKMWkoi4XlIb8IOIuLO0I5uZ2YCbNLb26+Kz8iLqukkWEb3AZ/LuXNIMSfdLWinpaUm/k/JJkpZJei59n5hySbpJUo+kFf16iV2R1n9O0hVV+ZmSnkzb3CTJ46KYmSXPrtuRKy8iz9OWf5X06VQcJvV9HWWbA8DvR8Q84BzgGknzqLxu5d6ImEvlg47XpfUvAuamr6uBr0Gl8ADXA2cDZwHX9xWftM5VVdstyHFOZmYt7Zl1tT/BnpUXkaf7769SeSbyiX75yVkbRMQrwCtpeoeknwLTgIXAeWm124AHgGtTvjgiAnhI0gRJJ6Z1l0XEZgBJy4AFkh4AxkfEQylfDHwA+EGO8zIza1m79x3IlReRp5DMo1JE3kmloPwQ+Hq9G0uaBbwDeBjoTEUGYB3QmaanAaurNluTsiPla2rk/Y99NZUrHGbOLO9FZWZmze75VzNekZKRF5Hn1tZtwNuAm4C/olJYbqtnQ0ljgbuA342IQ66n0tXHgI5rEhE3R0RXRHRNnTp1IA9lZtZUtu8+mCsvIs8VyanpWUef+yWtPNpGktqpFJG/q/rMyXpJJ0bEK+nW1YaUrwVmVG0+PWVr+c9bYX35AymfXmN9MzMDjhtV+3ohKy8iz54ek3RO34yks4HuI22QelB9E/hpRPxF1aIlQF/PqyuAu6vyRan31jnAtnQLbClwgaSJ6SH7BcDStGy7pHPSsRZV7cvMbNjb8tq+XHkRea5IzgT+XdJLaX4m8KykJ6ncoTqtxjbnAr8OPClpecr+CPgicKekK4EXgY+kZfcAFwM9VMY5+TiVnW+W9HngkbTeDX0P3qk8t7mVymvtf4AftJuZvW7X3toP1bPyIvIUktzdaiPi/1F5wWMt59dYP4BrMvZ1C3BLjbwbODVv28zMhoPdGfUiKy8iz0sbXyzvsGZm1irKe9piZmbDkguJmZk1xIXEzMwa4kJiZmYNcSExM2thx2V0qcrKi3AhMTNrYQczXkCVlRfhQmJm1sL2ZrxSKysvwoXEzMwa4kJiZmYNcSExM2th4ztq/5rPyotwITEza2Gnnjg+V16EC4mZWQtbvnpbrrwIFxIzsxa2/0Dtfr5ZeREuJGZmLWx/zrwIFxIzM2uIC4mZmTXEhcTMzBriQmJm1sLe1jk2V16EC4mZWQu7/OyZufIiXEjMzFrYx35hdq68CBcSM7MW9v3HVufKi3AhMTNrYd9bvjZXXoQLiZlZC3tLZ+13amXlRbiQmJm1sKnjRufKi3AhMTNrYRt27MmVF+FCYmbWwk7JeF18Vl6EC4mZWQv72YadufIiXEjMzFrYS5t25cqLcCExM2th4zrac+VFDGghkXSLpA2SnqrKJklaJum59H1iyiXpJkk9klZIOqNqmyvS+s9JuqIqP1PSk2mbmyRpIM/HzOxYM33icbnyIgb6iuRWYEG/7Drg3oiYC9yb5gEuAuamr6uBr0Gl8ADXA2cDZwHX9xWftM5VVdv1P5aZ2bB2QsfIXHkRA1pIIuJBYHO/eCFwW5q+DfhAVb44Kh4CJkg6EbgQWBYRmyNiC7AMWJCWjY+IhyIigMVV+zIzM+C+n23MlRcxFM9IOiPilTS9DuhM09OA6pe/rEnZkfI1NfLDSLpaUrek7o0by/vhmZk1uw1bMz5HkpEXMaQP29OVRHkj0Gcf5+aI6IqIrqlTpw704czMmsZr+w/kyosYikKyPt2WIn3fkPK1wIyq9aan7Ej59Bq5mZklp82YkCsvYigKyRKgr+fVFcDdVfmi1HvrHGBbugW2FLhA0sT0kP0CYGlatl3SOam31qKqfZmZGfArp70pV15EeY/ta5D098B5wBRJa6j0vvoicKekK4EXgY+k1e8BLgZ6gNeAjwNExGZJnwceSevdEBF9D/A/QaVn2BjgB+nLzMyS1Vt258qLGNBCEhEfzVh0fo11A7gmYz+3ALfUyLuBUxtpo5lZK9v22r5ceRH+ZLuZWQvbsfdgrrwIFxIzsxa24JTOXHkRLiRmZi2sa/Zk3tJ5/CHZWzqPp2v25NKO4UJiZtbCNu3cy4ubD32w/uLm3Wzaube0Y7iQmJm1sDVbdtPeduiv+va2NtaU2GvLhcTMrIVNnziG/b29h2T7e3uZPnFMacdwITEza2GTx47mxktPo6O9jXGjR9LR3saNl57G5LGjSzvGgH6OxMzMht4lp0/j3DlTWLNlN9Mnjim1iICvSMzMhoUtu/bx3PodbNlV3gcR+/iKxMysxX32+0+y+KGXXp9fNH8mNyx8e2n79xWJmVkL61m/45AiArD4xy/Rs35HacdwITEza2HLV2/NlRfhQmJm1sJOzxh3JCsvwoXEzKyFzekcx6L5Mw/JFs2fyZzOcaUdww/bzcxa3A0L386ic2axfPVWTp8xodQiAi4kZmbDwpzOcaUXkD6+tWVmZg1xITEzs4a4kJiZDQObdu7lidVbS319fB8/IzEza3F3L1/LtXetoL2tjf29vdx46Wlccvq00vbvKxIzsxa2aederr1rBXv297Jj7wH27O/lM3et8MBWZmZWHw9sZWZmDfHAVmZm1hAPbGVmZg275PRpvOmEDh587lXePXcKXbMnl7p/FxIzsxZXPR7JTff1eDwSMzOrn8cjMTOzhng8EjMza4jHIzEzs4Z4PBIzM2uYxyOpg6QFwF8CI4BvRMQXh7hJZmZNxeORHIGkEcBXgIuAecBHJc0b2laZmQ0fx3whAc4CeiJiVUTsA24HFg5xm8zMho1WKCTTgNVV82tS9jpJV0vqltS9cePGQW2cmVmra4VCclQRcXNEdEVE19SpU3Nv35HxU8rKzcyGk1b4VbgWmFE1Pz1lpXnmT9+fKzczG05aoZA8AsyVNFvSKOAyYEnZB3nhi+9//Qqko60yb2ZmLdD9NyIOSPoksJRK999bIuLpgTiWr0DMzA53zBcSgIi4B7hnqNthZjYctcKtLTMzG0IuJGZm1hAXEjMza4gLiZmZNUQRMdRtGFSSNgIvNrCLKcCrJTXnWDHcznm4nS/4nIeLRs75pIio+YnuYVdIGiWpOyK6hrodg2m4nfNwO1/wOQ8XA3XOvrVlZmYNcSExM7OGuJDkd/NQN2AIDLdzHm7nCz7n4WJAztnPSMzMrCG+IjEzs4a4kJiZWUNcSGqQtEDSs5J6JF1XY/loSXek5Q9LmjX4rSxXHef8e5JWSloh6V5JJw1FO8t0tHOuWu9SSSHpmO8qWs85S/pI+rN+WtK3BruNZavj7/ZMSfdLejz9/b54KNpZFkm3SNog6amM5ZJ0U/p5rJB0RsMHjQh/VX1ReRX9fwAnA6OAJ4B5/db5BPD1NH0ZcMdQt3sQzvm9wHFp+reGwzmn9cYBDwIPAV1D3e5B+HOeCzwOTEzzbxjqdg/COd8M/Faange8MNTtbvCc3w2cATyVsfxi4AeAgHOAhxs9pq9IDncW0BMRqyJiH3A7sLDfOguB29L0d4DzJWkQ21i2o55zRNwfEa+l2YeojER5LKvnzxng88CXgD2D2bgBUs85XwV8JSK2AETEhkFuY9nqOecAxqfpE4CXB7F9pYuIB4HNR1hlIbA4Kh4CJkg6sZFjupAcbhqwump+TcpqrhMRB4BtwORBad3AqOecq11J5X80x7KjnnO65J8REf80mA0bQPX8Ob8ZeLOkH0l6SNKCQWvdwKjnnP8n8DFJa6iMa/Tbg9O0IZP33/tRtcTAVjZ4JH0M6ALeM9RtGUiS2oC/AH5jiJsy2EZSub11HpWrzgclvT0itg5pqwbWR4FbI+LPJc0H/lbSqRHRO9QNO1b4iuRwa4EZVfPTU1ZzHUkjqVwObxqU1g2Mes4ZSb8I/DFwSUTsHaS2DZSjnfM44FTgAUkvULmXvOQYf+Bez5/zGmBJROyPiOeBn1EpLMeqes75SuBOgIj4MdBB5eWGraquf+95uJAc7hFgrqTZkkZReZi+pN86S4Ar0vSHgPsiPcU6Rh31nCW9A/hrKkXkWL9vDkc554jYFhFTImJWRMyi8lzokojoHprmlqKev9vfp3I1gqQpVG51rRrMRpasnnN+CTgfQNLbqBSSjYPaysG1BFiUem+dA2yLiFca2aFvbfUTEQckfRJYSqXHxy0R8bSkG4DuiFgCfJPK5W8PlYdalw1dixtX5zn/GTAW+HbqV/BSRFwyZI1uUJ3n3FLqPOelwAWSVgIHgT+IiGP2arvOc/594G8kfYrKg/ffOJb/Yyjp76n8Z2BKeu5zPdAOEBFfp/Ic6GKgB3gN+HjDxzyGf15mZtYEfGvLzMwa4kJiZmYNcSExM7OGuJCYmVlDXEjMzKwhLiRmZtYQFxKzRNKsrFdvtwpJ50n6haFuh7UWFxKzY0D6FHJb1nwO5wEuJFYqFxKzQ42Q9DdpUKd/kTRG0lWSHpH0hKS7JB0HIOnDkp5K+YNZO5T0T5JOS9OPS/psmr4h7XtsGizsMUlPSlqYls9KAzItBp4C3tVvfoakr0nqTu39XNUxX5D0uap9vlWVAdh+E/iUpOWS3iXpeUntaZvx1fNm9XIhMTvUXCrjcZwCbAUuBb4bET8fET8H/JTKS/4APgtcmPIjvS7mh1SKwAnAAeDclL+LyqBZe4APRsQZVAYQ+/Oq8W3mAl9N7Xmxej4iXgT+OCK6gNOA9/QVrOTVtM+vAZ+OiBeArwNfjojTI+KHwAPA+9P6l6Vz3Z/nB2bmQmJ2qOcjYnmafhSYBZwq6YeSngQuB05Jy38E3CrpKirvccryQyqj1p0L/BMwNl3VzI6IZ6mMVPenklYA/0plbIjOtO2LafAhMuY/IukxKqMankJlhL8+3+13HrV8g/9819LHgf97hPMwq8kvbTQ7VPXr8Q8CY4BbgQ9ExBOSfoP0dtyI+E1JZ1P5H/2jks7MeMHhI1TGcFkFLKPyivKrqPyCh0pxmgqcGRH702vrO9KyXf329fq8pNnAp4Gfj4gtkm6t2q76XA6S8W89In6UbqGdB4yIiJbubGADw1ckZkc3DnglPTu4vC+U9F8i4uGI+CyV147PqLVxGuJ1NfBh4MdUrlA+TeW2FlTGs9mQish7gZPqbNd4KoVlm6RO4KI6ttmRzqfaYuBb+GrECnIhMTu6/wE8TOVW1jNV+Z+lB9lPAf8OPHGEffyQSrHYnaanp+8Afwd0pVtni/odI1NEPEHlltYzVArBj+rY7B+AD/Y9bK86/kTg7+s5rll/fo282TAn6UPAwoj49aFuix2b/IzEbBiT9FdUboldPNRtsWOXr0jMSiLpQuBL/eLnI+KDQ9Ees8HiQmJmZg3xw3YzM0Dl8O0AAAAZSURBVGuIC4mZmTXEhcTMzBriQmJmZg35/9O0d48WIvAnAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'has_warranty', 'price_usd' ,kind='scatter')\n","#it isn't good enough "]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"n9WWr6f8uN3o","executionInfo":{"status":"ok","timestamp":1654721155641,"user_tz":-180,"elapsed":26,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"acb0d61c-0808-4000-f936-06f3d574151d"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":30},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAc3klEQVR4nO3dfbRddX3n8feHkJAEQhJCiGkSSDRBjVgRbjFIbVU0BnQIa4oKAyU6FGYpdnSsVux0LRyBNdpptVIfqWQZHDWCUyW1oTHy4FMN5kbCs5hbIE8iCXkkhDzynT/O79pDsneyH86599zcz2utu7LPZ+99zm8nkE/2w9lbEYGZmVlVR/X3AMzMbGBzkZiZWS0uEjMzq8VFYmZmtbhIzMyslqP7ewB97cQTT4ypU6f29zDMzAaUFStWPBMR47PmDboimTp1Kt3d3f09DDOzAUXS6rx5PrRlZma1uEjMzKwWF4mZmdXiIjEzs1pcJGZmVkvbi0TSk5IelLRSUnfKTpC0VNKq9OvYlEvSjZJ6JD0g6Yym95mXll8laV5TfmZ6/560rtq1Ld1PbOIzP3iM7ic2tesjzMzaYtOO3dy/diubduxu+Xv31eW/b4qIZ5peXwPcGRGfknRNev0x4DxgRvp5HfAl4HWSTgCuBbqAAFZIWhQRW9IyVwL3AouBOcAdrd6Ay766jJ/2NArkxrt6eMP0cXz9z2a1+mPMzFru9pXr+cht9/NCwFGCv3vna7jg9Ekte//+OrQ1F1iQphcAFzblt0TDMmCMpInA24ClEbE5lcdSYE6ad3xELIvG/fBvaXqvlul+YtPvSqTXT3o2ec/EzDreph27+eDClezdH+x/Idi7P/jvC1e2dM+kL4okgB9IWiHpqpRNiIin0vRvgQlpehKwtmnddSk7VL4uI38RSVdJ6pbUvXHjxtIb8Ok7Hi2Vm5l1im8se7JUXkVfFMkfRsQZNA5bXS3pj5pnpj2Jtj5dKyJuioiuiOgaPz7zG/6HtGbz86VyM7NO8aNfP1Mqr6LtRRIR69OvG4DvAmcBT6fDUqRfN6TF1wNTmlafnLJD5ZMz8pY6fcqYUrmZWac4dcJxpfIq2lokko6VNKp3GpgNPAQsAnqvvJoH3J6mFwGXp6u3ZgHb0iGwJcBsSWPTFV6zgSVp3nZJs9LVWpc3vVfLTBo7vFRuZtYprvjDl5bKq2j3VVsTgO+mK3KPBr4ZEf8qaTlwq6QrgNXAu9Lyi4HzgR5gJ/BegIjYLOk6YHla7pMRsTlNvx/4GjCCxtVaLb9ia8/+crmZWaeYPmEUb5g+jp80XTD0hunjmD5hVMs+o61FEhGPA6/JyDcB52bkAVyd817zgfkZeTdwWu3BHkLXKWP4v/euyczNzDrZph27Wb56y4uy5au3sGnHbsYdd0xLPsPfbC9g/dZdpXIzs06xbsvz7Nr7wouyXXtfYN2W1l0s5CIpYN2WnaVyM7NO8eDaLaXyKlwkBezYta9UbmbWKX7w6NOl8ipcJAWcPG5kqdzMrFOMHJr913xeXoWLpIAzTh5bKjcz6xTbdmVfXpqXV+EiKeCXa7KPJeblZmadYvr47C8e5uVVuEgK+O327Jub5eVmZp3iJaOzvzidl1fhIing5LEjSuVmZp3ilHHHlsqrcJEUMHrksFK5mVmnOPtl40rlVbhICpiSs+eRl5uZDSYukgK27NxbKjcz6xQ/ePi3pfIqXCQF+DbyZjZQrVidfXVpXl6Fi6SArTv3lMrNzDrF0CEqlVfhIingeyt/Uyo3M+sUY4/NvigoL6/CRVLA8SOy77afl5uZdYpNz2Z/3y0vr8JFUsCbX35SqdzMrFP8cs3WUnkVLpICVm3YUSo3M+sUk8Zkf00hL6/CRVLA4888Vyo3M+sUr5l8fKm8ChdJAW+bOaFUbmbWKe5bt71UXoWLpICuaeMYPXzIi7LRw4fQNa11txgwM2uHV75kVKm8ChdJAd1PbDro3v3bdu2n+4lN/TQiM7NizpkxvlRehYukgM/fvapUbmbWKdY8k31RUF5ehYukgKe3ZV9vnZebmXWKby1fXSqvwkVSwOyZ2d8XycvNzDrFrr1RKq/CRVLAlHHZj6TMy83MOsVZ004olVfhIilg5ZrNpXIzs04x9YSRpfIqXCQF/PBXG0vlZmadYvFDT5fKq3CRFDBq2JBSuZlZp9izb1+pvAoXSQFTxh1bKjcz6xTTT8r+4mFeXoWLpICXnZh9LDEvNzPrFOe+Mvvq0ry8ChdJAU9sfr5UbmbWKdZv3VUqr6JPikTSEEn3Sfp+ej1N0r2SeiR9W9KwlB+TXvek+VOb3uPjKX9M0tua8jkp65F0TTvG/45Xv6RUbmbWKXbuyT4XkpdX0Vd7JB8EHm16/WngsxExHdgCXJHyK4AtKf9sWg5JM4GLgVcBc4AvpnIaAnwBOA+YCVySlm2pN5yavQuYl5uZdYpXThxdKq+i7UUiaTLwduCr6bWANwPfSYssAC5M03PTa9L8c9Pyc4GFEbE7Ip4AeoCz0k9PRDweEXuAhWnZlrr4y/9WKjcz6xT353zfLS+voi/2SP4e+EvghfR6HLA1Inr3q9YBk9L0JGAtQJq/LS3/u/yAdfLyF5F0laRuSd0bN5b/7kfPMztL5WZmneJfcr4vkpdX0dYikfQOYENErGjn5xxORNwUEV0R0TV+fPlbJ48beXSp3MysU0wcPaxUXkW7/yY8B7hA0vnAcOB44HPAGElHp72OycD6tPx6YAqwTtLRwGhgU1Peq3mdvLxlnss5KZWXm5l1iqNy9hfy8mqf0UYR8fGImBwRU2mcLL8rIi4F7gYuSovNA25P04vSa9L8uyIiUn5xuqprGjAD+AWwHJiRrgIblj5jUau34/mcvsjLzcw6xdbn95TKq+ivYzMfAxZKuh64D7g55TcDX5fUA2ymUQxExMOSbgUeAfYBV0fEfgBJHwCWAEOA+RHxcKsHO0ywJ+OOy8PU6k8yM2utE0YOLZVX0WdFEhH3APek6cdpXHF14DK7gHfmrH8DcENGvhhY3MKhHuTVk0ezYu22zNzMrJOt3Zr9xem8vAp/s72AdVuyr87Ky83MOsXoEdl7Hnl5FS6SAjbs2FsqNzPrFCePzb65bF5ehYukgLzjf77418w63ZrNz5XKq3CRFHDcyOznjuTlZmad4sRRx5TKq3CRFPBCZFyydYjczKxTjBmR/cXDvLwKF0kBu/e+UCo3M+sUO/fm3P03J6/CRVJA3o6Hd0jMrNPt3JP9D968vAoXSQH79pfLzcw6xahh2X/N5+VVuEgKyOsL94iZdbpfb8z+vlteXoWLxMzsCPZ7x2efVM/Lq3CRmJkdwZ56NvvmjHl5FS6SAobn/C7l5WZmneLkMSNK5VX4r8IChg3N/m3Ky83MOsXLTjquVF6F/yYsYPvu7Mvk8nIzs05x92MbSuVVuEjMzI5gazZn3y4+L6/CRVLAyWOGl8rNzDrFiKHZT+DLy6twkRTw/jdNL5WbmXWKkcdkP3ckL6/CRVLAd1euK5WbmXWKrTtyntmek1fhIimg5+kdpXIzs06xJ+eegHl5FS6SAoYOyf5tysvNzDpF3qmQFp4icZEUsXVX9iN183Izs04xemTOM9tz8ipcJAXk3SSzhTfPNDNrizEjsh8KnpdX4b8KC3gu52BiXm5m1ime2r67VF6Fi6SAvCdStvBJlWZmbTFj/MhSeRUukgLGjsz+4mFebmbWKULZZ9Xz8ipcJAVs2LqrVG5m1il+9ZtnS+VVuEgK2J1zKiQvNzPrFHn3lm3lPWddJAX4qi0zG6j8PZIOMXVc9kmpvNzMrFOcOuHYUnkVLpICtu7aVyo3M+sUzzyX/cXpvLyKthaJpOGSfiHpfkkPS/pfKZ8m6V5JPZK+LWlYyo9Jr3vS/KlN7/XxlD8m6W1N+ZyU9Ui6ph3bMf7Y7G+A5uVmZp3ipFHHlMqraPceyW7gzRHxGuB0YI6kWcCngc9GxHRgC3BFWv4KYEvKP5uWQ9JM4GLgVcAc4IuShkgaAnwBOA+YCVySlm2pfTknpfJyM7NO8aG3nFoqr6KtRRINvbfIHZp+Angz8J2ULwAuTNNz02vS/HMlKeULI2J3RDwB9ABnpZ+eiHg8IvYAC9OyLbVqw3OlcjOzTnH99x8ulVdx2CKR9Kyk7Xk/BdYfImklsAFYCvw7sDUiek8wrAMmpelJwFqANH8bMK45P2CdvPzAMVwlqVtS98aNGw835IPk7Xh4h8TMOt0Tm7O/75aXV3HYu3ZFxCgASdcBTwFfBwRcCkwssP5+4HRJY4DvAq+oM+AqIuIm4CaArq4uf/vDzKyFyhzauiAivhgRz0bE9oj4EiUOI0XEVuBu4GxgjKTeEpsMrE/T64EpAGn+aGBTc37AOnl5S50yNvtWKHm5mVmnGD6kXF5FmSJ5TtKl6VDVUZIuBQ55kkDS+LQngqQRwFuBR2kUykVpsXnA7Wl6UXpNmn9XRETKL05XdU0DZgC/AJYDM9JVYMNonJBfVGKbCtmzP/sgVl5uZtYpjj0muzHy8irK3JD+vwCfSz8B/CxlhzIRWJCurjoKuDUivi/pEWChpOuB+4Cb0/I3A1+X1ANsplEMRMTDkm4FHgH2AVenQ2ZI+gCwBBgCzI+I1p1BSp7anv1s47zczKxTBDk3bczJqyhcJBHxJCWviIqIB4DXZuSP07ji6sB8F/DOnPe6AbghI18MLC4zLjOzwWLimBFs3nnwDRonjhnRss8ofGhL0t9IOl7SUEl3Stoo6bKWjcTMzFru9yeNLpVXUeYcyeyI2A68A3gSmA58tGUjMTOzlvvpr7O/8pCXV1GmSHoPg70duC0itrVsFGZm1hZrt2U/Ujcvr6LMyfbvS/oV8DzwPknjAT/ZycxskCu8RxIR1wCvB7oiYi+NS39bfjsSMzMbWArvkUi6vGm6edYtrRyQmZkNLGUObf1B0/Rw4Fzgl7hIzMwGtTLfI/nz5tfpG+sLWz4iMzMbUOrcRv45YFqrBmJmZgNTmXMk/0zj1ijQKKCZwK3tGJSZmbXGUWQ/8qKVD6Mqc47kb5um9wGrI2JdC8diZmYt1hfPUypzjuRHh5ov6ecRcXb9IZmZ2UDSyr0bP5zDzKzD5N3jt3X3/m1tkfjJg2ZmHWbUMeXyKlpZJGZm1mGezbmlVl5eRSuLpJV7SmZm1gJ5h4paeQipVJFIOkXSW9L0CEmjmmb/aQvHZWZmLZD3l3wr9yLKPNjqSuA7wFdSNBn4Xu/8iHioheMyM7MW6IvLf8uU0tXAOcB2gIhYBZzUwrGYmdkAVKZIdkfEnt4Xko7GV2qZmQ16ZYrkR5L+Chgh6a3AbcA/t2dYZmY2UJQpkmuAjcCDwH8DFgN/3Y5BmZnZwFHmXlsjgPkR8Y8AkoakbGc7BmZmZgNDmT2SO2kUR68RwA9bOxwzMxtoyhTJ8IjY0fsiTY9s/ZDMzGwgKVMkz0k6o/eFpDOB51s/JDMzG0jKnCP5EHCbpN/QuB3KS4B3t2VUZmY2YJR5HslySa8AXp6ixyJib3uGZWZmA8Vhi0TSmyPiLkn/+YBZp0oiIv6pTWMzM7MBoMgeyR8DdwH/KWNeAC4SM7NB7LBFEhHXSjoKuCMibu2DMZmZ2QBS6KqtiHgB+Muyby5piqS7JT0i6WFJH0z5CZKWSlqVfh2bckm6UVKPpAcOuEpsXlp+laR5TfmZkh5M69woyc9FMTPrQ2Uu//2hpI+kcjih9+cw6+wD/iIiZgKzgKslzaRxu5U7I2IGjS86XpOWPw+YkX6uAr4EjeIBrgVeB5wFXNtbPmmZK5vWm1Nim8zMrKYyl/++m8Y5kfcfkL80b4WIeAp4Kk0/K+lRYBIwF3hjWmwBcA/wsZTfEhEBLJM0RtLEtOzSiNgMIGkpMEfSPcDxEbEs5bcAFwJ3lNguMzOroUyRzKRRIn9Io1B+Any56MqSpgKvBe4FJqSSAfgtMCFNTwLWNq22LmWHytdl5Ad+9lU09nA4+eSTiw7ZzMwKKHNoawHwSuBG4B9oFMuCIitKOg74f8CHImJ787y099HW55pExE0R0RURXePHj2/nR5mZDTpl9khOS+c6et0t6ZHDrSRpKI0S+UbTd06eljQxIp5Kh642pHw9MKVp9ckpW89/HArrze9J+eSM5c3MrI+U2SP5paRZvS8kvQ7oPtQK6Qqqm4FHI+IzTbMWAb1XXs0Dbm/KL09Xb80CtqVDYEuA2ZLGppPss4Elad52SbPSZ13e9F5mZtYHyuyRnAn8m6Q16fXJwGOSHqRxhOr3M9Y5B/hT4EFJK1P2V8CngFslXQGsBt6V5i0Gzgd6aDzn5L003nyzpOuA5Wm5T/aeeKdx3uZrNG5rfwc+0W5m1qfKFEnpy2oj4qc0bvCY5dyM5QO4Oue95gPzM/Ju4LSyYzMzs9Yoc9PG1e0ciJmZDUxlzpGYmZkdxEViZma1uEjMzKwWF4mZmdXiIjEzs1pcJGZmVouLxMzManGRmJlZLS4SMzOrxUViZma1uEjMzKwWF4mZmdXiIjEzs1pcJGZmVouLxMzManGRmJlZLS4SMzOrxUViZma1uEjMzKwWF4mZmdXiIjEzs1pcJGZmVouLxMzManGRmJlZLS4SMzOrxUViZma1uEjMzKwWF4mZmdXiIjEzs1raWiSS5kvaIOmhpuwESUslrUq/jk25JN0oqUfSA5LOaFpnXlp+laR5TfmZkh5M69woSe3cHjMzO1i790i+Bsw5ILsGuDMiZgB3ptcA5wEz0s9VwJegUTzAtcDrgLOAa3vLJy1zZdN6B36WmZm1WVuLJCJ+DGw+IJ4LLEjTC4ALm/JbomEZMEbSROBtwNKI2BwRW4ClwJw07/iIWBYRAdzS9F5mZtZH+uMcyYSIeCpN/xaYkKYnAWublluXskPl6zLyg0i6SlK3pO6NGzfW3wIzM/udfj3ZnvYkog8+56aI6IqIrvHjx7f748zMBpX+KJKn02Ep0q8bUr4emNK03OSUHSqfnJGbmVkf6o8iWQT0Xnk1D7i9Kb88Xb01C9iWDoEtAWZLGptOss8GlqR52yXNSldrXd70XmZm1keObuebS/oW8EbgREnraFx99SngVklXAKuBd6XFFwPnAz3ATuC9ABGxWdJ1wPK03CcjovcE/vtpXBk2Argj/ZiZWR9qa5FExCU5s87NWDaAq3PeZz4wPyPvBk6rM0YzM6vH32w3M7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysFheJmZnV4iIxM7NaXCRmZlaLi8TMzGpxkZiZWS0uEjMzq8VFYmZmtbhIzMysliOiSCTNkfSYpB5J1/T3eMzMBpMBXySShgBfAM4DZgKXSJrZv6MyMxs8BnyRAGcBPRHxeETsARYCc/t5TGZmg8aRUCSTgLVNr9el7HckXSWpW1L3xo0b+3RwZmZHuiOhSA4rIm6KiK6I6Bo/fnzp9ccMV6nczKxTXH9B9pH+vLyKI6FI1gNTml5PTlnLrPzE+aVyM7NOcdnrpzF6+JAXZaOHD+Gy109r2WccCUWyHJghaZqkYcDFwKJWf8iTn3r77/ZAxgwXT37q7a3+CDOztrj/E3O4/oKZ/MHUsVx/wUzu/8Sclr6/IqKlb9gfJJ0P/D0wBJgfETfkLdvV1RXd3d19NjYzsyOBpBUR0ZU17+i+Hkw7RMRiYHF/j8PMbDA6Eg5tmZlZP3KRmJlZLS4SMzOrxUViZma1HBFXbZUhaSOwusZbnAg806LhDBSDbZsH2/aCt3mwqLPNp0RE5je6B12R1CWpO+8SuCPVYNvmwba94G0eLNq1zT60ZWZmtbhIzMysFhdJeTf19wD6wWDb5sG2veBtHizass0+R2JmZrV4j8TMzGpxkZiZWS0ukgyS5kh6TFKPpGsy5h8j6dtp/r2Spvb9KFurwDZ/WNIjkh6QdKekU/pjnK10uG1uWu5PJIWkAX+paJFtlvSu9Gf9sKRv9vUYW63Af9snS7pb0n3pv+8B/aAhSfMlbZD0UM58Sbox/X48IOmM2h8aEf5p+qFxK/p/B14KDAPuB2YesMz7gS+n6YuBb/f3uPtgm98EjEzT7xsM25yWGwX8GFgGdPX3uPvgz3kGcB8wNr0+qb/H3QfbfBPwvjQ9E3iyv8ddc5v/CDgDeChn/vnAHYCAWcC9dT/TeyQHOwvoiYjHI2IPsBCYe8Ayc4EFafo7wLmSBvJzdw+7zRFxd0TsTC+X0XgS5UBW5M8Z4Drg08CuvhxcmxTZ5iuBL0TEFoCI2NDHY2y1ItscwPFpejTwmz4cX8tFxI+BzYdYZC5wSzQsA8ZImljnM10kB5sErG16vS5lmctExD5gGzCuT0bXHkW2udkVNP5FM5AddpvTLv+UiPiXvhxYGxX5cz4VOFXSzyQtk9TaR+n1vSLb/AngMknraDzX6M/7Zmj9puz/74d1RDzYyvqOpMuALuCP+3ss7STpKOAzwHv6eSh97Wgah7feSGOv88eSXh0RW/t1VO11CfC1iPg7SWcDX5d0WkS80N8DGyi8R3Kw9cCUpteTU5a5jKSjaewOb+qT0bVHkW1G0luA/wlcEBG7+2hs7XK4bR4FnAbcI+lJGseSFw3wE+5F/pzXAYsiYm9EPAH8mkaxDFRFtvkK4FaAiPg5MJzGzQ2PVIX+fy/DRXKw5cAMSdMkDaNxMn3RAcssAual6YuAuyKdxRqgDrvNkl4LfIVGiQz04+ZwmG2OiG0RcWJETI2IqTTOC10QEd39M9yWKPLf9vdo7I0g6UQah7oe78tBtliRbV4DnAsg6ZU0imRjn46yby0CLk9Xb80CtkXEU3Xe0Ie2DhAR+yR9AFhC44qP+RHxsKRPAt0RsQi4mcbubw+Nk1oX99+I6yu4zf8HOA64LV1XsCYiLui3QddUcJuPKAW3eQkwW9IjwH7goxExYPe2C27zXwD/KOl/0Djx/p6B/A9DSd+i8Y+BE9N5n2uBoQAR8WUa54HOB3qAncB7a3/mAP79MjOzDuBDW2ZmVouLxMzManGRmJlZLS4SMzOrxUViZma1uEjMzKwWF4lZm0n6PUnfafF7viHd5n2lpBEV1v+apItaOSYbvFwkZm0WEb+JiFb/pX0p8L8j4vSIeL7F721WiovE7BAkXSbpF+lf/l+RNETSDkk3SLo/3SF3Qlr2Zen1g5Kul7Qj5VN7HzIk6T2S/knSv0paJelvmj5rtqSfS/qlpNskHZczpj8D3gVcJ+kbkt4o6ftN8z8v6T1p+kxJP5K0QtKSurcLN8viIjHLke679G7gnIg4ncYtQy4FjgWWRcRraDz06sq0yueAz0XEq2nc/DDP6el9Xw28W9KUdF+rvwbeEhFnAN3Ah7NWjoiv0rhf0kcj4tJDjH8o8A/ARRFxJjAfuKHQxpuV4HttmeU7FzgTWJ7uLzYC2ADsAXr3AFYAb03TZwMXpulvAn+b8753RsQ2gHRPq1OAMTSezvez9FnDgJ/XHP/LadzBeGl6zyFArZvzmWVxkZjlE7AgIj7+olD6SNNN/fZT/v+j5lvw964vYGlEXFJhnPt48dGF4b1DBR6OiLMrvKdZYT60ZZbvTuAiSScBSDpB0imHWH4Z8CdpuuwdoZcB50ianj7rWEmnFlx3NTBT0jGSxpBuiQ48BoxPD2tC0lBJryo5LrPDcpGY5YiIR2ict/iBpAeApcChTlZ/CPhwWnY6jUcwF/2sjTSexvittP7PgVcUXHctjQczPZR+vS/le2g8L+fTku4HVgKvLzoms6J8G3mzFpE0Eng+IkLSxcAlETG3v8dl1m4+R2LWOmcCn1fjzPZW4L/283jM+oT3SMw6mKTvAtMOiD8WEUv6YzxmWVwkZmZWi0+2m5lZLS4SMzOrxUViZma1uEjMzKyW/w+eawspu1dsowAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'engine_fuel', 'price_usd' ,kind='scatter')\n","#also it's a weak feature"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"JHMgTJHFuN_O","colab":{"base_uri":"https://localhost:8080/","height":297},"executionInfo":{"status":"ok","timestamp":1654721155642,"user_tz":-180,"elapsed":22,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"95a24bcf-741f-49f9-9719-6d6d70ec8df0"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":31},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdQklEQVR4nO3de7QedX3v8feHkJAEQhJCiDEXEk1QIlaEXQyirYrGgJawTlGhUqLlwFmCVY+1FT1dC4/CWtrTitJ6o5JjsGoETpWUBmPk4q0GsyPhLmYXyE0kIVdCyJXv+eP5bfuQzCQzzzzPs5+d/XmttVdmPvObmd8kkG9m5jczigjMzMwadURfd8DMzPo3FxIzM6vEhcTMzCpxITEzs0pcSMzMrJIj+7oD7Xb88cfHlClT+robZmb9yvLly5+JiLFZywZcIZkyZQrd3d193Q0zs35F0qq8Zb60ZWZmlbiQmJlZJS4kZmZWiQuJmZlV4kJiZmaVtLyQSHpS0oOSVkjqTtlxkpZIWpl+HZ1ySbpeUo+kBySdVreduan9Sklz6/LT0/Z70rpq1bF0P7GRz//wMbqf2NiqXZiZtcTG7bu4f80WNm7f1fRtt2v475sj4pm6+auAOyPis5KuSvMfB84Bpqef1wFfAV4n6TjgaqALCGC5pIURsTm1uQy4F1gEzAbuaPYBXPz1pfysp1ZArr+rhzdOG8M3//vMZu/GzKzpbluxjo/dcj8vBBwh+Id3vYbzTp3QtO331aWtOcD8ND0fOL8uvylqlgKjJI0H3g4siYhNqXgsAWanZcdGxNKovQ//prptNU33Ext/X0R6/bRno89MzKzjbdy+iw8vWMGefcG+F4I9+4IPLVjR1DOTdhSSAH4oabmky1M2LiKeStO/A8al6QnAmrp116bsYPnajPxFJF0uqVtS94YNG0ofwOfueLRUbmbWKb619MlSeSPaUUjeEBGnUbtsdaWkP6pfmM4kWvp1rYi4ISK6IqJr7NjMJ/wPavWm50vlZmad4se/eaZU3oiWF5KIWJd+XQ98DzgDeDpdliL9uj41XwdMqlt9YsoOlk/MyJvq1EmjSuVmZp3ipHHHlMob0dJCIuloSSN6p4FZwEPAQqB35NVc4LY0vRC4JI3emglsTZfAFgOzJI1OI7xmAYvTsm2SZqbRWpfUbatpJoweWio3M+sUl77hZaXyRrR61NY44HtpRO6RwLcj4geSlgE3S7oUWAW8O7VfBJwL9AA7gPcDRMQmSZ8BlqV2n46ITWn6CuAbwDBqo7WaPmJr975yuZlZp5g2bgRvnDaGn9YNGHrjtDFMGzeiaftoaSGJiMeB12TkG4GzM/IArszZ1jxgXkbeDZxSubMH0XXiKP7l3tWZuZlZJ9u4fRfLVm1+UbZs1WY2bt/FmGOOaso+/GR7Aeu27CyVm5l1irWbn2fnnhdelO3c8wJrNzdvsJALSQFrN+8olZuZdYoH12wulTfChaSA7Tv3lsrNzDrFDx99ulTeCBeSAiaPGV4qNzPrFMMHZ/81n5c3woWkgNMmjy6Vm5l1iq07s4eX5uWNcCEp4Fers68l5uVmZp1i2tjsBw/z8ka4kBTwu23ZLzfLy83MOsVLRmY/OJ2XN8KFpIDJo4eVys3MOsWJY44ulTfChaSAkcOHlMrNzDrFmS8fUypvhAtJAZNyzjzycjOzgcSFpIDNO/aUys3MOsUPH/5dqbwRLiQF+DXyZtZfLV+VPbo0L2+EC0kBW3bsLpWbmXWKwYNUKm+EC0kB31/x21K5mVmnGH109qCgvLwRLiQFHDss+237ebmZWafY+Gz28255eSNcSAp4yytOKJWbmXWKX63eUipvhAtJASvXby+Vm5l1igmjsh9TyMsb4UJSwOPPPFcqNzPrFK+ZeGypvBEuJAW8fca4UrmZWae4b+22UnkjXEgK6Jo6hpFDB70oGzl0EF1Tm/eKATOzVjj5JSNK5Y1wISmg+4mNB7y7f+vOfXQ/sbGPemRmVsxZ08eWyhvhQlLAP929slRuZtYpVj+TPSgoL2+EC0kBT2/NHm+dl5uZdYrvLFtVKm+EC0kBs2ZkPy+Sl5uZdYqde6JU3ggXkgImjcn+JGVebmbWKc6YelypvBEuJAWsWL2pVG5m1immHDe8VN4IF5ICfvTrDaVyM7NOseihp0vljXAhKWDEkEGlcjOzTrF7795SeSNcSAqYNOboUrmZWaeYdkL2g4d5eSNcSAp4+fHZ1xLzcjOzTnH2ydmjS/PyRriQFPDEpudL5WZmnWLdlp2l8ka0pZBIGiTpPkm3p/mpku6V1CPpu5KGpPyoNN+Tlk+p28YnUv6YpLfX5bNT1iPpqlb0/52vfkmp3MysU+zYnX0vJC9vRLvOSD4MPFo3/znguoiYBmwGLk35pcDmlF+X2iFpBnAh8CpgNvDlVJwGAV8CzgFmABeltk31xpOyTwHzcjOzTnHy+JGl8ka0vJBImgi8A/h6mhfwFuDW1GQ+cH6anpPmScvPTu3nAAsiYldEPAH0AGekn56IeDwidgMLUtumuvCr/1EqNzPrFPfnPO+WlzeiHWckXwD+BnghzY8BtkRE73nVWmBCmp4ArAFIy7em9r/P91snL38RSZdL6pbUvWFD+Wc/ep7ZUSo3M+sU/57zvEhe3oiWFhJJ7wTWR8TyVu7nUCLihojoioiusWPLvzp5zPAjS+VmZp1i/MghpfJGtPpvwrOA8ySdCwwFjgW+CIySdGQ665gIrEvt1wGTgLWSjgRGAhvr8l716+TlTfNczk2pvNzMrFMckXO+kJc3to8WiohPRMTEiJhC7Wb5XRHxXuBu4ILUbC5wW5pemOZJy++KiEj5hWlU11RgOvBLYBkwPY0CG5L2sbDZx/F8Tr3Iy83MOsWW53eXyhvRV9dmPg4skHQNcB9wY8pvBL4pqQfYRK0wEBEPS7oZeATYC1wZEfsAJH0QWAwMAuZFxMPN7uwQwe6MNy4PUbP3ZGbWXMcNH1wqb0TbCklE3APck6Yfpzbiav82O4F35ax/LXBtRr4IWNTErh7g1RNHsnzN1szczKyTrdmS/eB0Xt4IP9lewNrN2aOz8nIzs04xclj2mUde3ggXkgLWb99TKjcz6xSTR2e/XDYvb4QLSQF51/88+NfMOt3qTc+VyhvhQlLAMcOzvzuSl5uZdYrjRxxVKm+EC0kBL0TGkK2D5GZmnWLUsOwHD/PyRriQFLBrzwulcjOzTrFjT87bf3PyRriQFJB34uETEjPrdDt2Z/+DNy9vhAtJAXv3lcvNzDrFiCHZf83n5Y1wISkgr164jphZp/vNhuzn3fLyRriQmJkdxl56bPZN9by8ES4kZmaHsaeezX45Y17eCBeSAobm/C7l5WZmnWLyqGGl8kb4r8IChgzO/m3Ky83MOsXLTzimVN4I/01YwLZd2cPk8nIzs05x92PrS+WNcCExMzuMrd6U/br4vLwRLiQFTB41tFRuZtYphg3O/gJfXt4IF5ICrnjztFK5mVmnGH5U9ndH8vJGuJAU8L0Va0vlZmadYsv2nG+25+SNcCEpoOfp7aVyM7NOsTvnnYB5eSNcSAoYPCj7tykvNzPrFHm3Qpp4i8SFpIgtO7M/qZuXm5l1ipHDc77ZnpM3woWkgLyXZDbx5ZlmZi0xalj2R8Hz8kb4r8ICnsu5mJiXm5l1iqe27SqVN8KFpIC8L1I28UuVZmYtMX3s8FJ5I1xIChg9PPvBw7zczKxThLLvqufljXAhKWD9lp2lcjOzTvHr3z5bKm+EC0kBu3JuheTlZmadIu/dss1856wLSQEetWVm/ZWfI+kQU8Zk35TKy83MOsVJ444ulTfChaSALTv3lsrNzDrFM89lPzidlzeipYVE0lBJv5R0v6SHJf3vlE+VdK+kHknflTQk5Uel+Z60fErdtj6R8sckvb0un52yHklXteI4xh6d/QRoXm5m1ilOGHFUqbwRrT4j2QW8JSJeA5wKzJY0E/gccF1ETAM2A5em9pcCm1N+XWqHpBnAhcCrgNnAlyUNkjQI+BJwDjADuCi1baq9OTel8nIzs07xkbeeVCpvREsLSdT0viJ3cPoJ4C3ArSmfD5yfpuekedLysyUp5QsiYldEPAH0AGekn56IeDwidgMLUtumWrn+uVK5mVmnuOb2h0vljThkIZH0rKRteT8F1h8kaQWwHlgC/CewJSJ6bzCsBSak6QnAGoC0fCswpj7fb528fP8+XC6pW1L3hg0bDtXlA+SdePiExMw63RObsp93y8sbcci3dkXECABJnwGeAr4JCHgvML7A+vuAUyWNAr4HvLJKhxsRETcANwB0dXX56Q8zsyYqc2nrvIj4ckQ8GxHbIuIrlLiMFBFbgLuBM4FRknqL2ERgXZpeB0wCSMtHAhvr8/3Wycub6sTR2a9CycvNzDrF0EHl8kaUKSTPSXpvulR1hKT3Age9SSBpbDoTQdIw4G3Ao9QKygWp2VzgtjS9MM2Tlt8VEZHyC9OorqnAdOCXwDJgehoFNoTaDfmFJY6pkN37si9i5eVmZp3i6KOyK0Ze3ogyL6T/M+CL6SeAn6fsYMYD89PoqiOAmyPidkmPAAskXQPcB9yY2t8IfFNSD7CJWmEgIh6WdDPwCLAXuDJdMkPSB4HFwCBgXkQ07w5S8tS27G8b5+VmZp0iyHlpY07eiMKFJCKepOSIqIh4AHhtRv44tRFX++c7gXflbOta4NqMfBGwqEy/zMwGivGjhrFpx4EvaBw/aljT9lH40pakv5N0rKTBku6UtEHSxU3riZmZNd0fTBhZKm9EmXsksyJiG/BO4ElgGvDXTeuJmZk13c9+k/3IQ17eiDKFpPcy2DuAWyJia9N6YWZmLbFma/YndfPyRpS52X67pF8DzwMfkDQW8JedzMwGuMJnJBFxFfB6oCsi9lAb+tv015GYmVn/UviMRNIlddP1i25qZofMzKx/KXNp6w/rpocCZwO/woXEzGxAK/McyV/Wz6cn1hc0vUdmZtavVHmN/HPA1GZ1xMzM+qcy90j+jdqrUaBWgGYAN7eiU2Zm1hxHkP3Ji2Z+jKrMPZK/r5veC6yKiLVN7IuZmTVZO76nVOYeyY8PtlzSLyLizOpdMjOz/qSZZzf+OIeZWYfJe8dv897929xC4i8Pmpl1mBFHlcsb0cxCYmZmHebZnFdq5eWNaGYhaeaZkpmZNUHepaJmXkIqVUgknSjprWl6mKQRdYv/vIn9MjOzJsj7S76ZZxFlPmx1GXAr8LUUTQS+37s8Ih5qYr/MzKwJ2jH8t0xRuhI4C9gGEBErgROa2BczM+uHyhSSXRGxu3dG0pF4pJaZ2YBXppD8WNIngWGS3gbcAvxba7plZmb9RZlCchWwAXgQ+B/AIuBvW9EpMzPrP8q8a2sYMC8i/hlA0qCU7WhFx8zMrH8oc0ZyJ7XC0WsY8KPmdsfMzPqbMoVkaERs751J08Ob3yUzM+tPyhSS5ySd1jsj6XTg+eZ3yczM+pMy90g+Atwi6bfUXofyEuA9LemVmZn1G2W+R7JM0iuBV6TosYjY05pumZlZf3HIQiLpLRFxl6T/tt+ikyQREf/aor6ZmVk/UOSM5I+Bu4A/yVgWgAuJmdkAdshCEhFXSzoCuCMibm5Dn8zMrB8pNGorIl4A/qbsxiVNknS3pEckPSzpwyk/TtISSSvTr6NTLknXS+qR9MB+o8TmpvYrJc2ty0+X9GBa53pJ/i6KmVkblRn++yNJH0vF4bjen0Ossxf4q4iYAcwErpQ0g9rrVu6MiOnUHnS8KrU/B5iefi4HvgK1wgNcDbwOOAO4urf4pDaX1a03u8QxmZlZRWWG/76H2j2RK/bLX5a3QkQ8BTyVpp+V9CgwAZgDvCk1mw/cA3w85TdFRABLJY2SND61XRIRmwAkLQFmS7oHODYilqb8JuB84I4Sx2VmZhWUKSQzqBWRN1ArKD8Fvlp0ZUlTgNcC9wLjUpEB+B0wLk1PANbUrbY2ZQfL12bk++/7cmpnOEyePLlol83MrIAyl7bmAycD1wP/SK2wzC+yoqRjgP8HfCQittUvS2cfLf2uSUTcEBFdEdE1duzYVu7KzGzAKXNGckq619HrbkmPHGolSYOpFZFv1T1z8rSk8RHxVLp0tT7l64BJdatPTNk6/utSWG9+T8onZrQ3M7M2KXNG8itJM3tnJL0O6D7YCmkE1Y3AoxHx+bpFC4HekVdzgdvq8kvS6K2ZwNZ0CWwxMEvS6HSTfRawOC3bJmlm2tclddsyM7M2KHNGcjrwH5JWp/nJwGOSHqR2heoPMtY5C/hz4EFJK1L2SeCzwM2SLgVWAe9OyxYB5wI91L5z8n5qG98k6TPAstTu07033qndt/kGtdfa34FvtJuZtVWZQlJ6WG1E/IzaCx6znJ3RPoArc7Y1D5iXkXcDp5Ttm5mZNUeZlzauamVHzMysfypzj8TMzOwALiRmZlaJC4mZmVXiQmJmZpW4kJiZWSUuJGZmVokLiZmZVeJCYmZmlbiQmJlZJS4kZmZWiQuJmZlV4kJiZmaVuJCYmVklLiRmZlaJC4mZmVXiQmJmZpW4kJiZWSUuJGZmVokLiZmZVeJCYmZmlbiQmJlZJS4kZmZWiQuJmZlV4kJiZmaVuJCYmVklLiRmZlaJC4mZmVXiQmJmZpW4kJiZWSUtLSSS5klaL+mhuuw4SUskrUy/jk65JF0vqUfSA5JOq1tnbmq/UtLcuvx0SQ+mda6XpFYej5mZHajVZyTfAGbvl10F3BkR04E70zzAOcD09HM58BWoFR7gauB1wBnA1b3FJ7W5rG69/fdlZmYt1tJCEhE/ATbtF88B5qfp+cD5dflNUbMUGCVpPPB2YElEbIqIzcASYHZadmxELI2IAG6q25aZmbVJX9wjGRcRT6Xp3wHj0vQEYE1du7UpO1i+NiM/gKTLJXVL6t6wYUP1IzAzs9/r05vt6Uwi2rCfGyKiKyK6xo4d2+rdmZkNKH1RSJ5Ol6VIv65P+TpgUl27iSk7WD4xIzczszbqi0KyEOgdeTUXuK0uvySN3poJbE2XwBYDsySNTjfZZwGL07Jtkmam0VqX1G3LzMza5MhWblzSd4A3AcdLWktt9NVngZslXQqsAt6dmi8CzgV6gB3A+wEiYpOkzwDLUrtPR0TvDfwrqI0MGwbckX7MzKyNWlpIIuKinEVnZ7QN4Mqc7cwD5mXk3cApVfpoZmbV+Ml2MzOrxIXEzMwqcSExM7NKXEjMzKwSFxIzM6vEhcTMzCpxITEzs0pcSMzMrBIXEjMzq8SFxMzMKnEhMTOzSlxIzMysEhcSMzOrxIXEzMwqcSExM7NKXEjMzKwSFxIzM6vEhcTMzCpxITEzs0pcSMzMrBIXEjMzq8SFxMzMKnEhMTOzSlxIzMysEhcSMzOrxIXEzMwqcSExM7NKXEjMzKwSFxIzM6vEhcTMzCpxITEzs0oOi0IiabakxyT1SLqqr/tjZjaQ9PtCImkQ8CXgHGAGcJGkGX3bKzOzgaPfFxLgDKAnIh6PiN3AAmBOH/fJzGzAOBwKyQRgTd382pT9nqTLJXVL6t6wYUNbO2dmdrg7HArJIUXEDRHRFRFdY8eOLb3+qKEqlZuZdYprzsu+0p+XN+JwKCTrgEl18xNT1jQrPnVuqdzMrFNc/PqpjBw66EXZyKGDuPj1U5u2j8OhkCwDpkuaKmkIcCGwsNk7efKz7/j9GciooeLJz76j2bswM2uJ+z81m2vOm8EfThnNNefN4P5PzW7q9hURTd1gX5B0LvAFYBAwLyKuzWvb1dUV3d3dbeubmdnhQNLyiOjKWnZkuzvTChGxCFjU1/0wMxuIDodLW2Zm1odcSMzMrBIXEjMzq8SFxMzMKjksRm2VIWkDsKrCJo4HnmlSd/qLgXbMA+14wcc8UFQ55hMjIvOJ7gFXSKqS1J03BO5wNdCOeaAdL/iYB4pWHbMvbZmZWSUuJGZmVokLSXk39HUH+sBAO+aBdrzgYx4oWnLMvkdiZmaV+IzEzMwqcSExM7NKXEgySJot6TFJPZKuylh+lKTvpuX3SprS/l42V4Fj/qikRyQ9IOlOSSf2RT+b6VDHXNfuTyWFpH4/VLTIMUt6d/qzfljSt9vdx2Yr8N/2ZEl3S7ov/ffdrz80JGmepPWSHspZLknXp9+PBySdVnmnEeGfuh9qr6L/T+BlwBDgfmDGfm2uAL6api8EvtvX/W7DMb8ZGJ6mPzAQjjm1GwH8BFgKdPV1v9vw5zwduA8YneZP6Ot+t+GYbwA+kKZnAE/2db8rHvMfAacBD+UsPxe4AxAwE7i36j59RnKgM4CeiHg8InYDC4A5+7WZA8xP07cCZ0vqz9/dPeQxR8TdEbEjzS6l9iXK/qzInzPAZ4DPATvb2bkWKXLMlwFfiojNABGxvs19bLYixxzAsWl6JPDbNvav6SLiJ8CmgzSZA9wUNUuBUZLGV9mnC8mBJgBr6ubXpiyzTUTsBbYCY9rSu9Yocsz1LqX2L5r+7JDHnE75J0XEv7ezYy1U5M/5JOAkST+XtFRScz+l135FjvlTwMWS1lL7rtFftqdrfabs/++HdFh82MraR9LFQBfwx33dl1aSdATweeB9fdyVdjuS2uWtN1E76/yJpFdHxJY+7VVrXQR8IyL+QdKZwDclnRIRL/R1x/oLn5EcaB0wqW5+Ysoy20g6ktrp8Ma29K41ihwzkt4K/C/gvIjY1aa+tcqhjnkEcApwj6QnqV1LXtjPb7gX+XNeCyyMiD0R8QTwG2qFpb8qcsyXAjcDRMQvgKHUXm54uCr0/3sZLiQHWgZMlzRV0hBqN9MX7tdmITA3TV8A3BXpLlY/dchjlvRa4GvUikh/v24OhzjmiNgaEcdHxJSImELtvtB5EdHdN91tiiL/bX+f2tkIko6ndqnr8XZ2ssmKHPNq4GwASSdTKyQb2trL9loIXJJGb80EtkbEU1U26Etb+4mIvZI+CCymNuJjXkQ8LOnTQHdELARupHb620PtptaFfdfj6goe8/8BjgFuSeMKVkfEeX3W6YoKHvNhpeAxLwZmSXoE2Af8dUT027Ptgsf8V8A/S/qf1G68v68//8NQ0neo/WPg+HTf52pgMEBEfJXafaBzgR5gB/D+yvvsx79fZmbWAXxpy8zMKnEhMTOzSlxIzMysEhcSMzOrxIXEzMwqcSExM7NKXEjMWkjSSyXd2uRtfkTS8GZu06wKP0di1s+kV7Z0RcQzfd0XM/AZiVkuSRdL+qWkFZK+JmmQpO2SrpV0f3o77rjU9uVp/kFJ10janvIpvR8YkvQ+Sf8q6QeSVkr6u7p9zZL0C0m/knSLpGNy+vQh4KXA3eljTH8h6Qt1yy+TdF3a768lfUvSo5Ju7T2LkXS6pB9LWi5pcdVXiJu5kJhlSO9ceg9wVkScSu11Ie8FjgaWRsRrqH3w6rK0yheBL0bEq6m9+DDPqWm7rwbeI2lSeqfV3wJvjYjTgG7go1krR8T11L6X8eaIeDO1lw3+iaTBqcn7gXlp+hXAlyPiZGAbcEVq94/ABRFxemp7bYnfGrMD+F1bZtnOBk4HlqV3iw0D1gO7gdtTm+XA29L0mcD5afrbwN/nbPfOiNgKkN5ndSIwitqX+X6e9jUE+EWRTkbEdkl3Ae+U9CgwOCIeVO3zz2si4uep6b8AHwJ+QO2txkvSvgYBlV7YZ+ZCYpZNwPyI+MSLQuljdS/020f5/4fqX7/fu76AJRFxUYN9/TrwSeDXwP+ty/e/ARppXw9HxJkN7svsAL60ZZbtTuACSScASDpO0okHab8U+NM0XfZt0EuBsyRNS/s6WtJJB2n/LLXvpQAQEfdS+77EnwHfqWs3OX2oibTsZ8BjwNjeXNJgSa8q2V+zF3EhMcsQEY9Qu2/xQ0kPAEuAg92U/gjw0dR2GrXPLxfd1wZqX2L8Tlr/F8ArD7LKDcAPJN1dl90M/Lz3W+vJY8CV6ZLXaOAr6bvlFwCfk3Q/sAJ4fdG+mmXx8F+zJkgjop6PiJB0IXBRRMxp4/5vB66LiDvT/BTg9og4pV19sIHL90jMmuN04J9Uu4O9BfiLduxU0ijgl8D9vUXErN18RmLWoSR9D5i6X/zxiFjcF/0xy+NCYmZmlfhmu5mZVeJCYmZmlbiQmJlZJS4kZmZWyf8HUsg3SMfi71kAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["df_train.plot( 'engine_type', 'price_usd' ,kind='scatter')\n","#also it's a weak feature"]},{"cell_type":"code","source":["df_train.plot( 'body_type', 'price_usd' ,kind='scatter')\n","# it's intermediate "],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"mXsK1JZvwZEI","executionInfo":{"status":"ok","timestamp":1654721156283,"user_tz":-180,"elapsed":654,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"5e967671-3229-4c11-bbec-3746bbe12966"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":32},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeUklEQVR4nO3de5xcZZ3n8c83nc7FJJCQxBbTCUETxXARIUIyzKwMMDHiDmFFuYgmw7Kyqzjr6HjBmVmZxXFfirsysqM4KFkTbyHAChkHJiCIqEOQRkMiAaTlknSEEHLtQAhJ+jd/1NNMdacqqdN1qi9V3/frVa8+9T235yShf5zb8ygiMDMz66thA90AMzMb2lxIzMysKi4kZmZWFRcSMzOriguJmZlVZfhAN6C/TZo0KaZPnz7QzTAzG1IeeuihFyJicql5DVdIpk+fTltb20A3w8xsSJH0TLl5vrRlZmZVcSExM7OquJCYmVlVXEjMzKwqLiRmZlaVmhcSSU9LWitptaS2lB0h6S5JT6SfE1IuSddKape0RtJJRdtZlJZ/QtKiovzktP32tK5qdSx3r3uOz9z8MHeve65WuzAzG3L66/HfP46IF4q+XwHcHRFflHRF+v4Z4F3AzPQ5FbgOOFXSEcCVwGwggIckrYiIbWmZDwEPALcD84E78j6Aedfcy283vQjAjW0dvLllDCs/fnreuzEzG3IG6tLWAmBJml4CnFuUL42CVcB4SUcC7wTuioitqXjcBcxP8w6LiFVR6A9/adG2cnP3uudeLSLdHt/0os9MzMzon0ISwJ2SHpJ0WcpaIuLZNP0c0JKmpwAbitbtSNnB8o4SeQ+SLpPUJqlt8+bNmQ/gb364JlNuZtZI+uPS1h9GxEZJrwXukvRY8cyICEk1HV0rIq4HrgeYPXt25n0937k3U25m1khqfkYSERvTz+eBHwKnAJvSZSnSz+fT4huBqUWrt6bsYHlriTxXLYeNyJSbmTWSmhYSSWMkjeueBuYBvwFWAN1PXi0CbkvTK4CF6emtOcCOdAlsJTBP0oT0hNc8YGWat1PSnPS01sKibeXm1DcckSk3M2sktb601QL8MD2ROxz4fkT8i6QHgeWSLgWeAc5Py98OnA20Ay8BlwBExFZJnwceTMtdFRFb0/RHgG8Doyk8rZX7E1tjRpY+8yiXm5k1kpoWkoh4EnhriXwLcGaJPIDLy2xrMbC4RN4GHFd1Yw/imJaxmXIzs0biN9sr8NimXZlyM7NG4kJSgXXPbs+Um5k1EheSCqzf8nKm3MyskbiQVOCwUaX/mMrlZmaNxL8JK9Dc1JQpNzNrJC4kFWgeVrpD4XK5mVkjcSGpQFeZnunL5WZmjcSFpALTJ47OlJuZNRIXkgoc+/rxmXIzs0biQlKBKeNHZcrNzBqJC0kFft6+JVNuZtZIXEgqsHN36XFHyuVmZo3EhaQCXV2lx8Iql5uZNRIXkgo821m6K5RyuZlZI3EhqcD+fV2ZcjOzRuJCUoGde/Zlys3MGokLSQXGjCg9/le53MyskbiQVGDMiNKdM5bLzcwaiQuJmZlVxYWkAqe+YWKm3MyskbiQVGDSuJGZcjOzRuJCUoFlDz6TKTczayQuJBXY8MLuTLmZWSNxIanA6FGln84ql5uZNRIXkgoc0zIuU25m1khcSCqwZ2/pN9jL5WZmjcSFpAJrN+7KlJuZNRIXkgooY25m1khcSCpwxJjmTLmZWSNxIanArCNL31Qvl5uZNRIXkgqs374nU25m1kj6pZBIapL0a0k/St+PlvSApHZJN0oakfKR6Xt7mj+9aBufTfnjkt5ZlM9PWbukK2rR/qMnvSZTbmY22LRv6uTmtg20b+rMfdv9dUbyMeDRou9fAq6JiBnANuDSlF8KbEv5NWk5JM0CLgSOBeYDX0/FqQn4GvAuYBZwUVo2V2e9pSVTbmY2mHzu1rWcdc19fPLmNZx1zX187ra1uW6/5oVEUivwbuBb6buAM4Cb0yJLgHPT9IL0nTT/zLT8AmBZROyJiKeAduCU9GmPiCcj4hVgWVo2V1/+l0cz5WZmg0X7pk6WrlrfI1t6//pcz0z644zk74FPA90DnE8EtkdE99t8HcCUND0F2ACQ5u9Iy7+a91qnXN6DpMsktUlq27x5c+YD2Lp7f6bczGywWL1he6a8L2paSCT9R+D5iHiolvs5lIi4PiJmR8TsyZMnZ16/3B+Sn1Qws8HuxKnjM+V9UevfhacB50h6msJlpzOArwLjJXUPeN4KbEzTG4GpAGn+4cCW4rzXOuXyXHVlzM3MBosZLeNYOHdaj2zh3GnMyLGvwOGHXqTvIuKzwGcBJJ0OfDIiLpZ0E/BeCsVlEXBbWmVF+n5/mn9PRISkFcD3JX0FeD0wE/glhZfLZ0o6mkIBuRB4fy2PycxsqLlqwfEsnDOd1Ru2c+LU8bkWEahxITmIzwDLJP0d8GvghpTfAHxHUjuwlUJhICIekbQcWAfsAy6PiP0Akj4KrASagMUR8Ui/HomZ2RAwo2Vc7gWkW78Vkoi4F7g3TT9J4Ymr3su8DLyvzPpfAL5QIr8duD3Hph6gCSh1W92jkZiZ+X5xRXyPxMysPBeSCkTG3MyskbiQmJlZVVxIzMwaQC372hqop7aGFN9sN7Oh7HO3ru3RTcrCudO4asHxuW3fZyQVKNcRijtIMbPBrl762jIzswEy5PvaMjOzgVUPfW2ZmdkAGvJ9bZmZ2cCr1762zMysH9Wyry1f2jIzs6q4kFSg3Psifo/EzMyFpCJ+j8TMrDwXEjMzq4oLiZmZVcWFpALjRpb+YyqXm5k1Ev8mrEDnntJDWJXLzcwaiQuJmZlVxYXEzMyq4kJiZmZVcSExM7OquJCYmVlVXEjMzKwqLiQVaFK23MyskbiQVGB/ZMvNzBqJC4mZmVXFhcTMzKriQlKBcsNIenhJMzMXkorsy5ibmTWSmhYSSaMk/VLSw5IekfQ/U360pAcktUu6UdKIlI9M39vT/OlF2/psyh+X9M6ifH7K2iVdUYvjaC7zdFa53MxssGnf1MnNbRto39SZ+7ZrfXVmD3BGROyS1Az8XNIdwCeAayJimaRvAJcC16Wf2yJihqQLgS8BF0iaBVwIHAu8HvixpDelfXwN+BOgA3hQ0oqIWJfnQUw+bCS/37GnZG5mNth97ta1LF21/tXvC+dO46oFx+e2/ZqekUTBrvS1OX0COAO4OeVLgHPT9IL0nTT/TElK+bKI2BMRTwHtwCnp0x4RT0bEK8CytGyuShWRg+VmZoNF+6bOHkUEYOn963M9MzlkIZHUKWlnuU8F6zdJWg08D9wF/A7YHhHdtxg6gClpegqwASDN3wFMLM57rVMu792GyyS1SWrbvHnzoZpsZlY3Vm/Yninvi0Ne2oqIcQCSPg88C3wHEHAxcGQF6+8HTpQ0HvghcEw1De6LiLgeuB5g9uzZfo3QzBrGiVPHZ8r7IsulrXMi4usR0RkROyPiOjJcRoqI7cBPgLnAeEndRawV2JimNwJTAdL8w4EtxXmvdcrlZmYGzGgZx5taxvTI3twyhhkt43LbR5ZC8qKki9OlqmGSLgZePNgKkianMxEkjaZwU/xRCgXlvWmxRcBtaXpF+k6af09ERMovTE91HQ3MBH4JPAjMTE+BjaBwQ35FhmMyM6tr7Zs6+e2mnr+qH9/0Yq73SLI8tfV+4KvpE8AvUnYwRwJLJDVRKFrLI+JHktYByyT9HfBr4Ia0/A3AdyS1A1spFAYi4hFJy4F1FF7fuDxdMkPSR4GVQBOwOCIeyXBMZmZ17WD3SPI6K6m4kETE02R8Iioi1gBvK5E/SeGJq975y8D7ymzrC8AXSuS3A7dnaZeZWaMYVPdIJF0t6TBJzZLulrRZ0gdya4mZmeVuRss4Fs6d1iNbOHdarvdIslzamhcRn5b0n4CngfcA9wHfza01ZmaWu6sWHM87Zk7mznWbmDerhTNnvS7X7WcpJN3Lvhu4KSJ2FN4VNDOzwaz4zfYb2zoG9M32H0l6DDgZuFvSZODl3FpiZma5GxRvtneLiCuAPwBmR8ReCo/+5t4diZmZ5WdQvNneTdLCouniWUtza42ZmeVqUD21Bby96PNHwN8C5+TWEjMzy92gemorIv68+Ht6Y31Zbi0xM7OauGrB8SycM53VG7Zz4tTxuRYRqG48kheBo/NqiJmZ1c6MlnG5F5BuWe6R/BOFrlGgcElsFrC8Fo0yM7N8bdm1h45tu2mdMJqJY/MdlC/LGcn/LpreBzwTER25tsbMzHJ32+qNfOaWNTQPG8beri6uPu8EzjnxgKGb+izLPZKfHmy+pPsjYm71TTIzs7xs2bWHz9yyhpf3dvEyXQB8+pY1nDZjUm5nJnkOtTsqx22ZmVkOOrbtpnlYz1/1zcOG0bFtd277yLOQeORBM7NBpnXCaPZ2dfXI9nZ10TphdG77yLOQmJnZIDNx7EiuPu8ERjUPY9zI4YxqHsbV552Q6w33ah7/7c09OJqZDULnnDiF02ZMGhRPbSHpKGBmRPw4DZ07PCK6e/76YK4tMzOz3EwcOzL3AtIty8BWHwJuBv4xRa3Ard3zI+I3+TbNzMyGgiz3SC4HTgN2AkTEE8Bra9EoMzMbOrIUkj0R8Ur3F0nD8ZNaZmZDwpZde3h4w3a27NqT+7az3CP5qaS/AkZL+hPgI8A/5d4iMzPLVa3fbM9yRnIFsBlYC/xX4Hbgb3JriZmZ5a74zfbOPft4eW8Xn75lTa5nJlnOSEYDiyPimwCSmlL2Um6tMTOzXHW/2d7dPQr8+5vtA9FFyt0UCke30cCPc2mFmZnVxGB7s31UROzq/pKmX5NbS8zMLHeD7c32FyWdFBG/ApB0MpBfr19mZlYTg+nN9r8AbpL0ewrdobwOuCDX1piZWU3U8s32LOORPCjpGODNKXo8IvbWpFVmZpar9k2dAzdmu6QzIuIeSe/pNetNkoiI/59ri8zMLFefu3UtS1etf/X7wrnTuGrB8bltv5IzkncA9wB/WmJeAC4kZmaDVPumzh5FBGDp/etZOGd6bmcmhywkEXGlpGHAHRGxPJe9mplZv1i9YXvZPK9CUtHjvxHRBXw668YlTZX0E0nrJD0i6WMpP0LSXZKeSD8npFySrpXULmmNpJOKtrUoLf+EpEVF+cmS1qZ1rpXkcVHMzJITp47PlPdFlvdIfizpk6k4HNH9OcQ6+4C/jIhZwBzgckmzKHS3cndEzKTwouMVafl3ATPT5zLgOigUHuBK4FTgFODK7uKTlvlQ0XrzMxyTmVldm9EyjoVzp/XIFs6dlusN9yyP/15A4Z7IR3rlbyi3QkQ8CzybpjslPQpMARYAp6fFlgD3Ap9J+dKICGCVpPGSjkzL3hURWwEk3QXMl3QvcFhErEr5UuBc4I4Mx2VmVteuWnA8C+dMH7intorMolBE/pBCQfkZ8I1KV5Y0HXgb8ADQkooMwHNAS5qeAmwoWq0jZQfLO0rkvfd9GYUzHKZNm9Z7tplZ3ZvRMi73AtIty6WtJcBbgGuB/0uhsCypZEVJY4FbgL+IiJ3F89LZR03HNYmI6yNidkTMnjx5ci13ZWY2KLU9tYWv3Pk4bU9tyX3bWc5Ijkv3Orr9RNK6Q60kqZlCEfle0TsnmyQdGRHPpktXz6d8IzC1aPXWlG3k3y+Fdef3pry1xPJmZpZ84Fur+Hl7oYBce087fzRjIt/5L3Ny236WM5JfSXp1z5JOBdoOtkJ6guoG4NGI+ErRrBVA95NXi4DbivKF6emtOcCOdAlsJTBP0oR0k30esDLN2ylpTtrXwqJtmZk1vLantrxaRLr9rH1LrmcmWc5ITgb+VVL3my3TgMclraVwheqEEuucBnwQWCtpdcr+CvgisFzSpcAzwPlp3u3A2UA7hXFOLqGw8a2SPg88mJa7qvvGO4X7Nt+m0K39HfhGu5nZq+574oWy+eyjJ+ayjyyFJPNjtRHxcwodPJZyZonlA7i8zLYWA4tL5G3AcVnbZmbWCN7aenimvC+ydNr4TG57NTOzfjFp3ChEzyealPK8ZLlHYmZmQ0zrhNGMbO75q35k87ABGyHRzMyGmIljR3L+ya09svNnt+Y6NokLiZlZHduyaw/LH+rokS1v62DLrj257cOFxMysjnVs283efV09sr37uujYlt9I6S4kZmZ1bO++/ezv1XfI/ijkeXEhMTOrY09veSlT3hcuJGZmdWz6xNdkyvvChcTMrI41D2864K1wpTwvLiRmZnVszIimA7pXj5TnxYXEzKyOvfjKfob3+k0/fFghz4sLiZlZHRszooleT/+yr8tnJGZmVqHf7yj9vki5vC9cSMzM6tjO3fsy5X3hQmJmVscOG126k/dyeV+4kJiZ1bFjX384zU09HwBubhLHvj6/8UhcSMzM6tjEsSO56JSpPbKLTpnq3n/NzKwyW3btYXmbe/81M7M+6ti2mz17ez7/u2eve/81M7MKvdD5csk321/ofDm3fbiQmJnVsYc7dmTK+8KFxMysjr1hUulefsvlfeFCYmZWx3p3j3KovC9cSMzM6pjHIzEzs6o0D2+i1/uINMnjkZiZWYXGjGgqOWa7e/81M7OKeDwSMzOriscjMTOzqrz4yn5G9rpJMrJJPiMxM7PKtE4YjYb1LCQaJlonjM5tHzUtJJIWS3pe0m+KsiMk3SXpifRzQsol6VpJ7ZLWSDqpaJ1FafknJC0qyk+WtDatc62kXs8mmJk1toljR3L1eScwoglGNg1jRBNcfd4JQ6r3328D83tlVwB3R8RM4O70HeBdwMz0uQy4DgqFB7gSOBU4Bbiyu/ikZT5UtF7vfZmZNby2p7fyyn7Ys7+LV/ZD2zNbc91+TQtJRNwH9G7xAmBJml4CnFuUL42CVcB4SUcC7wTuioitEbENuAuYn+YdFhGrIiKApUXbMjMzoH1TJ0tXre+RLb1/Pe2bOnPbx0DcI2mJiGfT9HNAS5qeAmwoWq4jZQfLO0rkB5B0maQ2SW2bN2+u/gjMzIaIlY88mynviwG92Z7OJHr3cFyL/VwfEbMjYvbkyZNrvTszs0Gk3K3j/G4pD0Qh2ZQuS5F+Pp/yjUDxeJCtKTtY3loiNzOz5J3Hvi5T3hcDUUhWAN1PXi0CbivKF6ant+YAO9IlsJXAPEkT0k32ecDKNG+npDnpaa2FRdsyMzNgwpgR9Hr6l2Eq5HkZntuWSpD0A+B0YJKkDgpPX30RWC7pUuAZ4Py0+O3A2UA78BJwCUBEbJX0eeDBtNxVEdF9A/8jFJ4MGw3ckT5mZpZ0bNvNmBHD6dyz79VszIjhdGzbndsjwDUtJBFxUZlZZ5ZYNoDLy2xnMbC4RN4GHFdNG83M6lnrhNHs7erZR8rerq6h80KimZkNrIljR/L2oyb0yN5+1IQh9UKimZkNoPZNnfysfUuP7GftW4b8eyRmZtZPVm/YninvCxcSM7M65qF2zcysKi/t7cqU94ULiZlZHXv8uZ2Z8r5wITEzq2PPd+7JlPeFC4mZWR2bc/QRmfK+cCExM6tjk8aNypT3hQuJmVkd27uv9Njs5fK+cCExM6tjDzxVejTEcnlfuJCYmVlVXEjMzOpYvY5HYmZmdcSFxMysjrmvLTMzq8rwMr/ly+V94UJiZlbHnnzhpUx5X7iQmJnVMUXpzhnL5X3hQmJmVsceeW5XprwvXEjMzOrY+FFNmfK+cCExM6tjD3eU7i6+XN4XLiRmZnXsxVf2Zsr7woXEzMyq4kJiZlbHzjymdFco5fK+cCExM6tjJx81PlPeFy4kZmZ17P4nS3cXXy7vCxcSM7M6Nm9WS6a8L1xIzMysKi4kZmZ17M51mzLlfeFCYmZWx3xpy8zMqnL46OZMeV/URSGRNF/S45LaJV0x0O0xMxss7nvihUx5Xwz5QiKpCfga8C5gFnCRpFkD2yozs8Hhra2HZ8r7YsgXEuAUoD0inoyIV4BlwIIBbpOZ2aAwadwomtQza1Ihz0s9FJIpwIai7x0pe5WkyyS1SWrbvHlzvzbOzGwgtU4YTXOvcXWbhw+jdcLo3PZRD4XkkCLi+oiYHRGzJ0+enHn9UWX+lMrlZmaDxcSxI7n6vBMY1TyMcSOHM6p5GFefdwITx47MbR/Dc9vSwNkITC363pqy3Dz2v97N9Cv+uWRuZjbYnXPiFE6bMYmObbtpnTA61yIC9XFG8iAwU9LRkkYAFwIr8t7J019896tnIKOGFb6bmQ0VE8eO5K1Tx+deRKAOzkgiYp+kjwIrgSZgcUQ8Uot9+QzEzOxAQ76QAETE7cDtA90OM7NGVA+XtszMbAC5kJiZWVVcSMzMrCouJGZmVhVFxEC3oV9J2gw8U8UmJgH59XY2NDTaMTfa8YKPuVFUc8xHRUTJN7obrpBUS1JbRMwe6Hb0p0Y75kY7XvAxN4paHbMvbZmZWVVcSMzMrCouJNldP9ANGACNdsyNdrzgY24UNTlm3yMxM7Oq+IzEzMyq4kJiZmZVcSEpQdJ8SY9Lapd0RYn5IyXdmOY/IGl6/7cyXxUc8yckrZO0RtLdko4aiHbm6VDHXLTceZJC0pB/VLSSY5Z0fvq7fkTS9/u7jXmr4N/2NEk/kfTr9O/77IFoZ14kLZb0vKTflJkvSdemP481kk6qeqcR4U/Rh0JX9L8D3gCMAB4GZvVa5iPAN9L0hcCNA93ufjjmPwZek6Y/3AjHnJYbB9wHrAJmD3S7++HveSbwa2BC+v7agW53Pxzz9cCH0/Qs4OmBbneVx/wfgJOA35SZfzZwByBgDvBAtfv0GcmBTgHaI+LJiHgFWAYs6LXMAmBJmr4ZOFOS+rGNeTvkMUfETyLipfR1FYWRKIeySv6eAT4PfAl4uT8bVyOVHPOHgK9FxDaAiHi+n9uYt0qOOYDD0vThwO/7sX25i4j7gK0HWWQBsDQKVgHjJR1ZzT5dSA40BdhQ9L0jZSWXiYh9wA5gYr+0rjYqOeZil1L4P5qh7JDHnE75p0bEgeMsD02V/D2/CXiTpF9IWiVpfr+1rjYqOea/BT4gqYPCuEZ/3j9NGzBZ/3s/pLoY2Mr6j6QPALOBdwx0W2pJ0jDgK8CfDXBT+ttwCpe3Tqdw1nmfpOMjYvuAtqq2LgK+HRH/R9Jc4DuSjouIroFu2FDhM5IDbQSmFn1vTVnJZSQNp3A6vKVfWlcblRwzks4C/ho4JyL29FPbauVQxzwOOA64V9LTFK4lrxjiN9wr+XvuAFZExN6IeAr4LYXCMlRVcsyXAssBIuJ+YBSFzg3rVUX/vWfhQnKgB4GZko6WNILCzfQVvZZZASxK0+8F7ol0F2uIOuQxS3ob8I8UishQv24OhzjmiNgREZMiYnpETKdwX+iciGgbmObmopJ/27dSOBtB0iQKl7qe7M9G5qySY14PnAkg6S0UCsnmfm1l/1oBLExPb80BdkTEs9Vs0Je2eomIfZI+Cqyk8MTH4oh4RNJVQFtErABuoHD6207hptaFA9fi6lV4zF8GxgI3pecK1kfEOQPW6CpVeMx1pcJjXgnMk7QO2A98KiKG7Nl2hcf8l8A3JX2cwo33PxvK/2Mo6QcU/mdgUrrvcyXQDBAR36BwH+hsoB14Cbik6n0O4T8vMzMbBHxpy8zMquJCYmZmVXEhMTOzqriQmJlZVVxIzMysKi4kZmZWFRcSswpJml6ua+4K1j1d0o/6sN65kmb1ZZ9m/cWFxGxwO5dC1+Zmg5YLiVk2wyV9T9Kjkm6W9BpJZ6ZBkdamQYVGwqsDKj0m6VfAe1I2TNITkiYXfW/v/l5M0h8A5wBflrRa0hvTtrrnz+z+LulpSVenNvxS0oyUT5Z0i6QH0+e0mv8JWcNxITHL5s3A1yPiLcBO4BPAt4ELIuJ4Ct0OfVjSKOCbwJ8CJwOvA0g9yn4XuDht7yzg4Yg4oG+niPhXCv0ifSoiToyI3wE7JJ2YFrkE+H9Fq+xIbfgH4O9T9lXgmoh4O3Ae8K3q/wjMenIhMctmQ0T8Ik1/l0Jnf09FxG9TtoTCCHXHpPyJ1G/Td4u2sRhYmKb/Mz2LwaF8C7hEUhNwAVA8FO4Pin7OTdNnAf8gaTWFonSYpLEZ9md2SO600Syb3p3TbSfjoGYRsUHSJklnUBjB7+JDrVPkFgqd8N0DPNSrQ8UoMT0MmBMR9TDCow1SPiMxy2ZaGvwI4P1AGzC9+54E8EHgp8BjKX9jyi/qtZ1vUThLuSki9h9kf50UxkYBIBWElcB1HHgmc0HRz/vT9J0UjfhXdFnMLDcuJGbZPA5cLulRYAJwDYV7FTdJWgt0Ad9Iv/AvA/453RDvPYbLCgrd8h/qstYy4FPpZn53Ufpe2s+dvZadIGkN8DHg4yn778BsSWtS1/D/Ldvhmh2au5E3GwBppMVrIuKP+rDuJ4HDI+J/FGVPA7Mj4oX8WmlWGd8jMetnkq4APky2eyPd6/4QeCNwRt7tMusrn5GYDQKS/hp4X6/4poj4wkC0xywLFxIzM6uKb7abmVlVXEjMzKwqLiRmZlYVFxIzM6vKvwEl++SvzIHd3wAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'ownership', 'price_usd' ,kind='scatter')\n","#it's intermediate"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":296},"id":"bDZduiAUwtLy","executionInfo":{"status":"ok","timestamp":1654721156284,"user_tz":-180,"elapsed":14,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"430876e6-0ef8-4918-80ee-ec71dcc1f40b"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":33},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbIElEQVR4nO3de7hddX3n8fcn9wAJCSHEmAQOmngJoAFOMYy2pYAYoEOYkSKMmtSHIR3FWmdaW2znkQ6WGbSdIsygDkoeEp4qolVJNUxMuRRRAhwEuZbhGAJJhHAg5GK4hMt3/li/ozuHvXP22mvvfbL3+ryeZz9nre/6rbV+v9w+WZe9liICMzOzRo0a6Q6YmVlnc5CYmVkhDhIzMyvEQWJmZoU4SMzMrJAxI92Bdjv44IOjp6dnpLthZtZR7rnnnmcjYnq1ZaULkp6eHvr6+ka6G2ZmHUXSE7WW+dSWmZkV4iAxM7NCHCRmZlaIg8TMzApxkJiZWSEtDxJJGyQ9IOk+SX2pdpCktZIeSz+nprokXSGpX9L9ko6p2M7S1P4xSUsr6sem7fenddWqsVy25hFO+NtbuGzNI63ahZlZx2nXEcnvRcSCiOhN8xcCN0XEPOCmNA9wKjAvfZYBX4EseICLgPcAxwEXDYZPanN+xXqLWjGAeZ/9IZffsp4Nz73A5besZ95nf9iK3ZiZdZyROrW1GFiRplcAZ1bUV0ZmHTBF0kzgA8DaiNgaEc8Da4FFadnkiFgX2fPwV1Zsq2kuW/MIrwx52v4rgY9MzMxoT5AE8CNJ90halmozIuKpNP00MCNNzwI2Vqy7KdX2Vt9Upb4HScsk9UnqGxgYyD2A5T/dkKtuZlYm7fhm+/siYrOkQ4C1kv61cmFEhKSWvl0rIq4CrgLo7e3Nva/dr76eq25mViYtPyKJiM3p5zPA98iucWxJp6VIP59JzTcDcypWn51qe6vPrlJvqp5p++eqm5mVSUuDRNL+kiYNTgOnAA8Cq4DBO6+WAjek6VXAknT31kJgezoFtgY4RdLUdJH9FGBNWrZD0sJ0t9aSim01zfw3T8pVNzMrk1af2poBfC/dkTsG+EZE/F9JdwPXSzoPeAI4O7VfDZwG9AMvAB8DiIitkj4P3J3aXRwRW9P0J4BrgInAjenTVPuPH5erbmZWJi0NkohYD7y7Sv054KQq9QAuqLGt5cDyKvU+4MjCnd2Ld8w4IFfdzKxM/M32Oty7aVuuuplZmThI6vDoL7fnqpuZlYmDpA4Du17JVTczKxMHSR0mT6h+KalW3cysTBwkdRhV4zmQtepmZmXiIKnD2FHVA6NW3cysTBwkdXi9xpFHrbqZWZk4SOrQM21irrqZWZk4SOpwxJun5KqbmZWJg6QOu195NVfdzKxMHCR1+Onjz+eqm5mViYOkDm8/pPrj4mvVzczKxEFSh19ufzlX3cysTBwkddj50u5cdTOzMnGQ1OFXL72Wq25mViYOkjq8UOPurFp1M7MycZDUYb+x1R/OWKtuZlYmDpI6jB9T/ZepVt3MrEz8L6GZmRXiIKnD2980KVfdzKxMHCR1GDtmdK66mVmZOEjq8PDmbbnqZmZl4iCpw0NP7chVNzMrEwdJHSaMq34Kq1bdzKxMHCR1eMeM6hfVa9XNzMrEQVKH535V/eGMtepmZmXiIKnDL559MVfdzKxMHCR1GF/jUkituplZmThI6jB98oRcdTOzMnGQ1OGt0/bLVTczKxMHSR2e3Fb9onqtuplZmbQlSCSNlnSvpB+k+cMl3SmpX9K3JI1L9fFpvj8t76nYxmdT/VFJH6ioL0q1fkkXtqL/hx9c/cijVt3MrEzadUTyJ8AjFfNfAC6LiLnA88B5qX4e8HyqX5baIWk+cA5wBLAI+HIKp9HAlcCpwHzg3NS2qU5+54xcdTOzMml5kEiaDZwOfD3NCzgR+E5qsgI4M00vTvOk5Sel9ouB6yLi5Yh4HOgHjkuf/ohYHxG7getS26b6H6sfzFU3MyuTdhyRfAn4c+D1ND8N2BYRg++p3QTMStOzgI0Aafn21P7X9SHr1KrvQdIySX2S+gYGBnIPYEeNSyG16mZmZdLSIJH0+8AzEXFPK/cznIi4KiJ6I6J3+vTpI9kVM7Ou0+qXjr8XOEPSacAEYDJwOTBF0ph01DEb2JzabwbmAJskjQEOBJ6rqA+qXKdW3czM2qClRyQR8dmImB0RPWQXy2+OiA8DtwBnpWZLgRvS9Ko0T1p+c0REqp+T7uo6HJgH3AXcDcxLd4GNS/tY1coxmZnZnlp9RFLLXwDXSfob4F7g6lS/GrhWUj+wlSwYiIiHJF0PPAy8ClwQEa8BSPoksAYYDSyPiIfaOhIzs5JrW5BExK3ArWl6PdkdV0PbvAT8QY31LwEuqVJfDaxuYlffYBywu0bdzKzs/M32Oryas25mViYOkjq8nrNuZlYmDhIzMyvEQVKH8cpXNzMrEwdJHaJGYNSqm5mViYOkDrtrXAypVTczKxMHiZmZFeIgMTOzQhwkZmZWiIPEzMwKcZCYmVkhDhIzMyvEQVKH0TnrZmZl4iCpw2s562ZmZeIgMTOzQhwkZmZWiIOkDlMmVL8aUqtuZlYmDpI6bHup+tWQWnUzszJxkJiZWSEOEjMzK8RBYmZmhThIzMysEAeJmZkV4iCpQ6036vpNu2ZmDpK6RM66mVmZOEjMzKwQB4mZmRXiIDEzs0IcJHUYk7NuZlYmDpI6vJqzbmZWJi0NEkkTJN0l6eeSHpL031L9cEl3SuqX9C1J41J9fJrvT8t7Krb12VR/VNIHKuqLUq1f0oWtGEeth/z64b9mZq0/InkZODEi3g0sABZJWgh8AbgsIuYCzwPnpfbnAc+n+mWpHZLmA+cARwCLgC9LGi1pNHAlcCowHzg3tW2q6ZMm5KqbmZVJS4MkMr9Ks2PTJ4ATge+k+grgzDS9OM2Tlp8kSal+XUS8HBGPA/3AcenTHxHrI2I3cF1q21Qbt72Uq25mVibDBomknZJ21PrUsf5oSfcBzwBrgV8A2yJi8BLDJmBWmp4FbARIy7cD0yrrQ9apVR/ah2WS+iT1DQwMDNdlMzPLYdgbjyJiEoCkzwNPAdeSPR3kw8DMOtZ/DVggaQrwPeAdRTrciIi4CrgKoLe3119INzNrojynts6IiC9HxM6I2BERXyHHaaSI2AbcAhwPTJE0GGKzgc1pejMwByAtPxB4rrI+ZJ1adTMza5M8QbJL0ofTqapRkj4M7NrbCpKmpyMRJE0E3g88QhYoZ6VmS4Eb0vSqNE9afnNERKqfk+7qOhyYB9wF3A3MS3eBjSO7IL8qx5jMzKygPN+p+w/A5ekTwE9SbW9mAivS3VWjgOsj4geSHgauk/Q3wL3A1an91cC1kvqBrWTBQEQ8JOl64GGyr29ckE6ZIemTwBpgNLA8Ih7KMSYzMyuo7iCJiA3kvCMqIu4Hjq5SX092x9XQ+kvAH9TY1iXAJVXqq4HVefplZmbNU/epLUlflDRZ0lhJN0kakPSRVnbOzMz2fXmukZwSETuA3wc2AHOBz7SiU2Zm1jnyBMngabDTgW9HxPYW9MfMzDpMnovtP5D0r8CLwMclTQf81W4zs5Kr+4gkIi4E/g3QGxGvkN362/THkZiZWWep+4hE0pKK6cpFK5vZITMz6yx5Tm39VsX0BOAk4Gc4SMzMSi3P90j+uHI+fWP9uqb3yMzMOkqRx8jvAg5vVkfMzKwz5blG8k9kj0aBLIDmA9e3olNmZtY58lwj+buK6VeBJyJiU5P7Y2ZmHSbPNZJ/2dtySXdExPHFu2RmZs3Wv2Un923cxoI5U5g7Y1JTt53niGQ4foG5mdk+6HPff4CV65789fyS4w/l4sVHNW37zXxnu988aGa2j+nfsnOPEAFYeceT9G/Z2bR9NDNIzMxsH3Pfxm256o1oZpBo+CZmZtZOC+ZMyVVvRK4gkXSYpJPT9ERJlVdsPtq0XpmZWVPMnTGJJccfukdtyfGHNvWCe57vkZwPLAMOAt4KzAa+SvaoFCLiwab1yszMmubixUexZGHPPnHX1gVkr8e9EyAiHpN0SFN7Y2ZmLTF3xqSmB8igPKe2Xo6I3YMzksbgO7XMzEovT5D8i6S/BCZKej/wbeCfWtMtMzPrFHmC5EJgAHgA+CNgNfBfW9EpMzPrHHmukUwElkfE1wAkjU61F1rRMTMz6wx5jkhuIguOQROBf25ud8zMrNPkCZIJEfGrwZk0vV/zu2RmZp0kT5DsknTM4IykY4EXm98lMzPrJHmukXwa+LakX5I9DuVNwIda0iszM+sYed5HcrekdwBvT6VHI+KV1nTLzMw6xbBBIunEiLhZ0r8fsuhtkoiI77aob2Zm1gHqOSL5XeBm4N9WWRaAg8TMrMSGDZKIuEjSKODGiLi+DX0yM7MOUtddWxHxOvDneTcuaY6kWyQ9LOkhSX+S6gdJWivpsfRzaqpL0hWS+iXdP+QusaWp/WOSllbUj5X0QFrnCkl+L4qZWRvluf33nyX9WQqHgwY/w6zzKvCnETEfWAhcIGk+2eNWboqIeWRfdLwwtT8VmJc+y4CvQBY8wEXAe8ieQHzRYPikNudXrLcox5jMzKygPLf/fojsmsgnhtTfUmuFiHgKeCpN75T0CDALWAyckJqtAG4F/iLVV0ZEAOskTZE0M7VdGxFbASStBRZJuhWYHBHrUn0lcCZwY45xmZlZAXmCZD5ZiLyPLFB+TPZiq7pI6gGOJnufyYwUMgBPAzPS9CxgY8Vqm1Jtb/VNVepD972M7AiHQw89dOhiMzMrIM+prRXAO4ErgP9FFiwr6llR0gHAPwKfjogdlcvS0UdL32sSEVdFRG9E9E6fPr2VuzIzK508RyRHpmsdg26R9PBwK0kaSxYi/1DxnZMtkmZGxFPp1NUzqb4ZmFOx+uxU28xvToUN1m9N9dlV2puZWZvkOSL5maSFgzOS3gP07W2FdAfV1cAjEfH3FYtWAYN3Xi0FbqioL0l3by0EtqdTYGuAUyRNTRfZTwHWpGU7JC1M+1pSsS0zM2uDPEckxwI/lfRkmj8UeFTSA2RnqN5VZZ33Ah8FHpB0X6r9JXApcL2k84AngLPTstXAaUA/2XtOPka28a2SPg/cndpdPHjhney6zTVkj7W/EV9oNzN7g/4tO7lv4zYWzJnS9He35wmS3LfVRsTtZA94rOakKu0DuKDGtpYDy6vU+4Aj8/bNzKwsPvf9B1i57slfzy85/lAuXnxU07af56GNTzRtr2Zm1hb9W3buESIAK+94kiULe5p2ZJLnGomZmXWY+zZuy1VvhIPEzKyLLZgzJVe9EQ4SM7MuNnfGJJYcv+cXsZccf2hTL7jnudhuZmYd6OLFR7FkYc8+cdeWmZl1qLkzJjU9QAb51JaZmRXiIDEzs0IcJGZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMzEqgf8tOvtO3kf4tO5u+bX8h0cysy7X6MfI+IjEz62K1HiPfzCMTB4mZWRfzY+TNzKyQnmn75ao3wkFiZtbFxo4ZzeghLzwfrazeLA4SM7MuNnvqRMaO2fOf+rFjRjF76sSm7cNBYmbWxaYdMJ4vfvBdTBg7iknjxzBh7Ci++MF3Me2A8U3bh2//NTPrcmcsmMV75x7MpudfZPbUiU0NEXCQmJmVwrQDxjc9QAb51JaZmRXiIDEzKwE/IsXMzBrmR6SYmVnD/IgUMzMrxI9IMTOzQhbMmZKr3ggHiZmZFdLSIJG0XNIzkh6sqB0kaa2kx9LPqakuSVdI6pd0v6RjKtZZmto/JmlpRf1YSQ+kda6QNOSJMmZm5XZ7/7O56o1o9RHJNcCiIbULgZsiYh5wU5oHOBWYlz7LgK9AFjzARcB7gOOAiwbDJ7U5v2K9ofsyMyu18WOq/zNfq96IlgZJRNwGbB1SXgysSNMrgDMr6isjsw6YImkm8AFgbURsjYjngbXAorRsckSsi4gAVlZsy8zMgMef3ZWr3oiRuEYyIyKeStNPAzPS9CxgY0W7Tam2t/qmKvU3kLRMUp+kvoGBgeIjMDPrEHetfy5XvREjerE9HUlEG/ZzVUT0RkTv9OnTW707M7N9xiGTqz9fq1a9ESMRJFvSaSnSz2dSfTMwp6Ld7FTbW312lbqZmSXLfuetueqNGIkgWQUM3nm1FLihor4k3b21ENieToGtAU6RNDVdZD8FWJOW7ZC0MN2ttaRiW2ZmBvQePo03TR63R23m5HH0Hj6tafto6bO2JH0TOAE4WNImsruvLgWul3Qe8ARwdmq+GjgN6AdeAD4GEBFbJX0euDu1uzgiBi/gf4LszrCJwI3pY2ZmSf+WnTy9Y/cetad27KZ/y07mzpjUlH20NEgi4twai06q0jaAC2psZzmwvEq9DziySB/NzLrZ7f3VbzC6vX+gaUHib7abmXWx8WNG56o3wkFiZmaFOEjMzLrYy6++lqveCAeJmVkXO/LNB+aqN8JBYmbWxcbWuBZSq94IB4mZWRd7fKD6mxBr1RvhIDEz62J3rB/63Ny91xvhIDEz62KnzJ+Rq94IB4mZWRc7bNr+ueqNcJCYmXWxb9z5RK56IxwkZmZd7L6Nz+eqN8JBYmbWxV7cXf2Lh7XqjXCQmJl1M+WsN8BBYmZmhThIzMy62MSx1d8WUqveCAeJmVkXO2zafrnqjXCQmJl1sZlTJuaqN8JBYmbWxeZMrX7kUaveCAeJmVkXe2bHS7nqjXCQmJl1sUeerv6U31r1RjhIzMy62IHjq9+dVaveCAeJmVkXe6zGe0dq1RvhIDEz62JbX3glV70RDhIzsy42sOPFXPVGOEjMzLrYrhoHHrXqjXCQmJl1sfE1/pWvVW+Eg8TMrIuNHzs6V70RDhIzsy626+Xq7x2pVW+Eg8TMrIvViovmxYiDxMzMCnKQmJlZIV0RJJIWSXpUUr+kC0e6P2ZmZdLxQSJpNHAlcCowHzhX0vyR7ZWZWXl0fJAAxwH9EbE+InYD1wGLR7hPZmal0Q1BMgvYWDG/KdV+TdIySX2S+gYGBtraOTOzbtcNQTKsiLgqInojonf69Om51z/r6Jm56mZm+4oT5h6Uq96IbgiSzcCcivnZqdY0f/ehY3LVzcz2Fdf8x+Nz1RvRDUFyNzBP0uGSxgHnAKuavZMNl57OWUfP5MAJoznr6JlsuPT0Zu/CzKwlNlx6OifMPYhxo7MjkWb/+6WIaOoGR4Kk04AvAaOB5RFxSa22vb290dfX17a+mZl1A0n3RERvtWXNe9fiCIqI1cDqke6HmVkZdcOpLTMzG0EOEjMzK8RBYmZmhThIzMyskK64aysPSQPAEwU2cTDwbJO60ynKNuayjRc85rIoMubDIqLqN7pLFyRFSeqrdQtctyrbmMs2XvCYy6JVY/apLTMzK8RBYmZmhThI8rtqpDswAso25rKNFzzmsmjJmH2NxMzMCvERiZmZFeIgMTOzQhwkVUhaJOlRSf2SLqyyfLykb6Xld0rqaX8vm6uOMf8XSQ9Lul/STZIOG4l+NtNwY65o90FJIanjbxWtZ8ySzk6/1w9J+ka7+9hsdfzZPlTSLZLuTX++TxuJfjaLpOWSnpH0YI3lknRF+vW4X1LxFytFhD8VH7JH0f8CeAswDvg5MH9Im08AX03T5wDfGul+t2HMvwfsl6Y/XoYxp3aTgNuAdUDvSPe7Db/P84B7galp/pCR7ncbxnwV8PE0PR/YMNL9Ljjm3wGOAR6ssfw04EZAwELgzqL79BHJGx0H9EfE+ojYDVwHLB7SZjGwIk1/BzhJktrYx2YbdswRcUtEvJBm15G9ibKT1fP7DPB54AvAS+3sXIvUM+bzgSsj4nmAiHimzX1stnrGHMDkNH0g8Ms29q/pIuI2YOtemiwGVkZmHTBFUqH3hjtI3mgWsLFiflOqVW0TEa8C24Fpbelda9Qz5krnkf2PppMNO+Z0yD8nIn7Yzo61UD2/z28D3ibpJ5LWSVrUtt61Rj1j/mvgI5I2kb3X6I/b07URk/fv+7C64sVW1j6SPgL0Ar870n1pJUmjgL8H/nCEu9JuY8hOb51AdtR5m6SjImLbiPaqtc4FromI/ynpeOBaSUdGxOsj3bFO4SOSN9oMzKmYn51qVdtIGkN2OPxcW3rXGvWMGUknA38FnBERL7epb60y3JgnAUcCt0raQHYueVWHX3Cv5/d5E7AqIl6JiMeB/0cWLJ2qnjGfB1wPEBF3ABPIHm7Yrer6+56Hg+SN7gbmSTpc0jiyi+mrhrRZBSxN02cBN0e6itWhhh2zpKOB/0MWIp1+3hyGGXNEbI+IgyOiJyJ6yK4LnRERfSPT3aao58/298mORpB0MNmprvXt7GST1TPmJ4GTACS9kyxIBtray/ZaBSxJd28tBLZHxFNFNuhTW0NExKuSPgmsIbvjY3lEPCTpYqAvIlYBV5Md/vaTXdQ6Z+R6XFydY/5b4ADg2+m+gicj4owR63RBdY65q9Q55jXAKZIeBl4DPhMRHXu0XeeY/xT4mqT/THbh/Q87+T+Gkr5J9p+Bg9N1n4uAsQAR8VWy60CnAf3AC8DHCu+zg3+9zMxsH+BTW2ZmVoiDxMzMCnGQmJlZIQ4SMzMrxEFiZmaFOEjMOpCknr083fXi9OVRs7bw90jM9mGSxqTnudUtIj7Xqv6YVeMjErMc0ntZHkyfT0v6jKRPpWWXSbo5TZ8o6R/S9K8kXSLp5+lBiDNSfbqkf5R0d/q8N9X/WtK1kn5C9sXXIyTdJem+9P6IwUeWjJb0tfTekB9JmpjWv0bSWWl6g6QvSnogbWNue3/FrAwcJGZ1knQs2beA30P27K3zgduB305NeoEDJI1NtdtSfX9gXUS8O9XOT/XLgcsi4reADwJfr9jdfODkiDgX+E/A5RGxIO1jU2ozj+yR70cA29I2qtkeEUcB/xv4UoPDN6vJp7bM6vc+4HsRsQtA0nfJ3ndxrKTJwMvAz8j+sf9t4FNpvd3AD9L0PcD70/TJwPyKV9lMlnRAml4VES+m6TuAv5I0G/huRDyW1nk8Iu6r2G5PjX5/s+LnZXkHbTYcB4lZMQE8Tva4+Z8C95O9TXIu8Ehq80rFs5te4zd/70YBCyNij5dmpZDY9esdRHxD0p3A6cBqSX9E9iDFyicwvwZM3Esfq02bNYVPbZnV78fAmZL2k7Q/8O9S7cfAn5Gdtvox2amoe+t48N+PqHiJkqQF1RpJeguwPiKuAG4A3pWz3x+q+HlHznXNhuUjErM6RcTPJF0D3JVKX4+IeyUdRPaeljsiYpekl8gCZTifAq6UdD/Z38XbyEJoqLOBj0p6BXga+O/85tWw9Zia9vEy2UuczJrKT/8162LppVy9EfHsSPfFupdPbZmZWSE+IjEzs0J8RGJmZoU4SMzMrBAHiZmZFeIgMTOzQhwkZmZWyP8HPHFcxCZZCygAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'type_of_drive', 'price_usd' ,kind='scatter')\n","#it's a weak feature"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"FgRH9xSazn7y","executionInfo":{"status":"ok","timestamp":1654721156856,"user_tz":-180,"elapsed":579,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"29ef3f50-a199-410c-86fa-7e04d4161519"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":34},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdcUlEQVR4nO3df5wddX3v8dc7m18LBBKSgJgNJJZYjagIKwR/CxUDWkKvilAw0QfCvYp91NqqsbePSy9e78Mft3pL/UklNVhbjFAktdAY+SHFGmARCBDkZvllEtEsSUgIIT/3c/8435WTzZlk5sw5u+dk38/HYx87856ZM9/ZwH52Zr4zX0UEZmZm9Ro13A0wM7P25kJiZmaluJCYmVkpLiRmZlaKC4mZmZUyergbMNSmTJkSM2bMGO5mmJm1lXvvvfeZiJhaa9mIKyQzZsygp6dnuJthZtZWJD2VtcyXtszMrBQXEjMzK8WFxMzMSnEhMTOzUlxIzMyslKYXEklPSnpQ0v2SelJ2pKTlklan75NSLklXSuqVtFLSSVWfsyCtv1rSgqr85PT5vWlbNetYNmzdwQNrnmXD1h3N2oWZWVP0PLGBL//4UXqe2NDwzx6q7r9vj4hnquYXArdExOclLUzznwbOAmalr1OBbwCnSjoSuBzoBgK4V9LSiNiU1rkEuAu4CZgL3NzoA7jx/nV8+vqVjBk1il39/XzxPa/hnBOnNXo3ZmYNd9G3V3Bnb6WAXHlrL28+fjLf/fCchn3+cF3amgcsTtOLgXOr8muiYgUwUdIxwDuB5RGxMRWP5cDctOzwiFgRlffhX1P1WQ2zYesOPn39Srbv6ue5HbvZvqufT12/0mcmZtbyep7Y8LsiMuA/ejc09MxkKApJAD+WdK+kS1N2dEQ8naZ/AxydpqcBa6q2XZuy/eVra+R7kXSppB5JPX19fYUPYO2mFwrlZmat4i+ue6BQXo+huLT1pohYJ+koYLmkX1YvjIiQ1NTRtSLiKuAqgO7u7sL7OnRsB9t39e+Vbd/Vz6FjOxrTQDOzJlm7MeMP4Yy8Hk0/I4mIden7euAG4BTgt+myFOn7+rT6OmB61eZdKdtf3lUjb6jnd+5hXMfe9/DHdYjnd+5p9K7MzBrquMmHFMrr0dRCIulQSRMGpoEzgYeApcBAz6sFwI1peikwP/XemgNsTpfAlgFnSpqUenidCSxLy7ZImpN6a82v+qyG6ZrUiUbtXUg0SnRN6mz0rszMGuqUmUcWyuvR7EtbRwM3pB65o4F/ioh/l3QPsETSxcBTwHlp/ZuAs4FeYBvwIYCI2Cjps8A9ab0rImJjmv4o8B2gk0pvrYb32Jp82Di++J7X8KlBvbYmHzau0bsyM2uojlG1zxey8no0tZBExOPAa2vkG4AzauQBXJbxWYuARTXyHuCE0o09gHNOnMbsYw7n/jXPcuL0iRx/9IRm79LMrLRXHH1YobweI+418vXycyRm1o5++duthfJ6+BUpOfg5EjNrV6vXbymU18OFJIe1m14g+vfuNRz94edIzKzlrdlQ+/dUVl4PF5IcDh3bwY49exeSHXvCz5GYWcs7orP2HYysvB4uJDk8v3MP48fs/aMaP2aUnyMxs5bXmfEHb1ZeDxeSHLKeF/FzJGbW6vr7i+X1cCHJYeA5kvFjRjFh3GjGjxnl50jMrC3s7K/9VqisvB7u/pvTOSdO443HT2HtphfomtTpImJmbWHG5E5WPf1czbxRfEZSwOTDxvHa6RNdRMysbbzqpRML5fVwITEzO4hNmzi+UF4PFxIzs4PY4EGtDpTXw4WkAI/ZbmbtZssLuwrl9fDN9pxuvH8dn7puJaIy5OOX3ut3bZlZ6+vP6J2VldfDZyQ5bNi6g08seYAdu/vZvrufHbv7+bMlD/jMxMxaXl/G76msvB4uJDn8/LEN7BlUvff0Bz9/rHHXGM3MmuGIzjGF8nq4kOTwTEblzsrNzFrF1p27C+X1cCHJ4U3HTymUm5m1il27a78LJSuvhwtJDscfPYH5px27Vzb/tGM9SqKZtbyOylDnufN6uNdWTlfMezXz58zwULtmZoP4jKSASYeOZdbRE5h06NjhboqZWS6nvmxyobwePiPJyWO2m1k7mjKh9rsBs/J6+IwkB4/Zbmbt6rp71xTK6+FCksPaTS8wZtTeP6oxo0Z5zHYza3m/eub5Qnk9XEhy6JrUya5Bw4nt6u/3CIlm1vLGj6s9pG5WXg8XkhwmHzaO87q79srO6+7yuCRm1vJeflTtHqZZeT1cSHLYsHUHS3rW7pUt6VnreyRm1vL6MwZnz8rr4UKSg++RmFm7um/NlkJ5PVxIcvA9EjNrV8p4W3xWXg8XkhwmHzaOcR17v05gXId8j8TMWt6kQ2u/5Tcrr4cLSQ4//MUaNm/fs1e2efsefviLxvXDNjNrhnknvrRQXg8Xkhx+9OBvCuVmZq1i4qG1r5xk5fUYkkIiqUPSfZJ+lOZnSrpLUq+k70sam/Jxab43LZ9R9RmfSfmjkt5Zlc9NWa+khc1o/7tf/ZJCuZlZq9iWMe5IVl6PoToj+VPgkar5LwBfiYjjgU3AxSm/GNiU8q+k9ZA0GzgfeBUwF/h6Kk4dwNeAs4DZwAVp3YY696TphXIzs1bRNemQQnk9ml5IJHUB7wK+neYFnA5cl1ZZDJybpueledLyM9L684BrI2JHRDwB9AKnpK/eiHg8InYC16Z1G+of//OJQrmZWav46i2rC+X1GIozkv8LfAoY6D87GXg2IgbOq9YCA6/RnQasAUjLN6f1f5cP2iYr34ukSyX1SOrp6+srfADX37euUG5m1irWban94HRWXo+mFhJJ7wbWR8S9zdzPgUTEVRHRHRHdU6dOLbz9qTOPLJSbmbWKzoxXamXl9Wj2GckbgXMkPUnlstPpwN8CEyUNjIXSBQz8ab8OmA6Qlh8BbKjOB22TlTfUJW/5vUK5mVmreGFPsbweTS0kEfGZiOiKiBlUbpbfGhEXArcB702rLQBuTNNL0zxp+a0RESk/P/XqmgnMAu4G7gFmpV5gY9M+ljb6ODY9v7NQbmY2kgzXcySfBj4hqZfKPZCrU341MDnlnwAWAkTEw8ASYBXw78BlEbEn3Uf5GLCMSq+wJWndhrp/zbOFcjOzkWTIhtqNiNuB29P041R6XA1eZzvwvoztPwd8rkZ+E3BTA5u6j0mHZLxiICM3M2sV4wQ7arxXa5z2zerlJ9tz2LRtV6HczKxVZN0KaeAtEheSPGZMrv3gTlZuZtYqdme85Tcrr4cLSQ5jRncw6OW/dKiSm5mNdC4kOXRN6qR/UPXuDzweiZm1vKxbIQ28ReJCksem53cy+CwwcPdfM2t9ozN+y2fl9XAhyeHqOx8vlJuZtYysodkbN2S7C0keq56uPbZxVm5m1io6Rte+iJWV18OFJIdXHnN4odzMrFXsyOielZXXw4Ukhw+/6WWFcjOzVpFVLhrY+9eFJI8Vjz1TKDczG0lcSHK4ceXThXIzs5HEhSSHN8ycVCg3M2sVWb/kG/nL34Ukh+mTDyuUm5m1ijEZL+DIyuvhQpLDUDzQY2bWDDsy3s6YldfDvwpzePyZbYVyM7ORxIUkh9d2HVEoNzMbSVxIcuh7bkeh3MysVRw1YWyhvB4uJDk89Ovar0LJys3MWkXfc7VfLpuV18OFJIdDxtbu3pCVm5m1Cj/Z3iJ+sqr2g4dZuZlZq/B4JC3i189uL5SbmbWKqYfVvheSldfDhSSHV7yk9oOHWbmZWavYur32vZCsvB4uJDl0jqtdubNyM7NWsW13sbweLiQ5TDpkdKHczKxVjMu4GZKV18OFJIeh6PVgZtYMh3bW/oM3K6+HC0kOD6zZXCg3M2sVGzOuYWXl9XAhyWHbzto/8KzczGwkcSHJ4aTjjiyUm5mNJC4kOVx4yrGFcjOzVpF1K6SBt0hcSPLYtG1XodzMrFVsz7gCn5XXo6mFRNJ4SXdLekDSw5L+Z8pnSrpLUq+k70sam/Jxab43LZ9R9VmfSfmjkt5Zlc9NWa+khc04ju0Z90KycjOzVnHY2Nq/5rPyejT7jGQHcHpEvBY4EZgraQ7wBeArEXE8sAm4OK1/MbAp5V9J6yFpNnA+8CpgLvB1SR2SOoCvAWcBs4EL0roNdedjGwrlZmat4uxXH1Mor0dTC0lUbE2zY9JXAKcD16V8MXBump6X5knLz5CklF8bETsi4gmgFzglffVGxOMRsRO4Nq3bUHf2/rZQbmbWKpbev65QXo8DFhJJz0nakvWVY/sOSfcD64HlwGPAsxExcF1oLTAtTU8D1gCk5ZuBydX5oG2y8sFtuFRSj6Sevr6+AzV5H1szxq/Kys3MWsULGWOzZ+X1OOB9+4iYACDps8DTwHepvIH4QuCA50YRsQc4UdJE4AbgFWUaXI+IuAq4CqC7u7vwA+njRsGO/tq5mdlIV+RX4TkR8fWIeC4itkTENyhwGSkingVuA04DJkoaKGJdwMA51jpgOkBafgSwoToftE1W3lCvmlZ7bPas3MysVXRkvFMrK69HkULyvKQL06WqUZIuBJ7f3waSpqYzESR1Au8AHqFSUN6bVlsA3Jiml6Z50vJbIyJSfn7q1TUTmAXcDdwDzEq9wMZSuSG/tMAx5bJ+S+1rWFm5mVmrOGJ87ZFcs/J6FHkk5Y+Bv01fAfwsZftzDLA49a4aBSyJiB9JWgVcK+l/AfcBV6f1rwa+K6kX2EilMBARD0taAqwCdgOXpUtmSPoYsAzoABZFxMMFjimX9VtrD2CVlZuZtYpNGTdDsvJ65C4kEfEkBXtERcRK4HU18sep9LganG8H3pfxWZ8DPlcjvwm4qUi7ipp2RCdPbHyhZm5m1spaasx2SV+UdLikMZJukdQn6aIGtqVlTZ5QewCrrNzMbCQpco/kzIjYArwbeBI4HvhkMxrVap57ofarULJyM7ORpEghGbgM9i7gBxExYgbjWPds7XshWbmZ2UhS5Gb7jyT9EngB+IikqcCI+E26dWeNh0j2k5uZjSS5z0giYiHwBqA7InZR6frb8NeRmJlZe8l9RiJpftV09aJrGtkgMzNrL0Uubb2+ano8cAbwC1xIzMxGtCLPkfxJ9Xx6Yv3ahrfIzMzaSpnXDj4PzGxUQ1pZ1g/J72w0Myt2j+RfefFhyFFUBpJa0oxGtZqsvlnus2VmVuweyf+pmt4NPBURaxvcHjMzazNF7pH8dH/LJf08Ik4r3yQzM2snjbzMP76Bn2VmZm2ikYWkkS+TNDOzNuGOR2ZmVkojC0kDB240M7N2UaiQSDpO0h+k6U5JE6oWf6ChLTMzs7ZQZGCrS4DrgG+lqAv44cDyiHiosU0zM7N2UOSM5DLgjcAWgIhYDRzVjEaZmVn7KFJIdkTEzoEZSaNxTy0zsxGvSCH5qaS/BDolvQP4AfCvzWmWmZm1iyKFZCHQBzwI/FfgJuCvmtEoMzNrH0XetdUJLIqIvweQ1JGybc1omJmZtYciZyS3UCkcAzqBnzS2OWZm1m6KFJLxEbF1YCZNH9L4JpmZWTspUkiel3TSwIykk4EXGt8kMzNrJ0XukXwc+IGkX1N5HcpLgPc3pVVmZtY2ioxHco+kVwC/n6JHI2JXc5plZmbt4oCFRNLpEXGrpP8yaNHLJRER/9KktpmZWRvIc0byVuBW4A9rLAvAhcTMbAQ7YCGJiMsljQJujoglQ9AmMzNrI7l6bUVEP/Cpoh8uabqk2yStkvSwpD9N+ZGSlktanb5PSrkkXSmpV9LKQb3EFqT1V0taUJWfLOnBtM2VkjwuipnZECrS/fcnkv4iFYcjB74OsM1u4M8jYjYwB7hM0mwqr1u5JSJmUXnQcWFa/yxgVvq6FPgGVAoPcDlwKnAKcPlA8UnrXFK13dwCx2RmZiUV6f77fir3RD46KH9Z1gYR8TTwdJp+TtIjwDRgHvC2tNpi4Hbg0ym/JiICWCFpoqRj0rrLI2IjgKTlwFxJtwOHR8SKlF8DnAvcXOC4zMyshCKFZDaVIvImKgXlP4Bv5t1Y0gzgdcBdwNGpyAD8Bjg6TU8D1lRttjZl+8vX1sgH7/tSKmc4HHvssXmbbGZmORS5tLUYeCVwJfB3VArL4jwbSjoMuB74eERsqV6Wzj6aOq5JRFwVEd0R0T116tRm7srMbMQpckZyQrrXMeA2SasOtJGkMVSKyPeqnjn5raRjIuLpdOlqfcrXAdOrNu9K2TpevBQ2kN+e8q4a65uZ2RApckbyC0lzBmYknQr07G+D1IPqauCRiPhy1aKlwEDPqwXAjVX5/NR7aw6wOV0CWwacKWlSusl+JrAsLdsiaU7a1/yqzzIzsyFQ5IzkZOA/Jf0qzR8LPCrpQSpXqF5TY5s3Ah8AHpR0f8r+Evg8sETSxcBTwHlp2U3A2UAvlXFOPkTlwzdK+ixwT1rvioEb71Tu23yHymvtb8Y32s3MhlSRQlK4W21E3EnlBY+1nFFj/QAuy/isRcCiGnkPcELRtpmZWWMUeWnjU81siJmZtaci90jMzMz24UJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWiguJmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWiguJmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXS1EIiaZGk9ZIeqsqOlLRc0ur0fVLKJelKSb2SVko6qWqbBWn91ZIWVOUnS3owbXOlJDXzeMzMbF/NPiP5DjB3ULYQuCUiZgG3pHmAs4BZ6etS4BtQKTzA5cCpwCnA5QPFJ61zSdV2g/dlZmZN1tRCEhF3ABsHxfOAxWl6MXBuVX5NVKwAJko6BngnsDwiNkbEJmA5MDctOzwiVkREANdUfZaZmQ2R4bhHcnREPJ2mfwMcnaanAWuq1lubsv3la2vk+5B0qaQeST19fX3lj8DMzH5nWG+2pzOJGIL9XBUR3RHRPXXq1GbvzsxsRBmOQvLbdFmK9H19ytcB06vW60rZ/vKuGrmZmQ2h4SgkS4GBnlcLgBur8vmp99YcYHO6BLYMOFPSpHST/UxgWVq2RdKc1FtrftVnmZnZEBndzA+X9M/A24ApktZS6X31eWCJpIuBp4Dz0uo3AWcDvcA24EMAEbFR0meBe9J6V0TEwA38j1LpGdYJ3Jy+zMxsCDW1kETEBRmLzqixbgCXZXzOImBRjbwHOKFMG83MrBw/2W5mZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWiguJmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWiguJmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWykFRSCTNlfSopF5JC4e7PWZmI0nbFxJJHcDXgLOA2cAFkmYPb6vMzEaOti8kwClAb0Q8HhE7gWuBecPcJjOzlnDCMRMK5fU4GArJNGBN1fzalP2OpEsl9Ujq6evrG9LGmZkNp78+51WF8nocDIXkgCLiqojojojuqVOnFt5+fMZPKSs3M2sV3TMn8+bjJ++Vvfn4yXTPnJyxRXGjG/ZJw2cdML1qvitlDfPL//0uZiz8t5q5mVmr++6H59DzxAbuWP0Mb5k1paFFBA6OM5J7gFmSZkoaC5wPLG30Tp78/Lt+dwYyflRl3sysXXTPnMwnzvz9hhcROAjOSCJit6SPAcuADmBRRDzcjH35DMTMbF9tX0gAIuIm4KbhboeZ2Uh0MFzaMjOzYeRCYmZmpbiQmJlZKS4kZmZWiiJiuNswpCT1AU+V+IgpwDMNak67GGnHPNKOF3zMI0WZYz4uImo+0T3iCklZknoionu42zGURtoxj7TjBR/zSNGsY/alLTMzK8WFxMzMSnEhKe6q4W7AMBhpxzzSjhd8zCNFU47Z90jMzKwUn5GYmVkpLiRmZlaKC0kNkuZKelRSr6SFNZaPk/T9tPwuSTOGvpWNleOYPyFplaSVkm6RdNxwtLORDnTMVeu9R1JIavuuonmOWdJ56d/6YUn/NNRtbLQc/20fK+k2Sfel/77PHo52NoqkRZLWS3ooY7kkXZl+HislnVR6pxHhr6ovKq+ifwx4GTAWeACYPWidjwLfTNPnA98f7nYPwTG/HTgkTX9kJBxzWm8CcAewAuge7nYPwb/zLOA+YFKaP2q42z0Ex3wV8JE0PRt4crjbXfKY3wKcBDyUsfxs4GZAwBzgrrL79BnJvk4BeiPi8YjYCVwLzBu0zjxgcZq+DjhDkoawjY12wGOOiNsiYluaXUFlJMp2luffGeCzwBeA7UPZuCbJc8yXAF+LiE0AEbF+iNvYaHmOOYDD0/QRwK+HsH0NFxF3ABv3s8o84JqoWAFMlHRMmX26kOxrGrCman5tymquExG7gc1A44cdGzp5jrnaxVT+omlnBzzmdMo/PSL2HWe5PeX5d3458HJJP5O0QtLcIWtdc+Q55r8GLpK0lsq4Rn8yNE0bNkX/fz+gg2JgKxs6ki4CuoG3DndbmknSKODLwAeHuSlDbTSVy1tvo3LWeYekV0fEs8Paqua6APhORPyNpNOA70o6ISL6h7th7cJnJPtaB0yvmu9KWc11JI2mcjq8YUha1xx5jhlJfwD8d+CciNgxRG1rlgMd8wTgBOB2SU9SuZa8tM1vuOf5d14LLI2IXRHxBPD/qBSWdpXnmC8GlgBExM+B8VRebniwyvX/exEuJPu6B5glaaaksVRupi8dtM5SYEGafi9wa6S7WG3qgMcs6XXAt6gUkXa/bg4HOOaI2BwRUyJiRkTMoHJf6JyI6Bme5jZEnv+2f0jlbARJU6hc6np8KBvZYHmO+VfAGQCSXkmlkPQNaSuH1lJgfuq9NQfYHBFPl/lAX9oaJCJ2S/oYsIxKj49FEfGwpCuAnohYClxN5fS3l8pNrfOHr8Xl5TzmLwGHAT9I/Qp+FRHnDFujS8p5zAeVnMe8DDhT0ipgD/DJiGjbs+2cx/znwN9L+jMqN94/2M5/GEr6Zyp/DExJ930uB8YARMQ3qdwHOhvoBbYBHyq9zzb+eZmZWQvwpS0zMyvFhcTMzEpxITEzs1JcSMzMrBQXEjMzK8WFxMzMSnEhMUskTZT00WFuw/skPSLptpzr3571tL2kb0ua3dgWmu3LhcTsRROpDBEwnC4GLomIt5f5EEkdEfHhiFjVoHaZZXIhMXvR54Hfk3S/pB9IOndggaTvSZon6YOSbkxnAqslXV61zkWS7k7bf0tSR9aOJF0g6UFJD0n6Qsr+B/Am4GpJX8rYrlPStems5Qags2rZVkl/I+kB4LSBsxVJ/63689IxfLVom82yuJCYvWgh8FhEnAh8lfTmX0lHAG8ABl4nfwrwHuA1wPvSL+tXAu8H3pi23wNcWGsnkl5KZYyT04ETgddLOjcirgB6gAsj4pMZbfwIsC0iXknl1RcnVy07lMogRa+NiDur8uuBP6qafz9wbZE2m+2P37VlVkNE/FTS1yVNpVI0rk/vbQJYPvD+KUn/QuUsYjeVX+r3pHU6gayXW74euD0i+tJnfI/KqHY/zNG0twBXpjaulLSyatkeKkVj8LH0SXo8vaBvNfAK4GfAZQXabJbJhcQs2zXARVReyln9YrvBL6gLKsOWLo6IzwxR22rZHhF7MpZdC5wH/BK4ISIijeo53G22g4AvbZm96Dkq45AM+A7wcYBBN63fIelISZ3AuVT+ur8FeK+kowDS8uMy9nM38FZJU9I9iQuAn+Zs4x3AH6d9nEDl8loeN1AZYvUCKkWFgm02y+QzErMkIjaoMsTsQ8DNEfFJSY+w7yWnu6lcQuoC/nFgjBJJfwX8WJXRFXdRuXT0VI39PC1pIXAblTOZf4uIG3M28xvAP6R2PQLcm/PYNqVtZkfE3SlblbfNZvvj18ibZZB0CPAgcFJEbE7ZB4HuiPjYcLbNrJX40pZZDaoMK/wI8HcDRcTMavMZiVkTSboLGDco/kBEPHiA7d5JpYtwtSci4o9qrW82nFxIzMysFF/aMjOzUlxIzMysFBcSMzMrxYXEzMxK+f9+x6ACADZC9wAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'is_exchangeable', 'price_usd' ,kind='scatter')\n","#it's a weak feature"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"eCW4E8duzxbO","executionInfo":{"status":"ok","timestamp":1654721157832,"user_tz":-180,"elapsed":983,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"d1198af4-9ea2-49c8-d00d-b29b6c0ee214"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":35},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdsElEQVR4nO3de7gcdZ3n8fcnJwm5cEkgIWRIILBEMOIFiBgvoyhOCOAQd73BikQeFnYVfRxXHeI4j7gy7ODOjig73kCyBNcRgRklYjATAwyKBHKQa4LAMSSQGOBAQsItCYTv/tG/g+1JV05VV3ef7pzP63n6OdWf+lXVr86B/qaqfl2liMDMzKxewwa7A2Zm1tlcSMzMrBQXEjMzK8WFxMzMSnEhMTOzUoYPdgdabcKECTFt2rTB7oaZWUe58847n4qIibXmDblCMm3aNLq7uwe7G2ZmHUXS2qx5PrVlZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqU0vZBIWiPpPkl3S+pO2b6Slkp6OP0cn3JJukRSj6R7JR1dtZ55qf3DkuZV5cek9fekZdXsfTIz6zTLVj3Oedfew7JVjzd83a0a/vvuiHiq6v18YFlEXCRpfnp/HnAiMD293gJ8B3iLpH2B84GZQAB3SloUEZtSm7OB24HFwBzghmbsxIU/u5/r73+c9x15AF/6yyObsQkzs4abffHNPPTE8wD8uHsdh08ay5LPHtew9Q/Wqa25wMI0vRB4f1V+ZVQsB8ZJmgycACyNiI2peCwF5qR5e0fE8qjcD//KqnU11KHzf85lt65lw+ZtXHbrWg6d//NmbMbMrKGWrXr81SLS58Ennm/okUkrCkkA/ybpTknnpGxSRGxI048Dk9L0gcBjVcuuS9mu8nU18j8h6RxJ3ZK6e3t7C+/AhT+7n1f6Za+k3MysnS24dU2hvB6tKCTviIijqZy2OlfSO6tnpiOJpj5dKyIujYiZETFz4sSa3/DfpX+5e32h3MysXQzL+HjNyuvbRpNFxPr080ngJ8CxwBPptBTp55Op+XpgatXiU1K2q3xKjbyhJo7do1BuZtYuPv72Qwrl9WhqIZE0VtJefdPAbOB+YBHQN/JqHnBdml4EnJFGb80CNqdTYEuA2ZLGpxFes4Elad4WSbPSaK0zqtbVMDP+bK9CuZlZuzh+xgEcPmnsn2SHTxrL8TMOaNg2mj1qaxLwkzQidzjwzxHxC0krgKslnQWsBT6c2i8GTgJ6gBeAMwEiYqOkC4AVqd1XI2Jjmv4kcAUwmsporYaP2Bq7x8hCuZlZO1ny2eP4f795hOvu3cDcN0zm9Lc17mgEmlxIImI18MYa+dPA8TXyAM7NWNcCYEGNvBto6ljcIybtWSg3M2snX/7pfVy5/FEAVqzZxEO9z/HVua9v2Pr9zfYcnnxue6HczKxd9Dzx7KtFpM+Vtz1KzxPPNmwbLiQ57L9n7VNYWbmZWbu4/NerC+X1cCHJYe2mFwvlZmbtYtWGLYXyeriQ5JD1S/Ivz8za3ZRxowvl9fBnYQ5PP7+tUG5m1i6mTRhbKK+HC0kOO16p/Q3QrNzMrF2MG1P7Wm5WXg8Xkhxe2lG7YGTlZmbtYkRX7SdrZOX1cCHJ4eD9xhTKzczaxdTxtT+nsvJ6uJDk8B+PmlIoNzNrF5teeKlQXg8XkhyeeaH2Fw+zcjOzdvGmqeMK5fVwIcnhFyufKJSbmQ0lLiQ57LVHV6HczKxd3P3YM4XyeriQ5LB9R//nI+46NzNrF8MzPuWz8nq4kOSQNcjXg3/NrN11r6195JGV18OFJIcZk/culJuZtYtHn36+UF4PF5IcXs44hZWVm5m1i00Zo0uz8nq4kOTgUVtm1qne9/rJhfJ6uJDk8Py22l/cycrNzNrFrMMmFsrr4UKSw4vba5/CysrNzNrFlPGjd7qv1oguMWW8byPfUn8+fUKh3MysnfS/wWyjbzjrQpLDyW/4s0K5mVm7uO33TxfK6+FCksM//OJ3hXIzs3axNmOYb1ZeDxeSHH6z+qlCuZlZuxiZ8RX2rLweLiQ5HLxvxvNIMnIzs3axuve5Qnk9XEhy+MopRxbKzczahZ9H0iauumNtodzMrF284z/sVyivhwtJDv5mu5l1qpUbthTK6+FCksPBGV/cycrNzNrFHY9sLJTXw4Ukh5PeeGCh3MysXYwaUftjPiuvhwtJDkccsFeh3MysXRyV8Wz2rLweLiQ5tGLUg5lZM/z+qRcK5fVoSSGR1CXpLknXp/eHSLpdUo+kH0samfI90vueNH9a1Tq+mPIHJZ1Qlc9JWY+k+c3o/7T9an9fJCs3M2sXrfj8atURyWeAB6refw24OCIOAzYBZ6X8LGBTyi9O7ZA0AzgVeB0wB/h2Kk5dwLeAE4EZwGmpbUONGN5VKDczaxcfOHpKobweTS8kkqYAJwPfT+8FvAe4NjVZCLw/Tc9N70nzj0/t5wJXRcS2iHgE6AGOTa+eiFgdEduBq1Lbhrp4yQOFcjOzdvGNpQ8VyuvRiiOSbwB/DfQ9vGM/4JmIeDm9Xwf0DX86EHgMIM3fnNq/mvdbJiv/E5LOkdQtqbu3t7fwDixfs6lQbmbWLlasrT3MNyuvR1MLiaT3AU9GxJ3N3M5AIuLSiJgZETMnTiz+VLAjJo0tlJuZtYt9Ro0olNej2UckbwdOkbSGymmn9wDfBMZJGp7aTAHWp+n1wFSANH8f4OnqvN8yWXlDHT659jC5rNzMrF1sfL726NKsvB5NLSQR8cWImBIR06hcLL8xIj4K3AR8MDWbB1yXphel96T5N0ZEpPzUNKrrEGA6cAewApieRoGNTNtY1Oj9ODRjdENWbmbWLl4umNdj+MBNmuI84CpJfwfcBVye8suBH0jqATZSKQxExEpJVwOrqOz/uRGxA0DSp4AlQBewICJWNrqzjz2ztVBuZtYuhvHHC9T980ZpWSGJiJuBm9P0aiojrvq32Qp8KGP5C4ELa+SLgcUN7OpONj23rVBuZtYu9hk9jE0v7lxK9hntW6S01A6iUG5m1i5e2lH7cyorr4cLSQ5PP1v7FFZWbmbWLl7cXrtgZOX1cCHJYdXjtR9JmZWbmbWLfcfWHuabldfDhSSHGQfsWSg3MxtKXEhyOHT/vQvlZmbtYutLOwrl9XAhySHr+S8NfC6MmVlTbHup1uDf7Lwe/ijM4Z51tZ9tnJWbmbWL4V0qlNfDhSQHj9oys041POPbgll5PVxIcnjmxdr3pMnKzczaxZattYf5ZuX1cCHJYdSI2oeAWbmZWbvIOvBo5G1NXEhy2Fzj9gK7ys3M2sWokbU/5rPyeriQ5DBuTO3anZWbmbWL8WNGFsrr4UKSw8S9RhXKzczaxciuYnk9XEhyeCpjdFZWbmbWLlY/XftzKiuvhwtJDk+/UPsRMFm5mVm7yBqb1ch7l7uQ5DBt39GFcjOzdpF1b8YG3rPRhSSPE153QKHczKxd7Ldn7Wu5WXk9XEhyuOLWRwrlZmbtYp+M0aVZeT1cSHLYmvF1kazczKxdbMm4lpuV18OFJIeRGV9gz8rNzNrFixm3i8/K6+FCksOwYbUrRlZuZtY+sj7m/c321oqMgXJZuZlZmzhsYu3RpVl5PVxIcvA1EjPrVH/YvL1QXg8XkhzGjar9a8rKzczaxR7Da5+Cz8rr4U/CHCaPq30ImJWbmbWLl16pfeokK6+HC0kOq594vlBuZtYu/rDxxUJ5PVxIctiWcU09KzczaxfbMw48svJ6uJCYme3Gxo+pfb/4rLweLiQ5vPmgvQvlZmbtYs89aj/AKiuvhwtJDms31b5vf1ZuZtYutr5c+xxWVl6PphYSSaMk3SHpHkkrJf2PlB8i6XZJPZJ+LGlkyvdI73vS/GlV6/piyh+UdEJVPidlPZLmN2M/Ro+o/WvKys3M2sXh++9ZKK9Hsz8JtwHviYg3Am8C5kiaBXwNuDgiDgM2AWel9mcBm1J+cWqHpBnAqcDrgDnAtyV1SeoCvgWcCMwATkttG+rwSbVPYWXlZmbt4sCM5yZl5fVoaiGJiufS2xHpFcB7gGtTvhB4f5qem96T5h8vSSm/KiK2RcQjQA9wbHr1RMTqiNgOXJXaNtSvHnqyUG5m1i5+ft/6Qnk9Biwkkp6VtCXrlWP5Lkl3A08CS4HfA89ERN89jNcBB6bpA4HHANL8zcB+1Xm/ZbLy/n04R1K3pO7e3t6BuryTFzNukpmVm5m1iy1ba39PISuvx4BPNomIvQAkXQBsAH4ACPgoMDnH8juAN0kaB/wEOKJMh+sREZcClwLMnDnT3/4wM2ugIqe2TomIb0fEsxGxJSK+Q4HTSBHxDHAT8FZgnKS+IjYF6DvGWg9MBUjz9wGers77LZOVN9RrJ40tlJuZtYusMUGNHCtUZFXPS/poOlU1TNJHgV3eI0TSxHQkgqTRwF8AD1ApKB9MzeYB16XpRek9af6NEREpPzWN6joEmA7cAawApqdRYCOpXJBfVGCfctma8QCYrNzMrF2M2aP2x3xWXo8iD+39z8A30yuAW1O2K5OBhWl01TDg6oi4XtIq4CpJfwfcBVye2l8O/EBSD7CRSmEgIlZKuhpYBbwMnJtOmSHpU8ASoAtYEBErC+xTLo9srP19kazczKxdjBo+nM3sfMv4UcMb98z23GuKiDUUHBEVEfcCR9XIV1MZcdU/3wp8KGNdFwIX1sgXA4uL9MvMbKh4aUfG3X8z8nrkPraR9L8k7S1phKRlknolnd6wnpiZWcON7Kr9MZ+V16PImmZHxBbgfcAa4DDgCw3riZmZNdzwrtoPsMrK61GkkPSdBjsZuCYiNjesF2Zm1hQbntlWKK9Hkast10v6HfAi8AlJEwFfbTYza2NZY0sbOeY09xFJRMwH3gbMjIiXqAz9bfjtSMzMrLPkPiKRdEbVdPWsKxvZITMz6yxFTm29uWp6FHA88FtcSMzMhrQi3yP5dPX79I31qxreIzMz6yhlBhI/DxzSqI6YmVlnKnKN5GdUbo0ClQI0A7i6GZ0yM7PG6KL2CK2uBm6jyDWS/101/TKwNiLWNbAvZmbWYK0Y/lvkGsm/72q+pNsi4q3lu2RmZp2kkY/aHdXAdZmZWYdoZCHxkwfNzIagRhYSMzMbghpZSBp3K0kzM+sYhQqJpIMlvTdNj5a0V9XsjzW0Z2Zm1hGKPNjqbOBa4HspmgL8tG9+RNzf2K6ZmVlZYzLG5mbl9ShyRHIu8HZgC0BEPAzs37iumJlZo73wcrG8HkUKybaIePUJ8pKG45FaZmZDXpFC8u+S/gYYLekvgGuAnzWnW2Zm1imKFJL5QC9wH/BfgcXA3zajU2Zm1jmKXG4ZDSyIiMsAJHWl7IVmdMzMzDpDkSOSZVQKR5/RwC8b2x0zM+s0RQrJqIh4ru9Nmh7T+C6ZmVknKVJInpd0dN8bSccALza+S2Zm1kmKXCP5K+AaSX+gcjuUA4CPNKVXZmbWMYo8j2SFpCOAw1P0YES81JxumZlZpxiwkEh6T0TcKOk/9Zv1GklExL82qW9mZtYB8hyRvAu4EfjLGvMCcCExMxvCBiwkEXG+pGHADRFxdQv6ZGZmHSTXqK2IeAX466IrlzRV0k2SVklaKekzKd9X0lJJD6ef41MuSZdI6pF0b79RYvNS+4clzavKj5F0X1rmEkl+LoqZWQsVGf77S0mfT8Vh377XAMu8DHwuImYAs4BzJc2gcruVZRExncoXHeen9icC09PrHOA7UCk8wPnAW4BjgfP7ik9qc3bVcnMK7JOZmZVUZPjvR6hcE/lkv/zQrAUiYgOwIU0/K+kB4EBgLnBcarYQuBk4L+VXRkQAyyWNkzQ5tV0aERsBJC0F5ki6Gdg7Ipan/Erg/cANBfbLzMxKKFJIZlApIu+gUlB+BXw378KSpgFHAbcDk1KRAXgcmJSmDwQeq1psXcp2la+rkfff9jlUjnA46KCD8nbZzMxyKHJqayHwWuAS4P9QKSwL8ywoaU/gX4C/iogt1fPS0UdTn2sSEZdGxMyImDlx4sRmbsrMbMgpckRyZLrW0ecmSasGWkjSCCpF5IdV3zl5QtLkiNiQTl09mfL1wNSqxaekbD1/PBXWl9+c8ik12puZWYsUOSL5raRZfW8kvQXo3tUCaQTV5cADEfH1qlmLgL6RV/OA66ryM9LorVnA5nQKbAkwW9L4dJF9NrAkzdsiaVba1hlV6zIzsxYockRyDPAbSY+m9wcBD0q6j8oZqjfUWObtwMeA+yTdnbK/AS4CrpZ0FrAW+HCatxg4Ceih8pyTM6msfKOkC4AVqd1X+y68U7lucwWV29rfgC+0m5m1VJFCUnhYbUT8msoNHms5vkb7AM7NWNcCYEGNvBs4smjfzMysMYrctHFtMztiZmadqcg1EjMzs524kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWiguJmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpbiQmJlZKS4kZmZWiguJmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kJiZWSkuJGZmVooLiZmZleJCYmZmpTS1kEhaIOlJSfdXZftKWirp4fRzfMol6RJJPZLulXR01TLzUvuHJc2ryo+RdF9a5hJJaub+mJnZzpp9RHIFMKdfNh9YFhHTgWXpPcCJwPT0Ogf4DlQKD3A+8BbgWOD8vuKT2pxdtVz/bZmZWZM1tZBExC3Axn7xXGBhml4IvL8qvzIqlgPjJE0GTgCWRsTGiNgELAXmpHl7R8TyiAjgyqp1mZlZiwzGNZJJEbEhTT8OTErTBwKPVbVbl7Jd5etq5DuRdI6kbkndvb295ffAzMxeNagX29ORRLRgO5dGxMyImDlx4sRmb87MbEgZjELyRDotRfr5ZMrXA1Or2k1J2a7yKTVyMzNrocEoJIuAvpFX84DrqvIz0uitWcDmdApsCTBb0vh0kX02sCTN2yJpVhqtdUbVuszMrEWGN3Plkn4EHAdMkLSOyuiri4CrJZ0FrAU+nJovBk4CeoAXgDMBImKjpAuAFandVyOi7wL+J6mMDBsN3JBeZmbWQk0tJBFxWsas42u0DeDcjPUsABbUyLuBI8v00czMyvE3283MrBQXEjMzK8WFxMzMSnEhMTOzUlxIzMysFBcSMzMrxYXEzMxKcSExM7NSXEjMzKwUFxIzMyvFhcTMzEpxITEzs1JcSMzMrBQXEjMzK8WFxMzMSnEhMTOzUlxIzMysFBcSMzMrxYXEzMxKcSExM7NSXEjMzKwUFxIzMyvFhcTMzEpxITEzs1JcSMzMrBQXEjMzK8WFxMzMSnEhMTOzUlxIzMysFBcSMzMrxYXEzMxK2S0KiaQ5kh6U1CNp/mD3x8xsKOn4QiKpC/gWcCIwAzhN0ozB7ZWZ2dDR8YUEOBboiYjVEbEduAqYO8h9MjMbMnaHQnIg8FjV+3Upe5WkcyR1S+ru7e1taefMzHZ3u0MhGVBEXBoRMyNi5sSJEwsvP2FMV6HczKxdfObdhxbK67E7FJL1wNSq91NS1jDdX55TKDczaxefPeG1jNCfZiNUyRtldygkK4Dpkg6RNBI4FVjU6I2suejkV49AJozpYs1FJzd6E2ZmTfHw35/MZ959KNP2G8Nn3n0oD/99Yz+/FBENXeFgkHQS8A2gC1gQERdmtZ05c2Z0d3e3rG9mZrsDSXdGxMxa84a3ujPNEBGLgcWD3Q8zs6Fodzi1ZWZmg8iFxMzMSnEhMTOzUlxIzMyslN1i1FYRknqBtSVWMQF4qkHd6RRDbZ+H2v6C93moKLPPB0dEzW90D7lCUpak7qwhcLurobbPQ21/wfs8VDRrn31qy8zMSnEhMTOzUlxIirt0sDswCIbaPg+1/QXv81DRlH32NRIzMyvFRyRmZlaKC4mZmZXiQlKDpDmSHpTUI2l+jfl7SPpxmn+7pGmt72Vj5djn/y5plaR7JS2TdPBg9LORBtrnqnYfkBSSOn6oaJ59lvTh9LdeKemfW93HRsvx3/ZBkm6SdFf67/ukwehno0haIOlJSfdnzJekS9Lv415JR5feaET4VfWiciv63wOHAiOBe4AZ/dp8Evhumj4V+PFg97sF+/xuYEya/sRQ2OfUbi/gFmA5MHOw+92Cv/N04C5gfHq//2D3uwX7fCnwiTQ9A1gz2P0uuc/vBI4G7s+YfxJwAyBgFnB72W36iGRnxwI9EbE6IrYDVwFz+7WZCyxM09cCx0vq9wyyjjLgPkfETRHxQnq7nMqTKDtZnr8zwAXA14Ctrexck+TZ57OBb0XEJoCIeLLFfWy0PPscwN5peh/gDy3sX8NFxC3Axl00mQtcGRXLgXGSJpfZpgvJzg4EHqt6vy5lNdtExMvAZmC/lvSuOfLsc7WzqPyLppMNuM/pkH9qRPy8lR1rojx/59cAr5F0q6Tlkjr9edJ59vkrwOmS1lF5rtGnW9O1QVP0//cB7RYPtrLWkXQ6MBN412D3pZkkDQO+Dnx8kLvSasOpnN46jspR5y2SXh8Rzwxqr5rrNOCKiPhHSW8FfiDpyIh4ZbA71il8RLKz9cDUqvdTUlazjaThVA6Hn25J75ojzz4j6b3Al4BTImJbi/rWLAPt817AkcDNktZQOZe8qMMvuOf5O68DFkXESxHxCPAQlcLSqfLs81nA1QARcRswisrNDXdXuf5/L8KFZGcrgOmSDpE0ksrF9EX92iwC5qXpDwI3RrqK1aEG3GdJRwHfo1JEOv28OQywzxGxOSImRMS0iJhG5brQKRHRPTjdbYg8/23/lMrRCJImUDnVtbqVnWywPPv8KHA8gKTXUikkvS3tZWstAs5Io7dmAZsjYkOZFfrUVj8R8bKkTwFLqIz4WBARKyV9FeiOiEXA5VQOf3uoXNQ6dfB6XF7Off4HYE/gmjSu4NGIOGXQOl1Szn3ereTc5yXAbEmrgB3AFyKiY4+2c+7z54DLJH2WyoX3j3fyPwwl/YjKPwYmpOs+5wMjACLiu1SuA50E9AAvAGeW3mYH/77MzKwN+NSWmZmV4kJiZmaluJCYmVkpLiRmZlaKC4mZmZXiQmJmZqW4kNiQIek3g7Tdm9vtG/GSjpN0fca8NenLiGa5uJDYkBERbxvsPpjtjlxIbMiQ9Fz6OVnSLZLulnS/pD/fxTKzJd0m6beSrpG0p6SDJT0saYKkYZJ+JWl2an+epPsk3SPpoqpVfUjSHZIe6tuepGlp2d+m19tSflw6irlW0u8k/bDvMQWSTkrZnenhRNenfGx6oNEd6QFNc3e1jWRvST9X5aFP3003quy//6endd4t6XuSusr9FWy3NNgPYfHLr1a9gOfSz88BX0rTXcBeGe0nUHmo1dj0/jzgy2n6vwDXAF8AvpeyE4Hf8McHgO2bft4M/GOaPgn4ZZoeA4xK09Op3LIDKre32EzlZnrDgNuAd1C5B9RjwCGp3Y+A69P0/wROT9PjqNxscewA29hK5YFPXcBS4INp3pq0768FfgaMSPm3gTMG++/oV/u9fK8tG4pWAAskjQB+GhF3Z7SbReWJebemA4KRVD7UiYjvS/oQ8N+AN6X27wX+b6QHgEVE9cOF/jX9vBOYlqZHAP8k6U1U7mv1mqr2d0TEOgBJd6dlngNWR+WuvFApJOek6dnAKZI+n96PAg6i8pCmXW1jddrGj6gUq2ur5h8PHAOsSPs/GtgdbthpDeZCYkNORNwi6Z3AycAVkr4eEVfWaCpgaUScttMMaQx/fErknsCzA2y277b7O/jj/3efBZ4A3kjlyGNrjfb9l8ki4AMR8WC/fn5lF9vof6O9/u8FLIyILw6wbRvifI3EhhxJBwNPRMRlwPepPN+6luXA2yUdlpYbK6nvX/RfA34IfBm4LGVLgTNTkUHSvgN0ZR9gQ1QeoPQxKqeYduVB4FBJ09L7j1TNWwJ8uupaylE5tnFsur36sLSuX/fb3jLgg5L279uf9Lsz+xMuJDYUHQfcI+kuKh+g36zVKCJ6qTwh8UeS7qVyWusISe8C3gx8LSJ+CGyXdGZE/ILKsx660+moz9dab5VvA/Mk3QMcATy/q8YR8SLwSeAXku6kchS0Oc2+gMqpsnslrUzvB9rGCuCfgAeAR4Cf9NveKuBvgX9L+78UKPVsb9s9+TbyZh1E0p4R8Vw68vgW8HBEXDzY/bKhzUckZp3l7HS0s5LKaavvDXJ/zHxEYgYg6XZgj37xxyLivsHoj1kncSExM7NSfGrLzMxKcSExM7NSXEjMzKwUFxIzMyvl/wPXgzjhzWKaLwAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'number_of_photos', 'price_usd' ,kind='scatter')\n","#it's good feature"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"xorcHJgP0CYC","executionInfo":{"status":"ok","timestamp":1654721157833,"user_tz":-180,"elapsed":17,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"a16f457c-f35f-4012-dbee-bf22f5ba1dc4"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":36},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZxU1Zn//z619sbSVGOzL9qoAQWUToAgxIghJuOIEwnJJAZnRpPMxPyiZFznO99Mvk4mRpOJMRO/2dQZiRkVMQkko8EA+gUMKo02ICjQQmM3SwNF0/Ra6/n9UfcWt6rurbq1dVfT5/16oV3nLnWqaM5zz/N8nucRUkoUCoVCocgVx0BPQKFQKBSDG2VIFAqFQpEXypAoFAqFIi+UIVEoFApFXihDolAoFIq8cA30BPqbmpoaOWXKlIGehkKhUAwqduzYcUpKOdrs2JAzJFOmTKGhoWGgp6FQKBSDCiHEYatjyrWlUCgUirxQhkShUCgUeaEMiUKhUCjyQhkShUKhUOSFMiQKhUKhyIuiGxIhRLMQYrcQolEI0aCNjRJC/EkIcUD7f7U2LoQQPxZCNAkhdgkhrjTc5xbt/ANCiFsM43O0+zdp14pif6ahir8rwM6WM/i7AkV7j6a2TtY0tNDU1pnXffpjrgqFIkZ/yX8/LqU8ZXh9H7BRSvk9IcR92ut7gU8B07Q/c4GfAnOFEKOAfwHqAQnsEEKsk1K2a+d8GXgDeBG4Dnipfz7WwOLvCtDa3suE6nJ8Vd6ivEdTWyeNLWfwdwd5ZMN+3A4HoWiUh2+ayfSxw2lsOcPsiSOpqx2W9T316/TXmw+cZN3OY/HzVsyfxANLL7e8Lpu53jB7fH5fhEKhsGSg8kiWAldrPz8FvErMkCwFVslYbfvXhRAjhRBjtXP/JKU8DSCE+BNwnRDiVWC4lPJ1bXwVcCMlbkgyLYh2WNt4hHvW7MLpEESiku8vK/xi+a3f7WbV6x8kjPURBeCOZxsxNiBIXvTt3vOS2kr2tXWbnrtq2wesmDeFutphKdclv1+6ud7zwi4W1NUUzdgqFEOd/jAkEnhZCCGBn0spfwHUSin1R8/jQK3283igxXBtqzaWbrzVZDwBIcRXgK8ATJo0Kd/PkxeZFkQ7+LsC3PX8TkKRc0v5Pz6/syCLpW7kqivcKQuzkeQuNsZFP929k+9pZUR0GlvOxO6fdJ3x/czua8TtcNDa3qsMiUJRJPrDkFwlpTwihLgA+JMQ4j3jQSml1IxM0dCM1y8A6uvrB6yTl9mCl24BtnJd7TnakWBEAEIRyZ6jHSy6+IKc52f2VJ8NjS1n0hoS3Shkw+yJIy2v098v031D0SgTqsuzfm+FQmGPohsSKeUR7f8nhBC/BT4CtAkhxkopj2muqxPa6UeAiYbLJ2hjRzjnCtPHX9XGJ5icX5JkWhCNrG08wr0v7LLw81vpCXLXGWR6qtep8DgJRyIEI6nHZk8cmfbaTMeTWTF/UlrDpN/P6r4VHidRKXn4pplqN6JQFJGiqraEEJVCiGH6z8AS4B1gHaArr24B1mo/rwNWaOqteUCH5gJbDywRQlRrCq8lwHrt2FkhxDxNrbXCcK+Sw2rBSx73dwW494Vd9IWidAbC9IWi3PPCrrgCaca44biS/uZcjth4rtjZLSyvH88zX57HtvuvZcX8RBdhpkUfoK52WMp1Zty95GI2rFwUd/mZXWd8P7Pj+lxfu/caFWhXKIpMsXcktcBvNUWuC/hvKeUfhRDbgdVCiFuBw8By7fwXgU8DTUAP8LcAUsrTQoh/BbZr5z2gB96BrwH/BZQTC7KXbKC9rnYYC+t8bGnyx8cW1vlSFuDW9l7cDkc8WAyJfn5flZd5F/rYarjP/At9eT11Wxm5J1bMob0nlCIMeGDp5ayYN8VSNGAlKDBe13a2j++/vD/lPWuHl6XcL9P7ZTquUCiKR1ENiZTyIDDLZNwPLDYZl8DtFvd6EnjSZLwBuCzvyfYD/q4A2w+3J4xtP9yOvyuQYAQmVJcTikYTzjP6+ZvaOhOMCMCWJj9NbZ05L6D6U/2qbYlCgMXTx6S9xuz9MgkK9Oua2jpNDYnRqBnjRFbvl2k+mSiEii55rsqVphhKDLky8gNJpp2Gjq/Ky8M3zeSepBiJfo6VG2rdzqPc8tEpOS9imZ7q7SyU2QgK6mqHMaLMSUffuYDLiDJn/Lz0caJUclnIC6Giy2WuCsX5hDIkBcLOIpZpp2HkhtnjWVBXk3BPozTXjCe2HuQXWw7mtYhZPdXbXSizERRs3Hs8wYgAdPRF2Lj3OLMnVcfjRHbyQXJZyLNV0VlhjGmp3BXFUEQZkgJgdxHLtNMwO18/ZieRrztovojl43LxdwXYc/Qs96zZRSCceaG0KygAeHlvm+m5L+9to2ZYma3dmz7HXBbybIxeOuzuNBWK8xVlSPIk20XMbKeRCatEvu/cMJ1XD5zitQOn6A2bL2L5uFz0ax0IAuFoyvE9RzsYUe5J+BxWsRazhXnJ9Fqea2hNGa/0OAmFI7Z3b7ku5FY7O6txK7LZaSoU5yPKkORJLouYcadhB6sn539et9d0XF/ErIzc9LHD6Q5G0hoy47Vm9IWi3PbUdrwuV4qBsqugWjx9jOnO6sk/H+bJPx9mYZ2P7YfbM+7ecl3I23tCWY0nY9zpZbPTVCjON5QhyZNcFrFsVUJ2E/mSE/B2tpxJMXIyKvn0f2zF60y/QzEzkMkEIxCMhIHUXZhdBdX6lVezce9xnt/Rwh/3nEg4tqXJz5qvzsPtcqY1etm6DHWyccMlY7bTe+3ea5RqSzEkUYYkT7JdxHJRCZm5i8y47aqpCaotMyMXiEhAEgynd8OZXZuOfGICi6ePob0nlGJIAJr9PSyrn2hyVSK5uAyzccMZsdrpvXbvNczKMntfoTgfUIakANhdxPJRCRndRdUVbm5dtSN1HrPGpZURB8IRHA6R4K6yMgDJ1/aFI0gpKXe7CEaiRKJRjGGT5F1YoXZd2ZRVydZlCLklMqrgukKRiDIkBcLOIpavSsjoLkp+kr5h1pj4/Y33Mhq5So+T6x7dnHDP3lDY0g2XbCCB+M+vNZ1K2IX977+YTmt7LwCPbthfkF2Xnd1BIcg2kVEF1xWKREQsmXzoUF9fLxsaGgbkvZvaOrn2kc0p4xtWLsorIztTQygdf1eAeQ9uTKgc7HYKXr9/cU5P0nqw+Z0jHfzr/+zF7XAQjERNFV52P2OhsswLhdV81jUeSXFnqgRExfmMEGKHlLLe7JjakfQDxsWokE/d+nV3rdmVMG7lLmtt76XM5SSkBcgBylzOnF0y+jWf+8W2hHiBGbnsuiC9YSl2SZJ08axcYjIKxfmKMiQFwmpRM1uMNqxcVLCn7mzcZcVwydhRd4F1/ax0C3C6hbzYJUnsxLNyickoFOcjypAUAKtFLd1iZEeJlAl/V4Ayt9P0mFmQ2lflZXn9hIQd0fL6CXkthmbGSW//q7N09ti4wdtz7GzKd2XW+z3dd1dd6Sl6SZJCZb2XCqqgpKKYKEOSJ+ky2+0sRsn/wO3GCIzGK3nhtnKX+bsCrE7KJF/d0Modiy/OeXHR1V13J/WP143D5gMnWdt4jLWNsRiOfo7+Xa1cvTNl7g8svTztdzetdljRVVOFUJGVCqqgpKLYKEOSJ+mkoJkWo7WNR7j7+Z0IIZBSMnfqqIReJemC5snGy+tycP+nLuWquhpLA1Qs2arU/ytF/JVV/MZoNMxe67uOdN9ddaXH1EVX6XGys+VMQZ66B1JFVkhUQUlFf1DUDolDgXRxh3Sd/fxdAVY+10gwIgmEowQjMsGIQGxRbWrrTHlP3SAY8TgdXDGpOsE1tKahJeH6XGIk/q4AO1vOxLszmh2/94VdBMKSnlCEQFjGuznm0qMdzu3YrL47fRdU5nYwzOuizO1g+ZwJXP+Trdz8+BsseGgT6xrz77j8wNLL2bByET9YNjOhY+Ngwux3RX94UCgKhdqR5EmmzHarhLdt758iakN5nUvQ3CpInW0Wvh2XSGt7L+FI4lzCkWjaHZnX5cDjtJYK69clf3fVlZ74jiM5P+b6n2wtylN3rs2ySgWV86LoD5QhKQCZpKBmi9GprqCte1sFza0MQia1kV3Zql2XSCgcIdkWhKOx8ToLufMdiy+Ov/+jG/endR/p352VUbOqKaYyzWPkWodMocgGZUgKRDopqJli5qq6moz3NOvnrmNlEOwE+O3IVu3GU5r9PabXN/t7qJ/qs9yRWe3YANY0tCScm8moqafu9KicF0WxUYakCBiVV2Zy1xtmjzcN5p4LVcd4s/k0m/efYMa4EfiqvDQc8rP5wCkWTauhfqrP1CDYURsZ5weYqsTsLs523s9ur3Url1wmo2b21G0s2aIWTpXzoiguqkRKgUleDB2ChFhImdvBa/deE/9HrS/qZW4n9/9mN52BcML99NLwk0eVJ/TtWFjn41e3zTOfw9rdKe4iPVCcPD8jK+ZPStgd7D121lYZkHTvZ5d05WOqKz0seGhTQrHJ5O8RzEu2KLmrQlEYVImUfsIsPpEcUE92D+lP4/6ugGnZ9p5grKd5cvOnLU1+Gg75qZ/qS52IxbOB2fyMrNr2QYpBsNNjY87kUTz7Zqv2xoL6yaMs38OKdC65ZfUTbfn5rUq2KLmrQlFclPy3gNiRu1r57o2S1gqLbPVkNh84lTJmFWzXdz7ZsGrbB7R3B5k1cWTa+M9dz+8kGIlJmIORKP/4/E5LubAVmVxkN8wez2v3XsPTt83ltXuvsdxhKLmrQtH/KENSQKwWQ49TUOFx4nU5ePimmRw62cUPX95Hw6HEvBF9sfzZl+bgdWX+q5k1YUQ8x0PP99jadNL0XGNMJBt++3ZqT3Uje452JFQTBghFJHuOdth+D39XgO5ghOX1ExLGkxVcvipvWqMG9mI7Zjk25yND5XMqBh7l2iogZgH0hXU+3mw+rbmbJD955QD7NTfVjzc1pcQ6fFVeFl08mu8vS3TlJMdILqmt5B9+/RZCCCLawlnudhEIJ8ZYdPRgup1Oi0Y6es3vdw6R5Xgisez+RgQOJFH+6VOXMqrSY6ugpZkaLpPcNZcOlYORofI5FaWBMiQFxihnneKr4OYn3yQQlkAs1rHfZqzDTLK5ce9xXt7bxvwLR/HN53dp8Zdzu4HkQL0pSfGTG2aNZdG00bgccOfqXSmn3zh7XPxns4V7xrjhuBwk5JK4HLFxHav6Yf6uAHc+26hNKXaDB196j4Z/vjZjPCNdsqSV3DWfDpXpvoNSoxCfU6HIBmVIioAeQDdLlDNj84FTpkFzo2TTuHD+5u0jtrLijejxkeQFZt3OY3zjmmnU1Q7jhbeOJJRpWVjni88rXULgD5fP5u41O3EKBxEZ5fvLZtnaAWx735+iC5Da+PWzxmGFnWRJM7lrvhV9B0vxw/OtcrGi9FGGpIiY+evNWDQtfXKi2cKZLbMnjmT9nuOmx9bvOU5d7TB+ddu8lFwVq/c3Lty57gBOdfWZzmdnazvzL/JZPvHnWnwyn4q+g6n44flUuVgxOFDB9iJiVlyw3JUYOxhR5jSX8BowUyKZUeF2UOZ2MHa4J2H8ktrKtE+iu490xAOy9VN9fHPJJQlzsqOEMguEp3syBriqbrTp8V+//kHawou5ZrKnKwSZicGkBsvncyoUuaB2JEXG+LR+qrOPW1ftSDje0RexzgfRsNM8ann9BL44dzKhcIRlP3894dx9bd00tXXyyRlj+P7L+1Pu/8c9bfxxT5tlQDbXhTvTk3F1pSclmx+gJ5T+iT+f+lFWJVsyMdjKsOT6ORWKXFCGpB/Q/fU/fHmf6XGrGInxerOF06yz4JqGFtN76Il96VRbVgHZXBfuTD09Wtt7qfK6LEUCMiot3VX51I/KpaLvYCx+ONgrFysGD/1iSIQQTqABOCKlvF4IMRV4FvABO4AvSSmDQggvsAqYA/iBz0kpm7V73A/cSkz+9A0p5Xpt/DrgUcAJPC6l/F5/fKZ0nQytlD2LptXw401NKffafeQMG/ceZ/H0MZbvZ7VwJr+31S6gsaWdKb4K5kwelVb+axWQNXt/43dQXekx/cwPLL2cG2aOS4m7QOYYUiAiqfRYJ2f2d/0oVfxQoTCnv3YkdwDvArom9CHgESnls0KInxEzED/V/t8upawTQnxeO+9zQojpwOeBGcA4YIMQ4mLtXo8BnwBage1CiHVSyr3F/DDplEjplD31U32MHe7h2NnEEvKv7DvFK/tOcUltJetXXm35vnYWzrraYVxV52NrUpOsp99o4ek3zHcrRpINUbJRtFJjCaDK60r5zMbv4xdbDiYc81V5WT5ngmXZljK3g26tREypoIofKhSpFD3YLoSYAPwF8Lj2WgDXAGu0U54CbtR+Xqq9Rju+WDt/KfCslDIgpTwENAEf0f40SSkPSimDxHY5S4v5eayUSA2H/Gzef5J71sSUPZ2BMH2haLxboH5tshExsq+tm9+91ZK2I2Em/F0BGg6353RtckB2beMRFjy0KaXroNl3ICHhMzcc8vNfrx1K+334uwKs3pE+c34oZqQrFION/tiR/Ai4B9BXKB9wRkqpO8ZbAV2MPx5oAZBShoUQHdr54wFjBNl4TUvS+NzkCQghvgJ8BWDSpEnJh7PCSon0+V++jsfpTOn4Z5Sl2ql19c3Vu6g0ebK3i5k0NhOjKl2s/spHU5IFreSumT5HKBxNCfgnz9FX5c041w9Prh5yGekKxWCkqDsSIcT1wAkp5Y6MJxcRKeUvpJT1Usr60aPNJad2sYpBhKPQE0p1w4SiUSo9TnZqme6ZiHLuyf7uNbvYvP9kVrsTu7krRuZNTW2gZSZ3dQh46s/NVFe4094vkiZZsi8Ujcc9Ms11S5OfprbOtIUoFQrFwFNs19YC4AYhRDMxt9M1xALjI4UQ+m5oAqAnDBwBJgJox0cQC7rHx5OusRovGmYafadJWakKj5Myt4PlcyZw/U+2cvPjb3Dzk2+ysC59zoiRQDjK3/9qR9qcimSSc1fsVLx6q/l0ypjZIt8TjPLjTU3cumoHl9RWJhwTwDCvi0y1Jr1OEY97GOdqVaSyseVMxnwUhUIxsBTVtSWlvB+4H0AIcTVwl5Tyi0KI54FlxIzLLcBa7ZJ12utt2vFNUkophFgH/LcQ4ofEgu3TgDeJrV/TNBXYEWIB+S8U8zOBeT2tiKHpktcl+NnNVzJuRDnX/2Rrgnto++F21nx1Hs3+HmZPHMlhf3e8ftZ9v30noXkTnNvlZJNFnawuavygnZf3tvFcg3k84nhXKGXMV+WlfnJ1StBeZ19bNz9aPpODp3rimfmbD5ziwpoK05pdOsIh4ju0CdXl8blue/8UX3+mMeX8dNnYKlNboSgNBiqP5F7gWSHEd4C3gSe08SeAXwkhmoDTxAwDUso9QojVwF4gDNwupYwACCG+DqwnJv99Ukq5pz8+gFGjb5ZfsOjiC0xrbbkdDtwuJ8vqJ8bvo8t+32o5YynNtVMCxIiuLjKqpqwwE9g2tXVaGhGdu17YTbnLyU9eaUqo/XVJbWVCpWKjokvfoSWr2q6fNZ43m09b5pyky0dRKBQDi2q1mwXpKr+aHfN3BWy1iLU610iZ28Efvn4V3cGIaR6H2aKa6Z46w7wOfvu1qxLusaahhbvWWO8sMvHEijm094QSckwqPc74Ds34uYzfh17heMn0WhZPH5PwvbZ3B1WmtkIxQKhWuwUgU+VXs/yCbLKhW9t7kWlK+k4eVZ7wJJ/sdjJTMdlVcHUGolz7yOaEe2RyGyWXjk+mvScU33VB7Luw2qHpOy2jMuu5hlYW1vnYfrg94bsz3lOhUJQGqmijDYxSWLN8CLDOcbDbIrbS4ySQRu60r6074f2T3U5mKqZsFVzGe5iJCm6YNZYfLJvJmq/OQ2YI45sZonT1qsyUWVua/Gm/8/5A5a4oFJlROxIbZCpbninHwU42dHcwglOkl85m4pdbDvLlhRfG3T6ZMsfN2Np0Mu4+syr819TWmVAwMpmFdaly4vh86ickxDqW10/AV+XllfdOZJxbtnGifFG5KwqFPdSOxAbZPknnkuMQCkfyMiIQcwdd+8hmvrV2N2AvczyZ7774bkIme13tMJbVT0wwDJlkt9sPtyfsHPR+8k1tnaxOUo6tbmjF3xWwpcAKhMO8/cFpy+9Wf59C7FpU7opCYR9lSGxg1ldEj3UUKseh2d+T9vjY4Z6E90+Xj6IveHb7mBgJRsjoSsq06Ee0qr2QWGbl0/+xNSUOpO8yzFxpC+t8CfkwwQh8+/fvJhhLHatyLrmiclcUCvso15ZNrCq/2ulGl6yuMquamymR79jZIGu+Og+3y8mE6nIe3bA/oS1uMuv3HKfS6yIYya2jIli7kszKwxsJRSShcMRWZ0djTw8zV5q/K8C29/18/Zm3E65bte0DPjZtNO09Iab4KgrevVB1GVQo7KMMSRaYxToy9dxI9rNb5Vj0hjNXuW3297CsfqKp2yUZYwMrp0NQ4XbSFQinNJFKR7rGTXMmj+LZN1uISmmq3mr29+B2OVNiS2VuB9GoxOtymqrYknto+Kq89JmUngESmoS5k8oL5BtPyfT3qlAozqEMSQFIF5ROXvCNRgTOVc21g16ra2vTqazmF4lKls4eyyvvtnEkTfVht1OAlDiEA0lskW/vDvLKeycSPpe+0wimCerouy0z1diL31iYkA9jxCw3xs4uIJQ0l0J0L8zUZTBdXpFCMZRQhqRAmHWjK7Q/3e2K5aDXVHkynJlKpl4kZW4HH55crbnLYov/T145wH6D4dNVS5nyU4xP7mZ5NFZP9VYqqUyuNB23U1BmsdPJFasug5nyihSKoYQyJEWk0P70kOb+unTM8AxnZkeFW7Dq7z6SUvp9f9LuSW/Fa6Zi8zgF//TpD3FVXU3Cwmu3q6CVSkpv/WvstGhVz+uZ2+bGY0jF3CGkK7GvdiaKoYhSbWVBtvJSMyXSiLLUylbDvC6cNv4mdGXX0Y4+W+9vl4tGV2VUjek0tpwxVbH94LOz+JsFUy3zR2ZNHJl2kc2kklrbeISbn3yT/3ytmft++06Kam3F/EnUT/VlfJ9CYKaGczsc7Dl6tmDyY4ViMKF2JDbJ1ZVh9LNXV7gTAsQ6D37mMrr6wtz323fS3qsvGGZNQwuhPJRYZnT2RTL2GNHRd1k3zB7PuBFl8V7sIys8rGloyakOVsMhv6UhmT1xpOkOILmKcn8Gwc12ZL2hMF9e1YDHGfv9+N/XT+eycSNU/EQxJFCGxAb5ujJ0P/uaBvM4RV8oyidmjMloSP553blW9AIsFVhuAaEs5FnNp3u4ddUORpQ56eg7p5Aqdwl6w+duZMxYN8YzfrypKeF+2WSA3/z465ZVhi+praSudpitKsr9SXINtWAkQlTG+sfoHTL/12/fodLjJCKlip8oznuUa8sGVq4MPenOLlYdEqf4Kjh0siure0licYkykwSUkITv3DCd62bUZnVPoxEBEowIwOuHTuPvCmSUH9vNAG845E9bqn5fWzcNh/x09AYJRhLnVghVVj4Ya6j9ckU9Za5Ul2V3MDJgNcIUiv5E7UhskK5ESja4Xc6UqrlOEWsIdbrbWpZrxT99+kOc7g6m7AgAOvrCXPuhWrxuB2sbj2V9bzNCEcmeox2cOJt5UWxsOZPR3bT5QGYZ818//gZlLidRGas4XO52FVSVlQ96XpG/K5C2OGZ/1whTKPobZUhsYFYO/pvXXpyQX2Enp2BCdTkup4OwYdGJyFTXkF0CwTDbm82f6I0JiddcUsPoYWX8ae9xTvfYy1mxRthSo9k5Z9G0moyfPRSRhCKxOXtdDh774pXMGDc8voCXQh6H8ffD6RB0B0pr96RQFBtlSGxilLH++o3DfPel9+LHzPpmmPnEfVVeQ65Gdowd7uGYIZnQLeDB9fvTXHGOTfvsJTAmZ90nE0sel1RXetLmdehKtUzB9/qpvpTPlY6olIwod8c7P979/E6EEEgp+cFnZw1oHML4+/HOkQ7+9X/2ZuxBo1CcLyhDkgXt3UG2HjiRUsFWNwxWgXg9W7u6wp3RiHz6sgsIRuD6y8dw2fiRCX3hjZgF0z//4QlUuJ08+efDWX2uy8cN45HPXZFSB2zvsbPcvWYnTuEgEI7gcAhu//Xb8cXRmPUNxH9eta2Zax/ZHL+/VfC9qa3TthGBxBpeK59r1Nr7xr6IO59rZNyIsgFRcenorq5ZE0dy3WVjCrJbytQFU6EoBZQhsUly1nU6nA7BK++d4OOXXsCjG/Zn1Q/kxXdifTk2vHsivgCbqZbMONUV5IockiC/MHdyfJEyZnLX1Q5jQV0Ne46e5curGgiEo3E30z0v7OK1e69JUE3phihdYqGRXDL/m/09HD/bR3I7lKgkIaFyoHuH2OlBkwnVD0UxWFCqLRvYKZJopDsQ4V/W7WH+gxuyui4ZXf1kt9Ph9ZePYURZ9s8GAe0p3wxflZcR5W48TnuqtWzKr+eS+X+mJ8hhG8mT2fQOKcUuiKofimIwoQyJDTI9OV9SW5ky1h2MEMxc0NfWe/uqvNRPrk4YT/6LG1Hm5MYrJ7L76Nms3+P76/en7eExobo8pbBkZyBsGkDOpvy6WeZ/Jn7w8n7b4gQ7O55v/W431z6ymbvW7DLtczJQqH4oisGEMiQ2sFoc715yMWu+Oo/Dp7PLJ/nODdO5e8nFts6trnDT1NaZkm+RvD/pDUX4r9cOcqFFrko6MuU7bNlv3gbXbNzMOKQrvz5n8ii8LkfKjseKPi3pz+lI3zMeyJitX8pP/aofimIwoWIkNrDqTXH7NdNsxy+MlHlc3PzRqbR19mWsaNveE6Kl/WTGe+rdA/MhHIma5jv8Yfdx0/Ofa2glHCUlEJyp/LqOXjEgYNbQJAMVbicPfuZy+kIR2s72Jcidddp7Qmnvke6pf6AD26ofimIwoQyJTR5Yejkfmzaal/e2sWR6LYunjwHMkxUBKj1OguEIIZM1srrCzc6WM/SZHUziTE8wq2ZUZrgd8DcLpkBU8svXrBVd4Sj8obGV7/zPXpbOHMvNH50KxGIvG95N3X1sO3iabQdPA7C8fgJfnDs5rrd99mUAACAASURBVFKyKr9uJFM5eoC//ehkJvsqefCl9xIMTigaZf5FPnxVXpraOk0NSaan91J/6rdrkBWKgUZIme8yNbior6+XDQ0NWV+XTkHzpcdfT5D1zptazf2fnk5Hb5C//c/tGHsuOQS4HAK3U9AdzGxI3A4BIrVxU7YM87qy7pA4oszJzm9fB8Csb/8xpYRKMhVuB1FIyaOxkrD6uwLMe3Bj2s+2YeUi6mqHpXzHC+t8/Oq2efHXyfMzzj0d31q7O+WpXymjFIpUhBA7pJT1ZsfUjsQG6SStQEpuyOuH2qn0OKn0lJO8RkYlBCMybXdBI6FknWuO2O3CaKSjL8LTfz7Ep2aOI2Bjvj2h1DyaTBLWdA8yuiunqa0z5Tve0uSnqa2TutphbNx7PMXIdfRF2Lj3eHznaIV66lco8kcZEhvkoqBZt/Mo9VNG4XUKW4twqfLEn5tZu+sY2JAf6+jS4PbuYNqcktb2XsrdrgQjV+FxcNtVF3LDrHHxRX39HvMYzfo9x6mrHcbLe9tMj7+8ty2jIQHrLogKhcIeSrVlg3S+dKtjT2w9yJdXNRAZ5K7DQ6d62N7cTgavVgK9oZg0OJMBNosvRSXc8tHk5EWr7zA2vmS6eZVjq/GhSLZN2RSKbFCGxAbpJK3VlR7MhKjdwZhMVQiB1yUY5nXhdQlsqFZzpsLjxOM0f4MKj4Myt4MV8yfhANM528HrJH4fjxM8Jh9IiNhYpmC2WadFs7pUn5wx1vQ++vji6WNScnkuqa20tRspdQqRLLm28QgLHtrEzY+/kTZfSKHIFeXasomxZ/iiaTXUT421em1t76XK67KMQZS5nDz2xSsYUe6hozfI7b9+O9GV43Zw28IL8bocpsqjbLjtqqksmlaT0nsd4OGbZjH/Ih+PbtifhVA5lZkTq/nZzXPwVXm5Y3GsAvK3f7+HLkPF2zKXk9b2XmZNHJlRwmqnp3t1pQenQxAxxIucDkF1pSf+ev3Kq9m493iKqq6YFLsOViFKpKj+8or+oKiGRAhRBmwGvNp7rZFS/osQYirwLOADdgBfklIGhRBeYBUwB/ADn5NSNmv3uh+4FYgA35BSrtfGrwMeBZzA41LK7xXjsxhb7f5iy0G+uuhCpIRZE0akLV8SikYZN6Kc7mCEcSNSXTl9oShbmk6y6CKfxR3sc8OscZbupL5QxDRmYSRd10Wdqwzz9FV5+filF/DPaxM7O4aiUULhCGsaWlgxbwoXj65i7a5jcUlx8gKcqS5Va3svFW5nkgF2puS8LJ4+pt92IWaLfCGD9tnULEuHmcRa9UdRFJpi70gCwDVSyi4hhBvYKoR4Cfgm8IiU8lkhxM+IGYifav9vl1LWCSE+DzwEfE4IMR34PDADGAdsEELoqeGPAZ8AWoHtQoh1Usq9FBCzp7pHN54r0zGizEmfRe7bhydXc/1PtsZLioukmEkUePuDDt7+oCOvOc6ZNCJeYdiM2RNHZiyvYSea8/jWZn66+WBc4qu7p+5esyu+a/jw5GrTXdH25na+//K+BIWVnafsQjUWKxRWi3whZcSFSpYste9OcX5S1BiJjKH3kHVrfyRwDbBGG38KuFH7ean2Gu34YhFzuC8FnpVSBqSUh4Am4CPanyYp5UEpZZDYLmdpoT+HWatdI+nyK7Y0+ekLRekMhOkLRVPa1xaKHR90cNeaXdy6akdKvEB3J/UF821qRfxzGMupSP2/MibnTVcqP/m7WrXtAzbuPZ42DqD3cTHy4cnVA/ZEbafeVb6lVgqVLGk3DqVQ5EPGHYkQopM0D6tSyuEZrncSc1/VEds9vA+ckVLqq1oroGevjQdatPuGhRAdxNxf4wHjI67xmpak8bkmc/gK8BWASZOyKxII1tnrpYpVc6pcCjpaEYnKePXfWJkTSczrmD23rtoR/9nsST5THkl/Y3cxz6fUSiFLpNiJQykU+ZBxRyKlHKYZi0eB+4gt4BOAe4Ef2bg+IqWcrV3zEeDSvGacA1LKX0gp66WU9aNHj876ev2pzusSeJxFmGCR0Z+O5184qmD31JtMZdqtZcuqbR/wh51HE2SqpVYJ127V4nxLrTyw9HI2rFzED5bNZMPKRXm5yvSGW8qIKIpBNjGSG6SUswyvfyqE2Al8y87FUsozQohXgPnASCGES9uVTAB0PeIRYCLQKoRwASOIBd31cR3jNVbjBSW2JdPlu5ndU8O8LkLRKPWTqxMq9zpIrdybKx5nbD59NtxljS1nmFbgp/d3jp7lL2eNS9mtJSusjLiFeXdHIyufexunM+aCWVBXQ5nb3HqnW6iLrahKzohf9XpzUQosqmRJxWAgG0PSLYT4IrE4hAT+GrBu8A0IIUYDIc2IlBMLij8EvAIs0+51C7BWu2Sd9nqbdnyTlFIKIdYB/y2E+CGxYPs04E1iQqNpmgrsCLGA/Bey+Ey2yKVK7YOfuYxLxwzn+p9sTRgvpIPs4Zsu59X9p/hd49GM5/YFY0mCZsqsG2eP40O1VbZ7wOuc6QnGd2v3aIo2M+MpiNUXA3slX0LRWED4m6sbcTpiJeaT552uL3x/dRY0LvKq1IpiKJONIfkCMffWo8T+Tb9G5kV7LPCUFidxAKullH8QQuwFnhVCfAd4G3hCO/8J4FdCiCbgNDHDgJRyjxBiNbAXCAO3SykjAEKIrwPricl/n5RS7sniM9nCTpXaZPpCUbqDkayvS8brFESkxMyG3bl6l+37bD98hnkX1ZjupX7XeJTf5TC3bi14b/TBh8KRFMWWJLeaYeEohKPRuAH3OOGfPv0hrqobbdoXfsW8Kazfc9xUUfWxaaNp7wkVdZFXuwfFUMW2IdHyObJSREkpdwFXmIwfJBYvSR7vAz5rca9/A/7NZPxF4MVs5pUtuQTbp/gqChKkv2JSNWNHlPFbG7uOdIwsc1nWrErHj5bPZMO7J0x7kswYO5ydLWfiAVxflZc1DS0mdykMXpeLKybF4jyZ5LfJZAro54K/K6AC2AoFWRgSIcTDwHeAXuCPwExgpZTy6SLNrWTwVXkZWe7ieCho63wBuF3OuGw1nRw2E68fOp3ztUbcbic9Wcp/9S6E/m7z+kx3rdlFuTsWC9LzSgrRy8PtEDgcsbpbxhLzfaEwf9h1xHY3RStySexLxpigavz8CsVQJJt/kUuklGeB64FmYnLeu4sxqVJj497jHD9rz4hAzJVT6XGaylYHil2t7Zzq7MvqmkhUcufqXWw72G56PBxNzSsxUzQ5REx8YFUHLJkHls7gz/ct5t8/OwuPU+B1xX5NQ1H45ZZmHnv1YFafw4x8FF/GBFWzvJpsKUQ9LYViIMkmRqKf+xfA81LKDr043/mOVZlyK8rcDrqDEQ6U0MLwZvMZ3mwunlxWanklvipvSuC5utJDa3svb3/Qzrd/n77owMI6H389dzIADc2ntb4thU/inJJDb3udQpYd6S9hgEJRTLIxJH8QQrxHzLX1D5oiK7tH3EHKkum1PNfQmtU1E6rLqRyMSSc5EohIVq5+m89dOYGvfnxawjE9fmL1ffxo+UwOnupJKIZpVoakULidArcr97+bQpUdKVQ9LYVioMkm2H6fFifpkFJGhBDdFKEcSSmilym3yhgfUeZMKP0xedS54HNydnIp4nXCkulj+L1JQD0bDp7s4cH1+3lofWKFYf0p2ypb+8YrJ6bcK99kQ4eASo+LYCSSEmtxOkRetabMJM+5lB0pVD0thWKgySbYvsLws/HQqkJOqFRZv/Jqfv7KAX636xg3zhzL4uljaGw5g8uRKsPd19ZNwyE/9VN9CeXnD5/sYm2ei3UxCETgpRwUXVYk69SMT9lzJo/i2TdbEEIgpaR+8ijT8u/5Bu2jEv7+Y1P55Iyx7D12Nu9FP5lClB2xKrBpNa5QlCrZuLY+bPi5DFgMvMUQMSQ3P/56PMnu3WOdbH3fz69um8cPX95nev7mA6eon+pLUPd05dA3vb/IItcyJ9btPMoNs8Zx7wu7EuIe33i2MX7Ocw2tXFJbyfqVVxfkPR/ZcID/eOV9Hr5pJq/de03BpbqZyt9nor3HvGS01bhCUarYVm1JKf8/w58vA1cCVcWbWunQcMifkKkNsaKBDYf8LJpWY3rNomk1KeqegWy6O2v8cGoqBi5m87NX3+dTj25GZkhM3NfWzca9xwtSRyscJa6oAkqu1lShKvwqFANNPoL8bmBqoSZSymw+cMpyvH6qj4V1iU2prpw0gmZ/D9ve9xe0oGE+LJkxho9dOnA9zINRSSgaC8pn4pntLXmpqpLRFVU6pdK/PF0LZ4ViMJFNjOT3nNNhOoDpwOpiTKrUmDVhhOn4sDIX/q4Av7ptHg2H/Gw+cIr9bWf5454TvPVB7Cm4VATSxzp66eyxzoVxO2J5GqXAln0n2Np0ioV1voLk4RgVVaWWSKhqdCnOB4SU9hwuQoiPGV6GgcNSyuw0sSVAfX29bGhoyOqazftPsuLJN1PGy91OJDK+GDW1dSbUf9LxOGPlPXqCYWw8kA8ITgdESsSQ6JS5HTz9dx+h2d8Td/c0tpzh0KkuW0mJLkdMofX9ZbO4YfZ4/F0BFjy0iT6DxSxzO3jt3mtKyuWlUJQiQogdUsp6s2PZyH//X4Y32SalnJ/t5AYH5qt/bygm+b3nhV2MG1HG8zvM7eptCy/E5XDQ0RPkqSLlRuRLqRkRHbfLybL6mDzY3xVgWu0wWtt7bF3rFAJ9T+jvCvDKeye0McP9h2j/8mKX2VcMLQrZs72sgPcqKWaMG4HbKRJyEYyEI1HTHuU6/7cAJT2GIn2haDyJ0eiS0g14JgKaOkwvR+92CrqDidcWsn/5YFmcVTa9otAUMhJcok6b/PFVefn3z87C63JQ7k79yoopnXVQ2L+kwYRXW/iT1W/hLEvSh6MQCEfpCpwzIpUeZ0H7l3/rd7u59pHN3LVmF9c+splvrd2d9z2LgVU2fSHqfKmaYUOXQu5IzmuMCWjvHO3ggd/vwSkcBEKRHDuV2+PKySP5m49O5evPvF3Ed7HP5eOGM2vCcJ5+s/jhMaFloJvWtkqzQ8xEpdfJ//nLGXz80gsKYkQGU6mTYmXTq13O0KaQhqRUBEpFQ09Aa/Z3IyWEZbTo2zCPUzC8vHTs/e6jZ9l99GxR38PtAIcjcbdg1s73mdvm0uzvoe1sL99/+YDt+0eismBGBAZXqZNi5K4MJkOqKA5ZeU2EEJOFENdqP5cLIYy/JV8q6MxKEH9XgM37T7LyuUaCEUkwIgvaOteMo2f6OD3A+Q79TUhzRTUcPh1vHvW/r5+OxylwOwQep+Dhm2YydXQV02qHMXeqL/NNDXx4cnVBg+uDKbGwGLkr6QypYmiQjfz3y8BXgFFSyouEENOAn0kpFxdzgoUmF/kvnAv2yqi0lVQ31HFpgql840exfiROOpPKy4wd7uF0TwincBCORghHY/W17LJh5aKCPi1/a+3ulGKUpezaKaQwwEr2XujvWDGwFET+C9xOrD3uGwBSygNCiAsKML+SxxjsteJrV1/IhTVVfHvdO3QFS1RL24+EC9RGJLbzS61RdizeaCy3CFWh3U6DLbGwkP3lrao6l/p3oCgc2RiSgJQyqFf+FUK4OI+VWkbMgr3JfOaKCbz+/illRAYJxXA7FXJxHmwMNkOqKCzZGJL/J4T4J6BcCPEJ4GvA74szrdJiQnU5vSHryr2X1FYC8Phrzf00I0U+jB3usVzo9JhMIasEDxWGsiEd6mRjSO4DbgV2A18FXgQeL8akSpHYTsx8A7avrdvUR6zIH7cDXE4HvQUsBHbsbDDeL8ZIqdXhUigGC9kYknLgSSnlLwGEEE5tzF69ikFMa3svZS4nIRNfvaK43HntNI51BHj6jexLy3idMYNgFoRfv/d4giExxsF0F6Ze+kav9aWethUKc7IxJBuBa4Eu7XU58DLw0UJPqtQw69Gt6B9+vOl9Ijl+9/++fBbHOnr5txffSznmcTrwdwXi7iuzOFgonFj6ptSVWArFQJFNHkmZlFI3Img/F65pRAnjq/IibMqkFVDuss5NzeYXzukQBMLRnCXE4UiEz1w5wfTYU9sOs+ChTaxrPAKYPywkq7wLVUpEoTjfyObfdbcQ4kr9hRBiDtCb5vzzhqf/fIjesDIkdpFC8J0bpjP/wlEpx7KxCSJPUeAfdh/HV+Xlx5+fHYu1GH7buwKRePdEfWfy8E0zKXM7GOZ1JZxrRCXZKRSpZOPauhN4XghxlFg5lDHA54oyqxLj2YaWgZ7CoMLtcHD5xGrKPC62HTyd833yTWYcXeWhqa0zXiftlfdO8O3f70ko3uh2ONhz9Cwjyt0sqKuJ93YPhSOmFZ1LMVtdoRhosulHsl0IcSlwiTa0T0oZKs60Sosxw728c1S5NOwSikYJhSO0ne0b0Hk8s72VZ7a3smL+JO5YfDEXDPcSSmq80hsK8+VVDXicqUotlWSnUNgjY4kUIcQ1UspNQojPmB2XUv6mKDMrErmUSPn+H9+11ZFvqON1OhAOqJ9czVaLFrluAaEB8BJ6XQ48Tgd94QhSSsrdLoKRCFFJQhXh5I6Jg6XHiEJRbPItkfIxYBPwlybHJDCoDEkufGisec92RSJfmDuRq+pquHXVDstzBsKIQKwIZEDzlXldDh774pWA5PZfv50g607umKiS7BSKzGQ0JFLKfxFCOICXpJSr+2FOJcf8i3w4HYJIlg2VhhrPvNnCr0q0lbCRcCTKiHK3qVKrkB0TFYqhgi3VlpQyCtyT7c2FEBOFEK8IIfYKIfYIIe7QxkcJIf4khDig/b9aGxdCiB8LIZqEELuSVGK3aOcfEELcYhifI4TYrV3zYyFEwfui+Kq8PLJ8Fi4HOM77riu50xeOZt29MFsE4MrzLyEi4VRnX4pSq8zt4JufuJhX3juhZL4KRRZko9raIIS4C3gO6NYHpZTpZDlh4B+llG9pvUt2CCH+BPwNsFFK+T0hxH3Eyq/cC3wKmKb9mQv8FJgrhBgF/AtQT8ydtkMIsU5K2a6d82ViVYlfBK4DXsric9niJ68cKGpLXYU9JBTEWO1s7WDx9DEJnS9//cZhvmtIXswnAVHFVhRDiWwMyeeI/Tv+WtL4hVYXSCmPAce0nzuFEO8C44GlwNXaaU8BrxIzJEuBVTKmAHhdCDFSCDFWO/dPutHSjNF1QohXgeFSyte18VXAjRTYkGzce5z9bd2ZT1QUhHK3E4nkw5Or2WIRtM+XC2vO5dL6qry0dwdZ3ZDYPjjXLn+FbDurDJJiMJCNIZlOzIhcRcygbAF+ZvdiIcQU4ApiO4dazcgAHAdqtZ/HA8akjVZtLN14q8l48nt/hVhTLiZNmpR8OCMv723L+hpF7twwayz3XHcpviovTW2d3P3CTt7+oCPjdbrbK2Rjx5K8uyxUu9xc2s5aVRxWfdAVg4VsMtufAj4E/Bj4D2KG5Sk7FwohqoAXgDullAkNv7XdR1Ed61LKX0gp66WU9aNHj876+svHDS/CrBRW1FR5aO8Oxl+PrrRXzn35nPEs/pC9v9/qCnfC60K1y8227ezaxiMseGgTNz/+RkLJFiuDpGI3ilIkmx3JZVLK6YbXrwgh9ma6SAjhJmZEfm3IOWkTQoyVUh7TXFcntPEjwETD5RO0sSOcc4Xp469q4xNMzi8oZZ5sviZFvjz26kEee/UgF9dWZuVSfG6H/b/69p7EXNpCdfnLxiBZVRxeUFdTsB2SQtEfZLMjeUsIMU9/IYSYC6TN7NMUVE8A70opf2g4tA7QlVe3AGsN4ys09dY8oENzga0HlgghqjWF1xJgvXbsrBBinvZeKwz3KhhTfEOiNuWA8enLLjDd9eUbl7r96gt5YsUc02NmC/sDSy9nw8pF/GDZTDasXJTRjeTvCrCz5Qz+rkB8TDdIRqwMkl5x2Iiex1KoHZJC0R9k86g9B/izEEJ/ZJsE7BNC7CbmoZppcs0C4EvAbiFEozb2T8D3gNVCiFuBw8By7diLwKeBJmJ9Tv6W2M1PCyH+FdiunfeAQS32NeC/iJW1f4kiKLbcLidup0jIgFYUjhffOZH5pBzYcfgMf3XFBC6prWSfwShdUltp+VRvNwExXRMsu21n0+Wx+Kq8qkSLYtCQsURK/EQhJqc7LqU8XJAZFZlcSqT4uwJ8+N82mDZIUgxONqxclPOi7O8KsOChTfQZujYml1axy7rGI9yTpivjxr3HeXlvG0um17J4+pic5qtQFIJ8S6QAg8dQFIP27qAyIucZ+cQaWtt7kUm/EDIqE0qr2MWYx5JOtfVcQ6tSbSlKlmxiJEOW9XuOD/QUFAXGKtbQ1NbJmoaWtOqoSo+TQJKbMxCRVHqcOc3FV+Vl1sSRCUZEqbYUgwklR7KF2o6cT1jFGuzmbXQHI5S5HSmure5gJOXcXFGqLcVgQhkSG4woc2c+SVGyXFJbyWNfmJM2+G21A/jYtNG094Ti1/m7AnT0hjALLRay2KNSbSkGE8qQ2GDr+8Up06HoH3TF1rL6iZbnbG06ZTpuLIm/sM7H9sPtuB0OItEobqegzOWMB8mzjY+ko1B5LQpFf6AMiQ3K3CqUVOpkSl7c2nSK7mAkJaCtU1Plyfgeet0vPXnQ64LHvngFM8aNKKgR0bErI1YoBhplSGxQ7s4tiKooLn/30clMHzeCKb4Kbn7yzbTnfvfFd/Eadg9GiS3A/ItqcAiyUud5nE5GlHuKYkR0VGMtxWBAPWrbwOlQX1MpUu5xMq12GD2haIocN5lgRNIZCNMXinL3mp1s3n8iISPdV+VlwUW+rN4/uQmWMdO94ZCfH768j4ZDyi2qOP+xnZB4vpBLQmLDIT/Lfv56kWakyBW92m80KslWL1XhcRKVMr47aWrr5NpHNqe9xhgjSd7ZGDPduwLhBJ3fwjofv7ptnvlNFYpBQkESEhWKUkOCrZLxZvRoUt1MRRJvv3oqToeTRdNqqJ/qMy35blZ80ciWJj8Nh/zUT81ux6NQDBaUz8YGmw+YK3oUpY3XCV5X+l/xTEUSf7nlEP/5WjM3P/km6xqPmCYPmhVfTEb9DinOZ5QhsYGQqsfuYOSz9ZO4/1OXpj1Hj3OYVe0VQDBCPLZyzwu7EuIqOmbFF5O5sKYiY8a8QjFYUa4tG7x52NztoShtpvgquKquJu05H55cHd9dGOW2ZW4n9/9mN52BcPxcffeSrNLyVXl5+KaZ8eKLyTGSMcM93Ll6V/x1f9XMsuq8qFAUGmVIbNB8qmugp6DIgfdPdnHbootSEvuMbGny09TWGZfY6nJbf1fAssS7GcnFFw+d7GLzgVNcWFORYEQg917w2ZCuzL1CUWiUa8sGJ7uCmU9SlBzHz/YBsZ3Gmq/O49oPXWB6nlmgXd9llLkdDPO6KHM7UrLXkws8GuMn9VN9fHPJJSm94dO9Z6EwBv8zueUUikKgdiQ2GFnm4lRPOPOJipJi2gWxJ3796Txqsar7O/tMx+2WeAdrd9VA1MzSg/9GBZmVW65UaGrrVBn8gxi1I7HBqBL9x6dITzgSTXg6D1oohbd/YL07yLfEezatdwtFus6Lpci3frebax/ZzF1rdnHtI5v51trdAz0lRZYoQ2KDmkplSAYjB0922ZLmzhhTlVUWeroS72Zk2ws+X+y45UoF1Xfl/EC5tmxw6dhh/PnQ6cwnKkqKk51BKj1O+sLp894ffeUgAD/e1GQrCz0Xd1V/18xK55YrJUqx74pSu2WPMiQ2GFmh+pEMRva1dfIX/7GVcMR+9rudLPTBUuLdV+Ut+YWw1PquKLVbbihDYoOzfYXrfKfoP8ISwlayqTRsPnDK0pDoQeEV86aoEu8FoJSMslmpG72ETqkb5IFGGRIbTBlVmkFKRXGYNWFE/GejmmjVtua0Sq1slEf9rVIqZXdNqfRdGYxqt1JBGRIbNLZ2DPQUFP2EAGqGlQGpEt9kjImFduXAZvctdqb7YHDXlELflcGmdisllGrLBic7VSLXYMTtAKfI7hqv28GE6nJTNZEZjS1nslIe9bdKSSUn2mcwqd1KDbUjsUHNsMxtWBWlRxRwOgTRiCRduN3tALfTSURG+eYnLuaV907QdtY8STGZtrN9rN9zzPSYmfKov1VKre29hCOJT9nhSFS5aywYLGq3UkMZEhuMKleqrcFIJAqRtCYkhsPhAAHhMHz3xfeyeo/vv7zf8phReaTHRKyq2k/xVWT1vnYJhSMpZVrC0di4wpzBoHYrNZQhsUFDmsxnxeAnYFPZtWL+JFbMm8L6PcfTGhD9XH2HkRwTSe4N73YK3C5n9hO3QbO/x3JcNdpSFAplSGzQFwgN9BQUJUJd7TBL99TdSy6mdnhZgvLILCaS3NTR6RBFC+iWWp6G4vxEBdttcLxLGZLBSIXbQZnbwYr5kyhzO3A7soy8J7Fq2wds3HuctrO9psc/OWMMy+onJsQ6rIyO2yn6JaA7ELW+FKVJcrXqQqJ2JDaQUVX5dzCyZMYYvv7xOupqh3HH4ov5zVut/JtJDMTtFDgdgr5QZhfXrat2mI6vmD+J6koPO1vOJARprZ78n7ltLm6XkwnV5bR3B1nT0FK0HIr+ytNQFXxLl2JLzotqSIQQTwLXAyeklJdpY6OA54ApQDOwXErZLoQQwKPAp4Ee4G+klG9p19wC/LN22+9IKZ/SxucA/wWUAy8Cd0gp7dfDsElHX8FvqegHXtx1lD/uOc7DN81kQV0N1RXW6jsHIiV2YYe7l1zMJ2eMYc+xsyx4aFNKroZV5rYenyjmP/Dkhb2Yi3t/58Yo7GMlOS9kc7Vi70j+C/gJsMowdh+wUUr5PSHEfdrre4FPAdO0P3OBnwJzNcPzL0A9IIEdQoh1Usp27ZwvA28QMyTXAS8V+kP4KlQ/ksFIMApEo3xzdSNOh8NSMRWKSEKRmIrJ63Jw/6cu5aq6Gla93mzZWVGndngZ1ZWetKU1rHYExfwHQ/BJSAAAFMFJREFU3p8Le38sVIrc6Q/JeVFjJFLKzUBy2dylwFPaz08BNxrGV8kYrwMjhRBjgU8Cf5JSntaMx5+A67Rjw6WUr2u7kFWGexWUyTVVxbitop8IR2PKrO5gZteVx+ngiknV1NUOSyj//sSKOabnz5440rRUvV5aQ6eudlhK/GT9nuOm97Qat0t/Jz1mW1Zf0b/0h+BiIILttVJKPYPrOFCr/TweaDGc16qNpRtvNRlPQQjxFSFEgxCi4eTJk1lPOBxRmvuhQjASpaM3FM/81g3A4uljLIPWpVZao78XdqUMK236Q3AxoKotbSdR9ACElPIXUsp6KWX96NGjs77+gGqyMyipcDvxugTuNHVSFtb54iUx3E5BJBrl9l+/xYKHNrGu8UjiyUm/qX2hCDu1xTmX0hqfnDEmq/FkrFQ4/b2wK2VY6VPs5moDodpqE0KMlVIe09xTJ7TxI8BEw3kTtLEjwNVJ469q4xNMzi84vSo8Mih5eNlM5l/k485n32ZLk3n3w+2H2/nD16/iaEcvX17VQCACnYHYX/g9L+xi3Igymv09VFe4U9xFqxuO8D+7jhORkodvmslr916TVWmNfEqop4uBDERp9lKp4KuwppiCi4EwJOuAW4Dvaf9faxj/uhDiWWLB9g7N2KwHviuEqNbOWwLcL6U8LYQ4K4SYRyzYvgL4j2JMWNAP2yZFwXn94CnK3Q5LIwKxWEZ3MMKIcg8ep5NA+NxTQzgSZdnPX0/7Ht3BmNvznhd28b2/uoxtB0+zZHoti6fb21U8sPRyPjZtNC/vbbN9nZ3g9kAs7KVQwVcxMBRb/vsMsd1EjRCilZj66nvAaiHErcBhYLl2+ovEpL9NxOS/fwugGYx/BbZr5z0gpdQD+F/jnPz3JYqg2ALIvjWSohR4+o0Wnn6jJe05vaFwPJbRG0rcembTE6svFOXO1bsAeK6hlUtqK1m/8ur4cascC+PO4rmGVlvqKrsqHLWwK/qLohoSKeVfWxxabHKuBG63uM+TwJMm4w3AZfnMUTG0iaUvGX8uzN5zX1s3G/ceZ/H0MZZuqFxlsyq4rSg1VIkUG1S68yutoShdylxOWtt7aW3vpcxG4cQ7Pn4h40faK2fy8t62tFLcXNVVpRTc9ncF2NlyRvU3GeKoEik2cDkFhFSU5HwkFI1S6XFytKOPYFLfDqdDEDGkuo8oc/LoKwdt33v+haPSGot8dhZmMZD+LlEyGDovKvoHZUhs0NGnoiTnG8O8LkLRKMvnTOD6n2yNLYZJhqRudAX72rrjrzv6sssnmjp6GJUe812Ovtjno64yxkD6u0SJsfOiWTa/YmihDIliSPL3H5vK3Kk+bn7yzYTF0IjRiGQiObpSprXs9VV5uaS2MuFel9RWFlRdNRAlSvRsfuP3pmfzK0My9FCGRDGocDkEUSmzLq6YzI83vY/kfUSeNT7/9qOT+eLcyew9dpa71+yKu8P0hMSmts4Ug7SvrZumts74Ip9OXeXvCmTMTenv9r1AyWXzKwYWFWxXDCqEAFGAcFUgHCUYjhKI5HezL86dTF3tMG03IrVtybl75lOuZG3jERY8tImbH3/DPNNew6pNb7Ha90KsHW0u2fyK8xO1I1EMKkJ5LvzJlLkdRKMSl9NBTzAxBmKnrPzWplPx6r+BsATOJSguqKvJOaCeTQzC7XLiFGD8apyCorXv1blh9ngW1NVklc2vOD9RhkQx5HnxGwvPlUgJn1uNPS4HT//dR2j293CmJ8h3TJpi1VR50sYLJlSXpxgkh4DqSuveKBCLQYSTgv/hSNQ0BjGhuhy3y0HE0JjL7XL0i5vJV+VVBkShXFuKoYcAKjxOvK6YOwbgxNkA/7jkErwuES/2+PBNM6mf6mNZ/UT+6soJJHfqdQiYf1FN2nhBa3svlZ7E57VKjyuhxLwZoXAkJbM+HI2NJ6PcTIqBRu1IFEMOCTGpr5Ssbmhhq6EWl0OA0w3IRKvhq/Lyo8/N5q7ndyKEQErJDz47K75Y10+uTrjPhydXx4/lEpRu9vdYjuvdFY2YuZlU61tFf6EMiWJIosdatiYVdIxK4rGS5JiEVUygqa0z5T5bmvxxZdbDN83knqTEvUy7hVxiK0Y3k2p9q+hPlCFRKCxwOxxse99PXygSf6o3Lta6NPftD9pNr9flt5mC0tnsHA77uzOeq1rfKvobZUgUCgt6QhG+/szb8dfGp3pjeZCASdwCEncPyUFp3Qj9+o3DrG441+hTfw8refCtq3aYzsfIQOSVDAaUq694KEOiUCRR4XEQ0fq8G9Gf6nW5r1Gam6zMSi51YlzE9hw7y70v7MIpSOkjr7+HnXpbVrsMVR04FeXqKy7KkCiGNO6kepzL6yfwxbmTefuDdr79+70p529tOkWV14VTJAbjKz0uHvzMZfSFoml7jkDm/JTGljMsq5+YUofL6txkQzIQHRJLGeXqKz7KkCiGNCEZKw1/vDPIkum1TPZV0thyhokWqqoHX3oPt1PEOyPG7xONMv+i1GRBs0UsU5KjvnMw1uGqrnAnuLWSz01Gtb49h3L1FR9lSBRDHr00/HOGWIUVgXCUgKGRYqXHGe/ZbqbE2tp0Kqu5JO8cjHW4st1l5Noh8XyLJShXX/FRhkShyJFKr5P/85cz+PilF1jKeWssxl0OKHfHStl/8xMXM6rCE1+4jYUa27uD8UU9n12GneKPcH7GEpSrr/goQ6JQ5EgkKtMaEYD5F/lSGmQ5HYI/3rGQ7mAkZWE3qsF6QpGE6/RFPdsF0G4DqvM5lqBcfcVFlUhRKLLA68quDImvyssjy2fhdTnifx5ZPou62mHMmjgyRRKsq8E6A+EEIwLnWvRmQ/I9+0JR7nlhl2lr3HwqFQ8G6mqHsax+YkYjotoHZ4/akSgUNlkxfxJ3LL4462q3dqvkmhV/TCbbAHE2DahULEG1D84VZUgUCgtWzJ9k6g7JpRiinSq5ZsUfk8l2Uc+mAdVQjyWo9sG5owyJQpHEzXMncePscfHiiHYXUrsBbSv0Kr73pImRZLuoJ98zU62voRxLUO2Dc0cZEoUiid+8dYQ1b7Vm5dYolEsk2Q1mVG1lu6jrhm1BXQ2v3XuNbSOXb+vfwYpqH5w7ypAoFEn0hM5V/x03ooxmf0/ahbzQLhGjG8xX5c1pV1AMX//5Hj/IdvemOIcyJAqFBcFwlGU/fz3+2iqnYqBcIlaJg8Xw9Q+V+IFqH5wbypAoFBYklzKxyqkYCJdIusTBYhi2oRQ/UO2Ds0flkSjOWxyA1yW4qi61o6CRHy2fybUfusDWPc1yKvq71a1V4qCeY5KtYbOTN6HiB4p0qB2J4rxl7Agvd3/yEu5cvSvteQdOdDK6ymPrnlby2/50iWQqQqgbtrueb0TgQGLt67cb91DxA0U6lCFRnLcc6QhkNCIAj716qB9mUzjsJA42NJ8mVqA4totoOHw6xUBkG/dQ8QOFFcq1pVBkgdVuYG3jERY8tImbH3+DBQ9tYl3jkaLNQU8cNGLMMcnk+tLR4x5G9LiHFb4qb0ppF4XivNiRCCGuAx4FnMDjUsrvDfCUFCWMADwuB+FolEj6RPIUzHYDA6FoSpc4aLf/hop7KArFoDckQggn8BjwCaAV2C6EWCelTG1vpxiyPLFiDu09IWZPHEl1pYfW9l5C4UiCvFfn5rkTuXH2eNbtOmqrXMhAKZqsEgft1sxScQ9FoRj0hgT4CNAkpTwIIIR4FlgKKEMyyFlY5+ONQ/54wPgfrq5DShg7oozvvvgencYOU2lYMX8Si6ePSRjTF0uz2lK6jLZ+qs9WuZBSe7LPpmaWinsoCoGQMkPfzxJHCLEMuE5KeZv2+kvAXCnl1w3nfAX4CsCkSZPmHD58OKv3mHLf/xRuwkMIof35wtxJHD/bx/WXj+GFt46wpcmf9rq7l1zMJ2eMSWnypC9y/q4ACx7aRF/o3OKd3Af9hlljWTRttK3SIoXoCLiu8UjKk/1AZ32fb50OFQOLEGKHlLLe9NhQMCRG6uvrZUNDQ1bv8bu3WmypfwYDY4d7OHY2aHpsYZ2PyaPKeWlPG5+aUcvh070Ji/7FF1QyyVfJ9ZeP4cYrJ/L0nw+xdtcxHEjeaD7nl89Ubr3hkJ/NB06xaFqNqfvITkc+s4V7+tjhA7pwns91qBSK892QzAe+LaX8pPb6fgAp5YNm5+diSADmf/dPlguwA9J0kEjELSBk8ZWnu0/z9/6Cz/7fLbzVcpYrJw7n+a8tZNH3NvDBmQCTRnqpHe5NOPbPv9kZNwh/s+DChAXWuJAD8Z/1ardGjOeaHdfJ5+k312vVwq1Q9B/nuyFxAfuBxcARYDvwBSnlHrPzczUkENuZ/GH3ca6/fAx7jnTwh3eOc/1lY/hff3lZwnnJi+/PXznA73Yd48aZY/nqx6clLICHTnYlnKs/5S+dOZabPzo1p3kqFApFoTmvDQmAEOLTwI+IyX+flFL+m9W5+RgShUKhGKqkMyTng2oLKeWLwIsDPQ+FQqEYiqjMdoVCoVDkhTIkCoVCocgLZUgUCoVCkRfKkCgUCoUiL84L1VY2CCFOAtmkttcAp4o0nfMB9f1Yo76b9KjvJz2l9v1MllKONjsw5AxJtgghGqwkbwr1/aRDfTfpUd9PegbT96NcWwqFQqHIC2VIFAqFQpEXypBk5hcDPYESR30/1qjvJj3q+0nPoPl+VIxEoVAoFHmhdiQKhUKhyAtlSBQKhUKRF8qQpEEIcZ0QYp8QokkIcd9Az2cgEUJMFEK8IoTYK4TYI4S4QxsfJYT4kxDigPb/6oGe60AihHAKId4WQvxBez1VCPGG9jv0nBDCM9BzHAiEECOFEGuEEO8JId4VQsxXvzvnEEKs1P5dvSOEeEYIUTaYfneUIbFACOEEHgM+BUwH/loIMX1gZzWghIF/lFJOB+YBt2vfx33ARinlNGCj9noocwfwruH1Q8AjUso6oB24dUBmNfA8CvxRSnkpMIvYd6R+dwAhxHjgG0C9lPIyYu0wPs8g+t1RhsSajwBNUsqDUsog8CywdIDnNGBIKY9JKd/Sfu4kthCMJ/adPKWd9hRw48DMcOARQkwA/gJ4XHstgGuANdopQ/L7EUKMABYBTwBIKYNSyjOo3x0jLqBca9RXARxjEP3uKENizXigxfC6VRsb8gghpgBXAG8AtVLKY9qh40DtAE2rFPgRcA/nOib7gDNSyrD2eqj+Dk0FTgL/qbn9HhdCVKJ+dwCQUh4BfgB8QMyAdAA7GES/O8qQKLJCCFEFvADcKaU8azwmY1ryIaknF0JcD5yQUu4Y6LmUIC7gSuCnUsorgG6S3FhD/HenmtjubCowDqgErhvQSWWJMiTWHAEmGl5P0MaGLEIINzEj8msp5W+04TYhxFjt+FjgxEDNb4BZANwghGgm5ga9hlhcYKTmroCh+zvUCrRKKd/QXq8hZljU706Ma4FDUsqTUsoQ8Btiv0+D5ndHGRJrtgPTNOWEh1jwa90Az2nA0Pz9TwDvSil/aDi0DrhF+/kWYG1/z+3/b+/uQqyqwjCO/x+tMA0LsRsJEy3qomLMygKtICooKctMxAqTkgKDkChTCKIPMoMu6iIqRCgRLDAsoaz8vCnL1JRAixSDPggCSUPx4+lirZPTNM14POXozPODgZnFWnu/57Bn3r3WPvOuk4HtJ22fZ3sE5VpZZXsasBq4q3brk++P7Z+BHyRdVJtuAL4h107DbuBqSQPr71nj/Tllrp38Z3sXJN1CWffuDyy0/VwPh9RjJI0D1gNbOfoMYC7lOclSYDilPP/dtn/rkSBPEpKuBx6zPUHSSMoMZQiwCbjH9oGejK8nSGqjfAjhDOB74H7KjWyuHUDS08AUyqcjNwEPUJ6JnBLXThJJRES0JEtbERHRkiSSiIhoSRJJRES0JIkkIiJakkQSEREtSSKJiIiWJJFENEnSGklXnMDzLaglxhc0OW66pFebHDO3uegiSg2ciDhBJJ3WrhDfsZoJDLF9+P+IqYO5wPMn4DzRi2RGEr2WpBF1E6U36h39Sklntp9RSBpa62M17uDfq5ss7ZI0S9LsWrH2M0lD2h3+Xkmb60ZEV9XxgyQtlLShjrm93XGXS1pF2Xejs1hVZx7bJG2VNKW2LwfOAjY22joZu0jSa5K+lLSjFpBsGCbpw7p51Ivtxkyt59kmaX5te4FSynyzpMW1bXbts03So+1e5wpJW2p7p3FF35EZSfR2FwJTbT8oaSkwqZv+l1BK5A8AvgOesD1a0svAfZSSOQADbbdJuhZYWMfNo9TYmiHpHGCDpE9q/8uBy7ooAXIn0EbZ9Gko8IWkdbZvk7TXdls3cY+g7KEzClgt6YLa3lZfzwFgu6RXgMOUTZPGUDZMWilpou05kmY1ziVpDKWUyVhAwOeS1gIjgR9t31r7nd1NbNHLZUYSvd1O25vr9xspf3C7str277Z/pewL8X5t39ph7BIA2+uAwTVx3ATMkbQZWENJRsNr/4+7qSM1Dlhi+7DtX4C1wJXdv7y/LLV9xPa3lFpWF9f2T23vsb2fUgjw/HrcNbXa7CFgMWXjqc5iWmZ7n+29lKq04+t7caOk+ZLG297TRJzRCyWRRG/XvsjdYcos/BBHr/0BXfQ/0u7nI/x9Bt+xSJ0pd+2TbLfVr+G2G9vu7jvO+I9VZ/FA56+/tRPZOygzrK3As5KeavWYcWpLIom+aBdlWQeOluluVuMZxjhgT70r/wh4pJYCR9LoJo63Hpgiqb+kcykzhA1NjJ8sqZ+kUZSlp+1d9N0AXFefD/UHplJmQAAH674zjZgm1vLmg4A7gPWShgF/2H4bWEBJKtGH5RlJ9EUvAUslzQRWHOcx9kvaBJwOzKhtz1CeoXwtqR+wE5jwL+M7WgZcA2yhzCYer/t4HKvdlAQxGHjI9v6az/7B9k+S5lD2uxCwwnZjr4vXa/xf2Z4maRFHE9qbtjdJuhlYIOkIcBB4uIk4oxdKGfmIU1z9Y/+B7Xd7Opbom7K0FRERLcnSVsQJJOlS4K0OzQdsjz2GsfOAyR2a37E9/T8KL+K4ZGkrIiJakqWtiIhoSRJJRES0JIkkIiJakkQSEREt+RPQlccoMD2QXAAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'number_of_maintenance', 'price_usd' ,kind='scatter')\n","#it's a good feature"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"pIr3Q7f40H2j","executionInfo":{"status":"ok","timestamp":1654721158987,"user_tz":-180,"elapsed":1166,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"d50092f4-d3a8-4125-b7cf-2ad1aba6442d"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":37},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZhU1Znwf29VL0CD0DTYIA2CNmgABbEjEJSJuKFGMCPRuARNTJzvG81iErdJRhMzWdQkRGecJJr4RSYmijAKGg2KaHBBtNFmU4FWkW6WVpoGWXupOt8f91Zzq+pW1a2uvfv9PU8/3Dr33Fvn3qbPe867ijEGRVEURekqvlwPQFEURSlsVJAoiqIoKaGCRFEURUkJFSSKoihKSqggURRFUVKiKNcDyDaDBg0yI0eOzPUwFEVRCorVq1fvMsYMdjvX4wTJyJEjqa2tzfUwFEVRCgoR+SjWOVVtKYqiKCmhgkRRFEVJCRUkiqIoSkqoIFEURVFSQgWJoiiKkhIZFyQiskVE1olInYjU2m0DReR5Edls/1tut4uI3Cci9SKyVkQmOe5ztd1/s4hc7Wg/1b5/vX2tZPJ5mve3smLTx6zY9AnN+1sz+VUZob5pHwtrG6hv2pfroSiK0k3IlvvvmcaYXY7PtwIvGGN+ISK32p9vAc4HRts/k4HfApNFZCBwB1ADGGC1iCwxxrTYfb4BrAKeAWYCz2biIX7/j/e5e+lGAsEjGZO/d84Yhpf3YuUHuzl3bCVnjR2Sia9OC7c/uY75r2/t/Dx36gjunH0SYAmYuoY9TBw+gOrKfrkaoqIoBUiu4khmA5+3jx8GXsISJLOB+cbKbf+6iAwQkaF23+eNMbsBROR5YKaIvAQcZYx53W6fD1xMBgTJzY/XsWD1tqj2Xz2/qfP4sdpGTqgs4/4rTs27Sbm+aV+YEAGYv3Irc6eMZP7KLTEFjKIoSiKyIUgM8JyIGOD3xpgHgEpjzA77/E6g0j4eBjQ4rm202+K1N7q0hyEi1wHXAYwYMSLpB6hv2ucqRNzY2HSAs+et6PycL5NyXcMe1/alG3bEFDD5IgQVRclvsmFsP90YMwlLbXW9iEx3nrR3HxmtrmWMecAYU2OMqRk82DXCPy6xJmEvzF+5NW32iFTsGxOHD4hxxt2klMozK4rSs8i4IDHGbLP//Rh4AjgNaLJVVtj/fmx33wYMd1xeZbfFa69yaU8rsSdhbyzdsDPlMdz+5DrOnreC7y9cy9nzVnD74nVJXV9d2Y+5U8N3Y3OnjuC8ce42nVSfWVGUnkNGBYmIlIlIv9AxcC6wHlgChDyvrgYW28dLgLm299YUYK+tAlsKnCsi5baH17nAUvvcpyIyxfbWmuu4V9qoruzHpTVViTtmiFj2jWR3JnfOPollN07nl3NOZtmN07lz9kkxBYyqtRRF8UqmbSSVwBO2R24R8BdjzN9F5E1ggYhcC3wEXGr3fwa4AKgHDgJfBTDG7BaRnwBv2v3uDBnegX8F/gT0xjKyZ8Rja/ueQzHP9SrycfroQXx+9CB+uOSdqPOxVv1eiaVmqmvYEzXhJ/K+qq7sF9V+5+yTmDtlZN45CCiKUhhkVJAYYz4AJri0NwNnubQb4PoY93oIeMilvRYYn/Jg41D7YTOv1DfH7iBw1yUnU9G3lE2f7Gf+ynAPqGQn5khhEEvNFNkez703EW4CRlEUxQs9Lo18V1ixeVfMcz6Bf79wLBV9S4HUV/exhMHcqSPiCqh47r0qIBRFySQqSDxw3KA+Mc8FDfxoyQbe2f4pX502snNlH5q8m/e30thyiKry3p3CJhbxhEEiAfXQqx+63tNN/aUoipJOVJB4oCMY/3x70PDIG1t55I2tYeqkxXXbuGXRWop8QlvAcMdFY7ly8rEx75PIFhJL/dS8v5VFb7k7q6n3laIomUaTNnqgvE+x574hb6rm/a3csmgth9uD7G8N0NYR5AdPrOeR12MWGfNsC4mkseUQJf7oX+UFJ1XqbkRRlIyjgsQDLQfbk+r/Sv0nNLYcosgXHez346c2xEz22FVX3Kry3rQHw7dNpUU+fpIHEfWKonR/VLXlgWTVQ4P69qKqvDdtgeiA/WK/j8aWQzHtJV0x1lf0LeXuS07m5kVrKfb5aA8Gudv2IlMURck0Kkg8UF5WklT/E4f0o6JvKXdcNJYfPLE+7FzAGKrKe8e9viuuuLMmDmNa9SDPhn1FUZR0oYLEAyvfj+3+G0mJXzjQFgCwDOvGUmcV+30EjMnoTqGib6kKEEVRso4KEg/s2t/muW9bwPDIqo8oK/FT17CHyaMGsvK2s9iw/VPAMO6Y/pkbqKIoSg5QQeKB06sHxTzn90lYoSuABbWNLKg9kt1+zNFlbGk+SGmRv9N+MWtiVLZ7RVGUgkS9tjzg5k0VQjxkwN/08QHaAoZ9rR0cbg9y86K1BVmmV1EUxQ0VJF6JIS8SBSu6UeyzPLcURVG6AypIPOCWuiQV2oPBhJ5biqIohYIKEg94LUx1WU0Vy26czunVFTH7lPhFYzwURelWqLHdAwfbOjz1+8YZx1FeVkLtRy2u5y8cP4Q7Lx6vQkRRlG6FChIPlPfxHpDY2HKIYp+PwxwxnpT4hW+fNZovnzZChYiiKN0OVW15oMglIaIbdQ17XPNetQUM//3S+0y7azlL6tJeUl5RFCWnqCDxwHCPhvGJwwd05r3qVeyjrNTfee5AW0BdfxVF6ZaoIPGAl+y/ziy9syYO49VbZvDji8ZRVuIP66euv4qidDfURuKBeNl//QIPfOVUzho7pLMtVBVx4vABBEx4AIqb629kjXZFUZRCQgWJB+Jl/w0YuHb+6s7KiL//x/v88rmNlNhJGi+tqWJBbWPM9O6xarQriqIUCipIPPCchziS+Su30rT3MEvf+RiA9oCVAXhBbSNP33A6B9oCUend49Vo152JoiiFgtpIPLD6o92e+oWEiBOfWGnlJ9iGeCfxarQriqIUCipIPFB5VK8uX9vWETsdSldrtHulvmkfC2sbqG/al5b7KYqiuKGCxANfPKWqy9deNWV4zCDErtZo98LtT67j7Hkr+P7CtZw9bwW3L16X8j0VRVHcUBuJB9Zv67qq6ZszxkS1hby6qsp7d6lGeyLU9qIoSjZRQeKBp9d5S9oYiV/g1fpdYUWsFtdt45ZFa8O8uGZNHJbWCT6e7UUFiaIo6UZVWx74wklDEndyIWDg5kVrqW/ax5qGPdQ37eOWRWs53B7MaJGrWDaWkRV9WNOwRyPrFUVJK2JM4gp/3YmamhpTW1ub9HWf+eEzHOpI/l31KvYRDBpKi/y0BoKIMbQGjtynT7GPr59xHLMmHJPW3cLti9cxf+UR9dbp1RXUftQStRNSFEXxgoisNsbUuJ5TQZKY+qZ9nD1vRYZGdIR0ByOGIuZHVvThqofe4HD7kWSSvYp9vHrLDM1GrCiKJ+IJElVtecBrXIdPLGHQq9hHv9IiSop8lPolrE+vYh8lfqFPcfSrn79ya1pddasr+zGnZjjFRX6KfeHfpzm/FEVJF1kRJCLiF5G3ReRp+/MoEVklIvUi8piIlNjtpfbnevv8SMc9brPbN4rIeY72mXZbvYjcmonxe4nr+M5Z1Tz4lVMZ0LuE+y8/hT9/fTLPfPN0xCdRff/y9cmcM7bS9T6ZCEZ0S22v5X4VRUkX2dqRfBt41/H5LmCeMaYaaAGutduvBVrs9nl2P0RkLPBlYBwwE/hvWzj5gfuB84GxwOV237QSL9dWiBc3fsK181dz3/J6rp2/mp8/8w7Vlf06U8r3Ky2iV7GPS0+t4ssPvs7iNTtc77Nic3R0fKo4U9uHxqHlfhVFSRcZt5GISBXwMPBT4LvARcAnwBBjTIeITAV+ZIw5T0SW2scrRaQI2AkMBm4FMMb83L7nUuBH9lf8yBhznt1+m7OfG12xkVz236+yamvyO4WrJo9g4vABjKzoQ3GRn7ISPxf+58u0JjDaL7txekbcdJ3xKypEFEVJhng2kmzEkfwGuBkIzYwVwB5jTKgQeiMQch8aBjQA2EJmr91/GPC6457Oaxoi2idHDkBErgOuAxgxYkTk6YS83dg1ddOfV23lz6ssz6m5U0dwyaTh+MUHBOJel6l4j4q+pSpAFEVJOxlVbYnIF4CPjTGrM/k9iTDGPGCMqTHG1AwePDjp64cPTN2WMH/lVto7AgRMMGHfdOXaUhRFyQaZtpFMA2aJyBbgUWAGcC8wwFZdAVQBoULm24DhAPb5/kCzsz3imljtaeWfxhydsE/14D4J+2xpPsg9cybgj7a/dzLtuAqNPlcUpaDIqCAxxtxmjKkyxozEMpYvN8ZcCbwIzLG7XQ0sto+X2J+xzy83lhFnCfBl26trFDAaeAN4Exhte4GV2N+xJN3P0SuiXK4bDS2HuXjCUPwCpTG6l/cpZtbEYSz9zvSYwmTQUYkN+4qiKPlEruJIbgG+KyL1WDaQP9rtfwQq7PbvcsTIvgFYALwD/B243hgTsO0sNwBLsbzCFth908rYoUcl7NPaEeRv63ZQ5BfO+kwlbnLi2vmruX3xOqor+zHvsomu91lct0PTviuKUlBkLWmjMeYl4CX7+APgNJc+h4Evxbj+p1ieX5HtzwDPpHGoUQzxWI+kPQgEDc+sb4rZJ5SFd9bEYew+0MqPnno3qo8mV1QUpZDQyHYPLN+Y3tiOUNDh6dXuhn81tiuKUkioIPHAmx82p/V+IUGRycJWiqIo2ULrkXhg+57Dnvr5BYqLfFxaU8VfVm2lw8XTd+7UEZSXlbCmYU/GClsVCqGkkj3tuRWlu6GCxANH9Spi297ENTzu/fIpTD2+AoBH32gEoiVJ1YA+TLtreWc69++ePYaBZSU9bjK9/cl1YVUc0535WFGU7KGCxAOfOaY/7zYdiNunakApJw7pR0XfUtY07MElVyMAdz+3kY6A4bAtZH727Hud53rKZKqlgBWle6E2Eg8M6F2csE/jnlbOnreCmxeuoaq8N8EY6bRK4rzxdKeRz1filQJWFKXwUEGSZhbUNrJodSPfnFEddc4vuNpNnPSEyTSWV5p6qylKYaKCxAPPb9iZVP+7/v4e548fQmlRuH6ruMjHHReNo8QPLnWtgJ4xmaq3mqJ0L9RG4oHtHgztTop8wva9h7nhzNH814ubKfH7O+uk127ZTVuM5L89aTLtyd5qitLdUEHigVGDelO/y3tZ2o6g4Rvzaynx+wDhuunHccXkEbQcaONbj9ZF9b/p3DGcN25Ij5tMqyv79bhnVpTuiKq2PDCgzHsND7+Azye0dgTZ19pBa0eQ+1+qB2LbPyqP6qUTqqIoBYsKEg8cao9fiCrEz784nq9MOZb2QLjLlgkaGlsO9Vgjc33TPhbWNvQIjzRF6YmoassDvYsTp5E/obKMoIE/rfwo6lxrwFBW4qe6sh8nVJaxMSImZf7rW7pt/IgGHipK90d3JB6IF/sRYmPTAX70lHsG+xK/jwNtAeqb9kUJEei+8SOxAg+747MqSk9GBYkHNn4cP6o9hIkRhCgCVeW948aILFmzneb9yXmH5TsaeKgoPQMVJB44f1ylp34dLuHsfoFLJg2j5UAb5X1iR8jf/2I90+5azpK6bTTvb2VNw56CFyw91SakKD0NtZF44MwTK/nzG40J+5X6BSOCX6CtI8jIQX14/5OD/OWNBv7yRgOfO35gzGsDBgLtQb67oA6/z0eJ39cZezJr4rB0Pk7WCAUezl8ZbiNRDzVF6V6IiaWP6abU1NSY2trapK657PevserDloT9/D6YXj2YFzd90tXhRdGr2Mefv3YaW5oPFmzgnqaLV5TCR0RWG2Nq3M7pjsQD+w93eOoXCJJQiHzuuIG89sFuz98dCBrm/P71zs+F6PWkgYeK0r1RG4kHqgeXpe1eV0w+loX/MiVKzVXsF0qLhGJ/eH6uyJgU9XpSFCXf0B2JFyQ98tbvE27733Wdto87Z42nrmEPIyv6UFzkp6q8N6/W7+LmRWsp9vk43BGIEiRgeT3pCl9RlHxBBYkHDrW2dfnakRW9ueZzo/j5s+91pk0BuHnRWl69ZQZzaoaH9Z81cRjTqgfR2HKI9o5AmForhHo9KYqST6hqywPrdnRdlbSl+RCD+pbaCRyPUOzz0djingiyom8pE4YPoGZURUrp1jU1iaIo2UB3JB6o6l/KjiRTyTvZtb+V9mB4Rav2YJCq8t4Jr42Vbr2+aR+v1O9iUN9Sph5fQUXf8MSSmppEUZRsoYLEA9tSECIAp1cP4u5LTu60fYRsJJGTfywivZ4ihYTfJ8y7dEJnvInWRFcUJZuoIPHAngNdFyTjj7Embqfto6q8t2chEombkAgEDTctXMu06kFU9C2Nm5pEBYmiKOlGbSQeaPUWRuLK+u37OHveCm5fvK7T9tFVIQLx81SFbC6amkRRlGyigsQD/XonTiOfCGf8Ryq5tOIJg5DNRWuiK4qSTVS15YHTji3nufd2pXyfpRt28tCrW1i4eiulRUVdyqXllr/K7xPumRNuc9Ga6IqiZAvNteWBc379Eps9ppJPll7FPl69ZUbS6q5EXluKoijpJF6urYyqtkSkl4i8ISJrRGSDiPzYbh8lIqtEpF5EHhOREru91P5cb58f6bjXbXb7RhE5z9E+026rF5FbM/Eck4b399TvFI/9nMSLJ4lHdWU/rpk2ii9MOEaFiKIoOSXTNpJWYIYxZgIwEZgpIlOAu4B5xphqoAW41u5/LdBit8+z+yEiY4EvA+OAmcB/i4hfRPzA/cD5wFjgcrtvWjljzNGe+r3dsNe1vX9pbBuL13iSTKABi4qipIOM2kiMpTfbb38stn8MMAO4wm5/GPgR8Ftgtn0MsBD4LxERu/1RY0wr8KGI1AOn2f3qjTEfAIjIo3bfd9L5HHcucS+h65W9rQHX9hI/nfEk2U61numARU0dryg9h4SCRET2YU3+rhhjjkpwvR9YDVRj7R7eB/YYY0JOtY1AyNo8DGiw79shInuBCrvdmXTKeU1DRPtklzFcB1wHMGLEiMjTCfn4QHvS1yTiwvFDuPPi8VT0Lc16FHqmAxY1ql5RehYJVVvGmH62sLgXuBVrAq8CbgF+4+H6gDFmon3NacCJKY24CxhjHjDG1BhjagYPHpz09b1S9/4FoE+xj2+cMYr/uvyUTiESa1LPpLopk7XUc/E8iqLklmRUW7NsW0eI34rIGuB2LxcbY/aIyIvAVGCAiBTZu5IqYJvdbRswHGgUkSKgP9DsaA/hvCZWe9o48zOVPLu+KeX7tHYEefi1LRT5hLZAkJvPO5EtzQdd+2YyCj2TAYsaVa8oPY9kjO0HRORK28jtE5Ergbg+sSIyWEQG2Me9gXOAd4EXgTl2t6uBxfbxEvsz9vnltp1lCfBl26trFDAaeAN4Exhte4GVYBnklyTxTJ7YvDM9q+mAgbaA4WB7kI4g/OzZ9/jLG1td+2YyCj2TAYsaVa8oPY9kdiRXYKm37sWymbzKEYN5LIYCD9t2Eh+wwBjztIi8AzwqIv8BvA380e7/R+B/bGP6bizBgDFmg4gswDKidwDXG2MCACJyA7AU8AMPGWNSs4y7sOPTw+m+ZVwuHD8k46v3TAUsugVMalS9onRvNCDRA+fPe4l3mzITkBhJiR9W3na2p9iQ5v2tKSeBzBSF4rVVKONUlFwTLyDR845ERO4G/gM4BPwdOBm40Rjz57SMMo85+qjeGRckfUr8BI3xnF5+cd02bolIS59MqhXI7CQamfo+H1HvMkVJD8mots41xtwsIl8EtgD/DKwAur0gWbctdW+meBT54HdXTWLcMf0970RuWbSWw+1BDmMVzLp50ZE08l7I9iSab7snrdmiKOkjGWN7SOhcCDxujHEP4+6G7D6YQh55D/x41nimjzna8wTb2HKIYp/30r2RZNtFd3HdNqbdtZyr/rCKaXctZ0ld2h3rkiaTLtCK0tNIRpA8LSLvAacCL4jIYCC7Vuhuht8n/PSL47lyyrFJXVdV3rvLpXshu5Ooc/e0r7WDw+1Bbl60tksp9NOJepcpSvrwLEiMMbcCnwNqjDHtWK6/szM1sJ5AkQ9mjhuS9HUVfUu5+5KT6VXso19pEb2KfUmV7s3mJJrq7ilTaM0WRUkfyRjb5zqOnafmp3NAPQm/PaEmEgBu9oVUSvdm00U31d1TJtGaLYqSHpIxtn/WcdwLOAt4CxUkXeZgW4BHVm1hwvCJMfvE886q6FvaZcN1tibR0O7p5ohnyAeDOxSGd5mi5DueBYkx5pvOz3bE+qNpH1EPY0HtNq4743jXySyRd1aqnlDZmkRT2T0pipL/pJJG/gAwKl0D6ck8+PIHfOOM46Im9ZB9ISRE4Ih94ZX6XSnHkUSSSRfdVHZPiqLkN8nYSJ7iSDp5H1YhqQWZGFRP47HaRh6rbYyK5XCzL7QGgrR3BFKOI4kkHQGOiqL0TJJx//0l8Cv75+fAdNuTS0kTkbEcTu+sXsXWr0qM4Yo/rIq6NtITKpnqh/nqoqsoSmGQjI3kH/HOi8hKY8zU1IfUs1m6YWeYAXxa9SB+OWcCNy6oA6A1YG8KA+E50pyeUMlGrcdToak6SlGURKSz1G6vNN4rr+jlg8PBxP3SwT3Pbeo8PqO6gjc/asGH0B4hOHwCQUfTZ48tj1soK17qj3x20c1n8i3ti6LkimRUW4notmmEc5Ug+eX6Zg63BznYHl3zPWii+9Y37eO/X3rf9V6v1O+K+T2pBjj2RPIx7Yui5Ip07ki6La0ZFiTFPuGyzw7nz6vci1w56VPip7UjSCBSkmAJiyVr3Ce0QQmEgrroeicdSTMVpTuRzh2JJO6iuBEwhosnHpOwX2mRcPclJ+OLsfkb1LeU0qLoAvM+ganHVyS8f0XfUiYMH5C1ybB5fytrGvZQ+2GzZ8eAfCBf074oSq5IakciIscCo40xy+zSuUXGmNBf/1fSPro8oUSgLYO7kisnD6dmVEVU2pKQjcTpkjt8YB96FRfR3hqekfjC8UOYenwFARc93E8uHp93K+WQu3EgaMLsP4VQE0RtSooSTjJxJN8ArgMGAscDVcDvsFKlYIxZn4kB5gPpEiIiUFYs7Hfc8Oi+xfzk4pMB97QlkQbd5v2tUZNYiV+40xYWoXQkfhHaA0HuuGgcV05OLrtwpnGqhiIphJog+Z72RVGyTTI7kuuB04BVAMaYzSJydEZG1U0xhjAhAjDzpKFhnyPTlkRGhCeaxArB1uHmbuykrmFPXgsSKIz3rCjZIhlB0mqMaQtl/hWRIrqxp1a26MoKPNYk5ty9TEgxJXwmXVvdVENOCqUmiKZ9URSLZATJP0Tk34DeInIO8K/AU5kZVs/ilfpdSa/AQxNYyMCbztxbmU6XEtpV3bRwLR2BYFhspdYEUZTCIxlBcitwLbAO+BfgGeAPmRhUT6NXUbgHUH3TvjA7SeRnCJ/s2wIBggbaAyZld9RsubbWbtlNa8eRXckpw/tzz5wJKkQyhNv/IUVJF8kIkt7AQ8aYBwFExG+3HczEwHoS/75kPQEDV045Niq9yZjKMjY1Hej8PHfqCL591pioyT6SrqY4yUa6FLfo+7cb9nLf8s3cd/mktHyHcoRkU+YoSrIkE0fyApbgCNEbWJbe4fRM2gPwgyfXM++5jVETrFOIgGVTWfl+c1QcQ9Q9u+iOmg3X1li14Zes2REVS+I1+WQoJkUTTYYTK2VOocTsKIVBMjuSXsaY/aEPxpj9ItInA2Pqsfzni/We+u3afzhqsi/yWaV7S/ypuaNmw7U1njHd6bHldSWtKfBjE0toF4JnnFI4JCNIDojIJGPMWwAiciqgobxpxCXriSunVw/m7ktKoyb7dLmjZtq1tbqyH7MnDGXxmh1R50JCxmvySU1XEp9YQrtQPOOUwiAZQfId4HER2Y6VDmUIcFlGRqXEJOTVFEox39hyiPaOAFuaD9JyoC1lt98QmXZtvffySRjeYolDmDg9tryupFOx6fQEA3R1Zb+ojAnqGaekm2TqkbwpIicCJ9hNG40x7ZkZluLGby49mVGDrWj30ER/77JNBWtIve/ySXxrhvtk7nUl3VWbTk8yQLtlTFCUdJJQkIjIDGPMchH554hTY0QEY8z/ZmhsSgQ3LVpHryJ/pypr7NCjkq49km9ERvI7272spLti0+lKzZZCJ9Z7VpR04GVH8k/AcuAil3MGUEGSJdoDhvaAlazx5kVruXbaSNd+3cWQmmgl7VRNvXrLDM82HTVAKyF6gnozGyQUJMaYO0TEBzxrjFmQhTEpwNCjStjxaVvn52J/eJXEQNBw/0sfuF7bnQypsVbSqaim1ACtQM9Sb2YaT3EkxpggcHOyNxeR4SLyooi8IyIbROTbdvtAEXleRDbb/5bb7SIi94lIvYisFZFJjntdbfffLCJXO9pPFZF19jX3SSgZWIHTcqiD31x6MpfVVPGbS0/G7wt/rMjSuyF8Asvf+zjp+h5e4zUg9zEbXmIj4o0xpDZz0h0M0Ln+vRQSGl+TXpLx2lomIt8HHgM6o+SMMbvjXNMBfM8Y85aI9ANWi8jzwDXAC8aYX4jIrVjpV24BzgdG2z+Tgd8Ck0VkIHAHUIOlTlstIkuMMS12n29gZSV+BpgJPJvEc+UlHYEg31mwFoDHahs5o7qC1z7Y7VoZ0UnQwM+efa/zs5dVVjIrs3yI2UikmvIyxu5mgM6H30shoerN9JJMZPtlWIka/wHUOn5iYozZEYo7sQtgvQsMA2YDD9vdHgYuto9nA/ONxevAABEZCpwHPG+M2W0Lj+eBmfa5o4wxrxtjDDDfca+CpiMi88nL9c0JhYgb81du5ek122OuUpNZmTljNva1dnC4PcjNi9amtALuyio6nmoqmTFWV/ZjTs3wgp84MvF76e6oejO9JCNIxgL3A2uAOuA/gXFeLxaRkcApWDuHSmNMKIBgJ1BpHw8DGhyXNdpt8dobXdojv/s6EakVkdpPPvnE65CzTrFf6FdaRJE/vdq57y1Yw7S7lrOkLrqee7yVWSTpLjG7uG4b0+5azlV/WBVzfG7EU031xDK4PfGZU6W7qjdzRTKqrYeBT4H77M9X2G2XJrpQRPoCi2KxDUwAACAASURBVIDvGGM+dZoxjDFGRDJa18QY8wDwAEBNTU3e1lC5/vPHU+z3UVLk46fPvJf4AuCmc8dQ7Pfx62Wb8AEHXaoOtgaCEHCP+E5mZZbOPFypRqTHUk31xDK4PfGZ00F3U2/mkmQEyXhjzFjH5xdF5J1EF4lIMZYQecQRc9IkIkONMTts9dTHdvs2YLjj8iq7bRvw+Yj2l+z2Kpf+BclvXoida2vM4DI2fRKewPGEyjKunzEagEtOraKx5RCPrPqIBbWNbrdwjfhOJvI5nXm40pFl2M2jqyeWwe2Jz5wuNL4mPSQjSN4SkSm27QIRmUwCG4ntQfVH4F1jzK8dp5YAVwO/sP9d7Gi/QUQexTK277WFzVLgZyHvLuBc4DZjzG4R+VREpmCpzOZiqdy6BX5g0rEDePOjPVFCBGBj0wHqm/ZRXdmvM9J9S/MBnnirEUO0nSXWKjXWysytSmK68nClsopOVL2xJ5bB7YnPrOQPyQiSU4HXRCS0dB0BbBSRdVgaqpNdrpkGfAVYJyJ1dtu/YQmQBSJyLfARR9RjzwAXAPVYdU6+inXz3SLyE+BNu9+dDm+xfwX+hJXW/lm6gcdWiADw5kfuNowQTi+T5v2tfG9BXZQAKSv1EwiauKvUyJVZPC+gdOTh6uoq2qt3Uk8sg9sTn1nJD5IRJDOTvbkx5hWsBI9unOXS3wDXx7jXQ8BDLu21wPhkx9ZdcNoyNmz/NEqIANx07glcNOEYz5NMOjPqxts9JLuKzlSm30zWp1eUnkAySRs/yuRAejKCFRyTLBecVEl5WYmjxf0uxw0uS2qCTFeVRC+7h2RW0Zmo3qjxF4qSOsm4/yoZIhkhMn1MBZdMGkZpkY+XNzUz7a7lPLLqI9Y07OGY/r0pjnAdLvYL447pn9R40uEFlInYhnR7J2n8haKkBxUkBcK04ypYduN05l16Cn9bt4PWjiOT3w+eWM8VD77OF/7rFS4/bTilRT76lPgpLfLxqy9N8LRad6ZICdkvehX76FdaRK9iX9JeQJmIbUjHuDI9RkXpiSRjI1FyyKsfNAPu6h2AA20BABbUNvK3b57OgbaAZ51/rBQpqXgBZSq2IZ3eST0l/kIz3CqZRnckecQZ1RXEC2r/y6qPeHtrCwfbOmL2Kfb5ONAWYMLwAZ53IrFSpFT0LfV8n0jSvXuIvHdXx5WtMcYjm8kVb39yHWfPW8H3F67l7HkruH3xuox/p9Lz0B1JHvHGlhb8PiEQI7PvQ68l9ndIdkWdyeR1hRDbkO0xZtO43xMLeCm5QXckeYTfJxT5uv4rKfaR9Io608nrvOwekklh3xUS7QDStcPxMo5sGveTyaOmKKmgO5I8wsru2/VUYNdMG+VpdRupM/eaIqWrxNPRZ7q4UD6592bCfTkemuFWyRYqSPKEYr9wzxwrOUAo2ru1owPbhu6J88ZWJuwTa+JOZ/I6Z4Dfvcs2xRQUmVa9ZCqAsatk27ifjUWCooAKkrzhpnNP6Fwph3T2ZSV+7nxqAyvqm6P6D+jtZ8+hI1LmjOoKakZVxP2ORBN3OiYY5w7ATRA6vy/TxYWyvQNIRC6SK2qGWyUbqCDJE369bBOXnFrVGen9Sv0ublm0FuOS8gTghxeOY2RFH1Zs3sX00YMY0KeEhbUNnZOFmzop0xO32w4g3vdlWvWSj+69TuN+e0eALc0HOxNvZgrNcKtkGhUkeYIAD7+2hVkTjqG8rKRzQo5FeZ9itjQfZNaEY5i/ckvYTmNMZRmbmo5kCw6pkzI9cceKcYn1fV5VL12Ng8jX9OoVfUvjqvwUJRNkMqecWHkSew41NTWmtjZu9vsoRt76twyNxp0Lxw9hxeZd7Gt1jxfp38vP3sNJGE+AZTdOp7qyH7cvXhc1cadrAmve38q0u5bHFYBu35dpY3y+JWWsb9rH2fNWRLWHfkeKkm7S4XQiIquNMTVu59T9Nw/52/qdtHbEFhTJChGApRt2AnDqsQMp8UOp30eJH2qOHdjlcUZS0beU7549xvXcTeeOYdmN05k7ZWSUq2+s2unJ1JNPNK5suPd6Rd1ylWySDbdzVW3lKV86dTiL3m7EBO1SuWkg9B/KMoBnxotpYFg24iNUHtUrSgWXaHeRaZtOrlC3XCWbZMPpRHckecrU4yv4xRfHc+aJg9NyvxOH9MtKksJYk2F5n+KkdxfddcIN2YacqFuukimy4XSiO5I85Zt/fdtzaOKpI/pT17AXgIBxr29y7fzVXFpTlfH/ULEM6C0H2137x9tddOc4CHXLVbJFNpxO1NjugWwb271Q5BP+Zfoo6j8+wNJ3mjxf94WTKnnunSZKi4oyGukdaUBPxcCs2WsVJXVSdTqJZ2zXHUmB4Rdr19ERNNz/0gdJX//0OkvonPOZQdx58fiMGaAjYxdS2V1oHISipE4y1UiTRQVJgREjMXDS/G39Tm48Z4zrf6z6pn22l5fhvHFD0zaJJ6POyTeXXUVRYqOCpJvSq9jHZ48t52WX9Coh3OwTkXEb9zy3Oa2xJl52F06f97ZAkEsmDeNr00bprkRR8hT12uqm/OKL4/mfr09h2Y3Tuelc99iOSO+n2g+bozyroGuxG8kSSiVf+2FzmM97a0eQv7zR0O2KMmWzuJWiZBrdkXRTvrdwLT6fj1kTh1Fd2Y+mfYfj2icW123je4+viXk/t91LutRPkbugohjLm3wvyuT1feRTantFSQcqSLopgWB4sOHcKSOp7NcLgPPGDQmbjEOBih1xDDCRu5d4k2EyAsYter0jTvxlvgYjur0Pt8qL+ZbaXlHSgQqSbkwo2DAyQWDTvsNhNo/GlkOYYGwhErl7iTcZhrIWe11tx4pe9/ssYRhJPgYjur2P7y6ow+/zUeIPfw/5ltpeUdKB2ki6Me3BIO0dgYQR5WUlflpddiNfnDiEm84dw9wpI8PaY0XIb9j+adI5fWIJhse+MYULTgov1JWvwYhu76MjCK0d0e8hH1PbK0qq6I6km1JS5OPuS05mS/NB1/MPvvwB3zjjOKor+3GgLUCvYl9Y1l6fwBN1O4Gd3PPcpjDPrViTIZikV9ux4ktqRlmFugohGNHtfUQSeg8Thg/ISmr7QnhvSvdBBUk3Zea4o5k1cVhMb6vHaht5rLaRuVNH8O2zor26IjVdTkN3rJQL447p36XVdrz4kq4GI7pNpJmKTYl8H22BAEED7Y5dnvM9zJo4jLFDj8rYRJ+O1PuKkgwqSAoUAfw+oSOGbWPJmp18a8Y+1xW/k5CAcE6EhzoCroZ3p6HbWenPOTE779Pa0cElp1TRcqAt4cSdzuj1yIl09oShzPhMZUY9pSLfx6v1u2LuOjLptZWonLKiZAIVJAWKAW46ZzS/fqGe1hhuTq/U7+JAWyBuoSmr3ydcM+24zlVyeZ9irp2/OqpfpD3DLeVCaEL94ZPreXb9Th55YyuPvLE1pVVxql5gi9fsYPGaHQCunlLpUgM530csQZtpr63umnpfyW8yKkhE5CHgC8DHxpjxdttA4DFgJLAFuNQY0yIiAtwLXAAcBK4xxrxlX3M18EP7tv9hjHnYbj8V+BPQG3gG+LbpQVkof750EydUlrHRUVbXyc+eeZcin3AwgSCp27qHxWVHVsmH2jvwSbh6KxlDd8uBNp5dvzOsraur4mRX716LQ8XyaEunGshN0CbrtZWskOuuqfeV/CbTXlt/AmZGtN0KvGCMGQ28YH8GOB8Ybf9cB/wWOgXPHcBk4DTgDhEpt6/5LfANx3WR39XtiSVEfAJtAZNQiAA8tW4HNy9c0+lt1REMFyKlRT5XO0qIyCjtdFUA7EplN68TplePtnSTjNfW7U+u4+x5K/j+wrWeI/u11omSCzIqSIwxK4DdEc2zgYft44eBix3t843F68AAERkKnAc8b4zZbYxpAZ4HZtrnjjLGvG7vQuY77tWjueikIZSVeN9sFvt8xNvHlfhjF79aXLeNaXct56o/rGLaXctZUrctbavirhTiqq7sx+wJQ13PlfihX2kRvYrje7Q5BV66U5mEDPO9in1hY4ncjaRSZvjO2Sex7Mbp/HLOySy7cboa2pWMkwsbSaUxZod9vBMIBQsMAxoc/RrttnjtjS7tUYjIdVi7HEaMGOHWpVsxvKJPQndUJwZr9xKLWCvmWPr+V2+ZkZaCVF2Nubj38kkY3mLJmh2dbSHvNKfNItakHBJ4mTKKx7KfOEnV1qGp95VsklNjuzHGiEjGbRrGmAeAB8AqbJXp78s1pX4fX/3cSB569UNK/H4OtXXQ4fLUPqCk2Mf1n6/mN8s2xUxRf2lNleuKecma7VFb2tCOwc2lN1l9fyqV3e67fBLfmhH9fc5r49VIybRRPFFtiK7u6o6UAIhOhZMLtBxAzyAXgqRJRIYaY3bY6qmP7fZtwHBHvyq7bRvw+Yj2l+z2Kpf+PZ55L9QDVhGsG848Dp/APc9tiuonAk/fcDoAv3o++nyIv77RwKyTj6FmVAUQ7V7rpLWjo3PH4FwVR15zwUmV/GT2SQknFy+r91h4WZXHimHJdSqTrhQCiy4BsCmnMSSanLLnkIsUKUuAq+3jq4HFjva5YjEF2GurwJYC54pIuW1kPxdYap/7VESm2B5fcx33UrCKYP3Xi5tZ/VGkmcqitNjHgbYAB9oC+CT2fdoDhjm/f53bF6/jhXd2xhQiAG0BuPeFcKHkpu9/Zl0Tn/uFZVNJREXfUiYMH9DlCTyUoj6WKqu6sh9zaoaHTdL5kMokGVuH2zuG7JQAcKMrjhJK4ZJRQSIifwVWAieISKOIXAv8AjhHRDYDZ9ufwXLf/QCoBx4E/hXAGLMb+Anwpv1zp92G3ecP9jXvA89m8nkKkY6AYfnGXa7ngsaeMDsCUZHsbsxfudU1vsStn3PyiqXvb+3I/OTSFc8n8G4UzzRuQs6NeB5xyXrLpYOuOEoohUtGVVvGmMtjnDrLpa8Bro9xn4eAh1zaa4HxqYyxuxPL7uEXOifGF9/72L1TCjiNwvH0+plQF4X08rHce0PxLIn096mo1bKd6yreO85FDEk+7OiU7KGR7T2UWROGduqrMzHRjKzow5qGPVSV92b+yi0x+6V7cnHq5Q+1d7j2qWvYw4YdVqbiIp/QFjDccdFYrpx8bFTfREZxN3KR6ypWKpxcxZCk4iihFB4qSHooS9bu4MwTt3VWULy0pooFtY2JL/TAGdUVXPXQG501191SuPQp8RM0Jq2Ti5unlRsjK/pw1UNvhKWO+cET68HAlVOihUky5DLXVchxIF+8tlLZ0SmFhQqSHoqzguIr9btYsmY7fYqtiX9iVX9qt+4N69+nxMeYyr7UNXwa977Xf34Uf3z1o4ST+UUnD+1MY58u3Dyt/BKu3ps7dQTFRX6KXLwLfvzUBmaOH5LShJfrXFf5Fj/SlR2dkhkyqW5VQdKD8YuwYfvezlV8iHXbP6XEL2FBioEgvLsjsffPZ4YOoNjXEFeIADy9dgeL12xPq0uom16+uMjHY187jS3NBzv/gJr3t7oGYBb7U7fXZCrXlcZjeEPfkzuZVrdqhcQeTHsgCEiUd02J3883Z4wO81i64cxqSvz+sH7+iEX93KkjmHp8BQfa3G0TTkJZiZ1eW4ncdBMRy9OqZlRFmOdTRd9S7rhobNT1AWNSttdkIteVWxoaN9KdzqXQ8PqeehqppNvxiu5Iuik/vOBEXv9gN8vieGTdcdE4xh1zVNQqvi0Q4IrJI7hi8ojO1R3Afy4Pjw9xW+3XN+3z5ErceY80Z+H1qpe/cvKxYCx1VrHfRyCOvSa0yi0r8bN97yFAGHfMUTHvHa9QV7J4jbDv6cF/mc5EkG3SqYbKhrpVBUk35VfPb8Zg+LfzT2RgWQm7D7Rxz3MbO6v2+QSQI6v47y6oI2QTDxp4tX4XsyYO6/wjvP3JdbQFjtxfoHO1H4p4h+RjFuJl4e2qgdqrXv7KKccyc/yQuEInNEGboAmra1/kg19fOjHmZJ0uW4WXCPt8mURzqVbKdSaCdJJuNVQ2SguoaqubcqjdUh39etkmzjzxaC45tSosej1oLE+lR17/iGnVg/A71FvtAROlcoqc6A3gE6H2w+YwdZTX/5xlpf6ksvDGoivqHOc18aLmnRN0a4RNpSMINy1ck3E1kpd4jHwI/su1Wqm7xK1kQg2VjdICuiPp5vh90jmhFPt9tHYEws7/+KkNDB/YmxK/L8xN1wc8/NoWZk04JuaE/u1H347yiLpz9klR8QyRnlNlJX5+fNE4zjzxaE9ZeGPRFXVOMte4rXKd+MWarFsOtGXMG8ZLPEauJ9F82BElG7eSr0b5TKmh0qludUMFSTenrcOaUD78ZD+H2gNR54v9Pj491BF17mB7kPuW13Pf8vqY9T0iHZ9C6ijnf9pQzEbA4RUWMKZTiEDXEhR2ZfLyco1zgnGboMOfP8gjr29hweojq+9MBB8msvvkOvgvX9RKXu1j+WxPyqQaKpOu4SpIujmzJgyNMmQ7ae0I8L3H19ARx0K+eM0OZk0YwpI1O2P2CbFkzXau/tzIsP+0XiY5ryum0ES/91Bb0pNXognPbYIJjd3NRvK9c07gZ8++F/YdmQo+TGT3yWXwX653RE4Svad82D3FoyuLqnxABUk354LxQ10TLfrBspiDa+R5JJNGlPOtGWNYumEH9zy3OWa/B1/+gAde/iBsled1kku0YnJO9G2B6ESTiSaveBNevCJdr94yw9VrK1aOsmwFH0aSq+C/XO+IkiFfdk/xyLQaKhOoIOnmvLfT3f4QAMti7tFV986n3+XW8w1vbY1vAD/U7r7KS3WSc5voi3xWPfkSv7fJK96Et6ZhT8wJxmmMd/5RZ8MbplAolHQo+bR7ike+ZShIhAqSbs7z7zal5T5BAz975r3EHW3SvcpzW0mWFvn57VWn0r93sefJK9aEl2i34jZBFqoaIlMUQjqUQto9FRIqSLo5dQ17mTqqnJUftiR13fTqQbz+4a6w2JFkSPcqz22iP9AWoKHlINPHeE+0GEsoxJpgXqnfFdcwm69qiGynsS8kCmX3VEioIOkBvLV1Lz4gCBQLtHtQZ/3zpGN47cNmPOu+bIp8QpFf0r7Kq+hbyr9fOJYfPLk+rP0nT7/DzHHeEi0m8taJnGAApt21PKFhNt/UELlIY19oFMLuqZDQgMQeQGsg2KkQ8iJEAL6zYC0Thh2V9Hd1BA1//tppGXGnHD+sP31Lw/N9xQq8iwxU9Fr61RmgmA+BfsmSjbxKihKJ7kiUmKyOSCXvlS3NB6kZVZF29UpVee8oN2U3FZrbzuPYirKkvXUKxTDrJNdp7JWeie5IlKRJ9J9m4vAB3Px4XZdqpcfDSx31WDuPshJ/0kIhX+q2J4N6kim5QHckSlqZO3UEL7z3cVi0NyQXqBdvJ5PIUBorTuBAW6BL3jqFYph1vjP1JFOyjQoSJWkuP20Efj9hk9W04yr48exxlJeVMOXnL7he50W94sVQHM9QGk8dNWH4gC4JhXw3zLq9s2U3TlevLSVrqCBRoqgZ0Z93duzjYLt7xPtXp1k7Cze316fXbEcQ3Ly9EqlX0lHvPFGcQL4LhWSJ987m1AzP0aiUnoYKEiWKq6Ycy02L3G0aTjVJpNtr5MrYyaU1w8L6usVzpMtQnA51VKHEYahxXckHVJAoYRw3uA/fWbC283Ox39pffOnU4Z07EbdJ1m1lDFZcyc3nncB1/3R8Z1useI5YO5byPsUsrG1IalJvOdDG5qZ9lJX4kxYkuYzDSJTePPLdF6pxPV/TuCtdQwWJAlj5G+dMGsbjb4UbydsDhoX/MqWzCmKsSTbWyviHF36Ga6aN6vzsljPr+4+vYVr1INeUIydUloUlnfQyqaciCNKhXusqiQImYz1XoRnX8zmNu9I11P1XASyLRqQQCfFk3Xaa97fGnGRrP2xmz8E212uHR7jXNrYcwi8S1tYWMNxuR6zfOfsklt04nV/OOZk/zj2VjU0Hor4vXnBdqgF58VRFmaK+aR9/evUDbnq8LmbAZLzncr6zZTdOz+sodq+BoUphoTsSJSELahtZ+FYjwwe4x1xc/odVUcIhRMvB9rDPj7y+hQMuCbz+tn4nNzbtC7O7PPjyB673jKf/T9VmkG1VUTy7kjNgMtFz5VuallgUQhp3JXlUkCgJaQsEIQCbPznger49YGiPkZPLOQHXN+2Lii9xEpoU402ukff0es6rIKiu7MelNVUsqG3sbMuUqiiWXSmEM2CyvE+xa59Y7flKIWYLUBKjqi0lY0ROwInUQyMr+iScXE+oLIs7qYfsLPHGEY/FddtYsmY7ZSU+ivzCv11wYsZURbHeR6nfFxVFH7mzCxGrPV/J52wB9U37WFjboHnJuoDuSJS0Ulrk41szjufYir5MPb4i7Fy8XUGRD4qL/AmFzcamA9TbKrBYdDW1u1N/H+LXz2/ikklVCcu3dsUDKdb7+NWlE5h6fEXYvTKpcsu2q3O6sgWk0/NLMyanhgoSJW0U+YTLPlvFf774vqtHTnlZCRecVMkz66KLbRX5fVSV96asxB91LhIv9o6u2Ay6or9PxQMpVmGsL0w4Jqrvhh2f4vcJAUfSynSo3HI1gaYaGJpOz69ceup1F7qFaktEZorIRhGpF5Fbcz2enkpH0PA/K7e6euQsrtvGtLuW8/KmZkqLfEw7roISP1HqDTfVVCSZMnwnq79PhweSF4+r0Pc4hUhpkY9vnzXG8/e4Uagp59Pt+ZULT73uRsHvSETED9wPnAM0Am+KyBJjzDu5HVlh4p7cxDuR1xb7fGzY/mlU7Mjqhhae+dZ0DrQFolQTd84+iX8aPTgsfiTE7AlDM7ZKTLYMa7o8kBLtnty+p8SfuqdToUbFp9vzq1CDOvOJghckwGlAvTHmAwAReRSYDagg6QI/uOBE/sNjbfbTj6/glfeb4/axVvgmZkbeCTH+WGMZkc8YPdjT2LpKMvr7bHkgZep7CnUCTff7iKVizGdhmm90B9XWMKDB8bnRbutERK4TkVoRqf3kk0+yOrh8xD3iA2ZNGMLXpx8fpVry+4Rif/hVc6eO4EezxrneJ1JlNe6Y/kn/4edyknNWSUzULxseSJn6nlQ93HJFJt5HIQV15iNiTCqKjNwjInOAmcaYr9ufvwJMNsbc4Na/pqbG1NbWJvUdNXf+nV0Ho4Po8g0BKvuVsHPfkSjzgX2K2H2wo/Pz7AlD+drpx/HHVz5gyZodYe33Xj6p87PTk6e8rITGlkO0dwTY0nwwzLvn9sXrolZy3z5rTNSKfkndtiiVUSLjqNu98/EPPFt5ozL1PYWSoDISzdeVXURktTGmxvVcNxAkU4EfGWPOsz/fBmCM+blb/64IEoCRt/7NU79jy3vRHjC0HGpDjKG8rJQ5k4bRYQx7DwU4sbIv81//iE0fHwnum3ZcBV+qGcb67fs4qpef1o4gfUr8nDduKGDprEdW9KG4yB82mUeeC/1B1X7YzIrNu5g+elDckrfpmkC83qcrf/iFOskpSnejuwuSImATcBawDXgTuMIYs8Gtf1cFCRzZmfQpgiunjuK8sZUM6FPSpYlOJ0hFUQqJeIKk4I3txpgOEbkBWAr4gYdiCZFUqb19pmt7VwRBoeRGUhRFSUTBCxIAY8wzwDO5HoeiKEpPpDt4bSmKoig5RAWJoiiKkhIqSBRFUZSUUEGiKIqipETBu/8mi4h8AnzUxcsHAbvSOJxso+PPLTr+3KLjT41jjTGuOYp6nCBJBRGpjeVHXQjo+HOLjj+36Pgzh6q2FEVRlJRQQaIoiqKkhAqS5Hgg1wNIER1/btHx5xYdf4ZQG4miKIqSErojURRFUVJCBYmiKIqSEipIPCIiM0Vko4jUi8ituR6PGyIyXEReFJF3RGSDiHzbbh8oIs+LyGb733K7XUTkPvuZ1orIpPjfkHlExC8ib4vI0/bnUSKyyh7jYyJSYreX2p/r7fMjczlue0wDRGShiLwnIu+KyNQCe/c32v9v1ovIX0WkVz6/fxF5SEQ+FpH1jrak37eIXG333ywiV+d4/PfY/3/WisgTIjLAce42e/wbReQ8R3vu5yZjjP4k+MFKT/8+cBxQAqwBxuZ6XC7jHApMso/7YdVpGQvcDdxqt98K3GUfXwA8i1VccQqwKg+e4bvAX4Cn7c8LgC/bx78D/q99/K/A7+zjLwOP5cHYHwa+bh+XAAMK5d1jlaf+EOjteO/X5PP7B6YDk4D1jrak3jcwEPjA/rfcPi7P4fjPBYrs47sc4x9rzzulwCh7PvLny9yUs/+4hfQDTAWWOj7fBtyW63F5GPdi4BxgIzDUbhsKbLSPfw9c7ujf2S9H460CXgBmAE/bf/S7HH9Ynb8HrPozU+3jIruf5HDs/e2JWCLaC+XdDwMa7Am1yH7/5+X7+wdGRkzESb1v4HLg9472sH7ZHn/EuS8Cj9jHYXNO6P3ny9ykqi1vhP7IQjTabXmLrWo4BVgFVBpjQgXadwKV9nG+PddvgJuBoP25AthjjAkVnXeOr3Ps9vm9dv9cMQr4BPh/tmruDyJSRoG8e2PMNuCXwFZgB9b7XE3hvP8Qyb7vvPo9RPA1rF0U5Pn4VZB0Q0SkL7AI+I4x5lPnOWMtW/LO51tEvgB8bIxZneuxdJEiLDXFb40xpwAHsFQrneTruwewbQmzsQTiMUAZ4F4StEDI5/edCBH5AdABPJLrsXhBBYk3tgHDHZ+r7La8Q0SKsYTII8aY/7Wbm0RkqH1+KPCx3Z5PzzUNmCUiW4BHsdRb9wIDRCRUydM5vs6x2+f7A83ZHHAEjUCjMWaV/XkhlmAphHcPcDbwoTHmE2NMO/C/WL+TQnn/IZJ93/n2e0BErgG+AFxpC0PI8/GrIPHGm8Bo24OlBMu4uCTHY4pCRAT4I/CuMebXjlNLgJA3ytVYtpNQ+1zbo2UKsNehFsgqxpjbjDFVxpiRka6OmgAABZ1JREFUWO93uTHmSuBFYI7dLXLsoWeaY/fP2erTGLMTaBCRE+yms4B3KIB3b7MVmCIifez/R6HxF8T7d5Ds+14KnCsi5fau7Fy7LSeIyEws9e4sY8xBx6klwJdtb7lRwGjgDfJlbsq2UaZQf7C8PjZheUj8INfjiTHG07G28muBOvvnAizd9QvAZmAZMNDuL8D99jOtA2py/Qz2uD7PEa+t47D+YOqBx4FSu72X/bnePn9cHox7IlBrv/8nsbyACubdAz8G3gPWA/+D5SGUt+8f+CuWPacda0d4bVfeN5Ytot7++WqOx1+PZfMI/f3+ztH/B/b4NwLnO9pzPjdpihRFURQlJVS1pSiKoqSEChJFURQlJVSQKIqiKCmhgkRRFEVJCRUkiqIoSkqoIFEURVFSQgWJ0uMQkZdEpCaL33ePnZ79ngzd/w8iMjZBn4sT9VGUrlKUuIuiKCFEpMgcSWLoleuwAuMCmRiTMebrHrpdjJXR951MjEHp2eiORMlbRGSkWAWiHrRX9M+JSG/njkJEBtn5uRCRa0TkSbug0RYRuUFEvmtn431dRAY6bv8VEakTq4jTafb1ZXaxoTfsa2Y77rtERJZjRU27jVXsncd6EVknIpfZ7UuAvsDqUJvLtX8Skd/aY/xARD5vj+NdEfmTo99vRaTWfhc/drQ738d+EfmpiKyx71cpIp8DZgH32M98vP3zdxFZLSIvi8iJjrHcJyKv2WOZY7f3FZEXROQt+/lC78b1d2SfqxaRZfZY3hKR4+32m0TkTbGKN3U+h1LA5Dotg/7oT6wfrFoNHcBE+/MC4CrgJewUF8AgYIt9fA1Wiol+wGCs1Ob/xz43DysbMvb1D9rH07HrQQA/A66yjwdgpZ0os+/biJ1uI8ZYLwGexyo0VImVuypUF2N/guf8E1aiSsHKwPspcBLWQm+14/lD6T789jOc7Hie0PswwEX28d3ADx3fMcfxnS8Ao+3jyVi5skL9Hre/eyxQb7cXAUc53nm9PV7X35F9vAr4on3cC+iDlcvqAftaH9YuaXqu/6/pT2o/qtpS8p0PjTF19vFqrIkrHi8aY/YB+0RkL/CU3b4OONnR768AxpgVInKUWCVNz8XKQPx9u08vYIR9/LwxZnec7z0d+Kux1FdNIvIP4LN4T6D3lDHGiMg6oMkYsw5ARDZgPXMdcKmIXIc1qQ/FmujXRtynDWtyBut9nRP5RWKVGfgc8LiVnxGw8mqFeNIYEwTeEZFQPQ8BfiYi07HqxQzjSK2PqN+RiPQDhhljngAwxhy2v/tcrPf8tt2/L1YCwhUJ35CSt6ggUfKdVsdxAOiNtQIOqWV7xekfdHwOEv7/PTLJnMGaLC8xxmx0nhCRyVj1RTKJc5yRz1BkZ3z9PvBZY0yLrfKKfHaAdmNM6NkCuP+N+7AKVk1MMBaw3gnAlVi7vFONMe22OrGXS//Q7ygWAvzcGPP7OH2UAkNtJEohsgU41T6eE6dfPEI2jNOxUorvxUof/k2xl+kickoS93sZuExE/CIyGEtl9kYXx+bGUVjCbK+9Szg/yev3Yan8MFaxsw9F5EvQad+ZkOD6/liFx9pF5Ezg2Hid7V1ho4hcbH9HqYj0wXrHX7N3RYjIMBE5OslnUfIMFSRKIfJL4P+KyNtY+vqucNi+/ndY6bsBfgIUA2ttldJPkrjfE1hqpjXAcuBmY9UoSQvGmDVY6qD3gL8AryZ5i0eBm2wnguOxdhjXisgaYAOWbSYejwA1tuptrj2ORHwF+JaIrAVeA4YYY56zx7/SvtdCbAGnFC6aRl5RFEVJCd2RKIqiKCmhxnZFSQIROQmreqCTVmPMZA/X/gD4UkTz48aYn6ZrfIqSC1S1pSiKoqSEqrYURVGUlFBBoiiKoqSEChJFURQlJVSQKIqiKCnx/wFu8U71HOnZMAAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'duration_listed', 'price_usd' ,kind='scatter')\n","#it's a good feature"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"aZrWC7iJ0U_8","executionInfo":{"status":"ok","timestamp":1654721158987,"user_tz":-180,"elapsed":31,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"d130f09c-b410-44a2-e070-f0e47082198e"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":38},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXxU5b34//7MZGFJkBAw7JsBLYhQSUWKUKsUrG2h90qxK7a1pd/f1dtW69blq169XcReab21/daqt3K1tYit0KoFESyoiAYNawUiWwISIAQIAbLMPL8/5sxkljMzZ7bMJPm8X6+8MvOc55zzzEnm+TzPZxVjDIqiKIqSLK5sD0BRFEXp3KggURRFUVJCBYmiKIqSEipIFEVRlJRQQaIoiqKkRF62B9DR9O/f34wcOTLbw1AURelUbNq06ZgxZoDdsW4nSEaOHEllZWW2h6EoitKpEJH90Y6paktRFEVJCRUkiqIoSkqoIFEURVFSQgWJoiiKkhIqSBRFUZSUyLggEZF9IrJVRKpEpNJq6yciL4vIbut3idUuIvKwiFSLyBYRuTToOjdY/XeLyA1B7ZOt61db50qmP1P96WY215yg/nRzWvolQ3VdI8sqa6iua0z7tRVFURKho9x/P26MORb0/i7gFWPMz0TkLuv9ncAngTHWzxTgN8AUEekH3ANUAAbYJCIrjDENVp9vAhuBF4FrgJcy9UGWVx3kzue24Bah1ePlns+MZ8qoflTVnGDSsL4AVNWcYNfhU/zPhv0UuF14jGHRdZcwZ9KQwHVe2XGYVTvqmDWujKvHDUxoDHc/v5Ulbx4IvF8wdTj3zZ2Qng+YJNV1jYFnUF5WnNWxKIrSsWQrjmQucKX1+kngVXyCZC6wxPhy278pIn1FZJDV92VjzHEAEXkZuEZEXgX6GGPetNqXAJ8lQ4Kk/nQzdz63hXOt3kDbD5/fFvOcVo8HgDue28K08v6UFhUya/Gr7KprAuBPlbVcWNablbdc6WgM1XWNIUIEYMmGAyy4fGTWJvBcFGyKonQcHWEjMcAqEdkkIguttjJjzAfW68NAmfV6CFATdG6t1RarvdamPQQRWSgilSJSefTo0aQ/SG3DWdxJas6M8Z3/yo7DASHiZ2ddE6/sOOzoOlU1JxJqzzTRBJuq3BSl+9ARguQKY8yl+NRWN4nIjOCD1u4jo9W1jDGPGmMqjDEVAwbYRvg7YmhJT1o93vgdbWhu89K7wM2qHXW2x6O1h9tC/OqzcKK1Z5pcE2yKonQ8GRckxpiD1u8jwF+Ay4A6S2WF9fuI1f0gMCzo9KFWW6z2oTbtGaG0qJB7PjM+qXPzXdDU4mHWuDLb43btdz+/lZmL13Hbsi3MXLyOu5dvpbysmAVTh4f0WzB1eNbUWrkm2BRF6XgyKkhEpLeIFPtfA7OAbcAKwO95dQOw3Hq9AlhgeW9dDpy0VGArgVkiUmJ5eM0CVlrHTonI5Za31oKga2WEC8uKcCWh3XK7XQwt6cnV4wZyYVnvsGv2jjC4x1IZ3Td3AqtvmcHP513C6ltmZNUekWuCTVGUjifTxvYy4C+WR24e8AdjzN9F5G1gqYjcCOwH5lv9XwSuBaqBM8DXAIwxx0XkfuBtq999fsM78G/A74Ge+IzsGfPYCjcqOyXPBYuuu4TSokIAVt5yZVyvrVgqo/Ky4sBPMNnynLpv7gQWXD5SvbYUpZuSUUFijNkDTLRprweutmk3wE1RrvUE8IRNeyVwccqDjYPdDsGPW+BbHxtNbcMZVmyONJq7XS6mlfcPaRtR2puPjOwHwLLKmogJOJpqqKRXvm17tj2n7ASboijdA41sd0gs47HHwK9f3UPfXgX86gsfpkde6GMtcLuobTgbeB9s+7hxyaYQG4gfO5URwI1LNoX0A+eeU5kMkFQUpfuigsQhTozHSzYcYGCfQgizobR6vQwt6QnE3tmET/73zZ3A4wsmx+3nxHNqedVBpj2whi8/tpFpD6xhRVXGfBIURelmqCBxSLQdQjj76s+w6LpL6JHvorgwj8I84aYrywPHv//nrTHOjhQKr7x3JG6/eJ5TwYGUjc1tnGv1csdzW3RnoihKWlBBkgD3zZ3AD6+9CHeMp7bzcCNzJg3h9Tuv4pszRgPCo+v2MO2BNTy67n3e3t8Q8x7BQqH+dDPPvWO/cwjuF89zqrbhLPmu0EHnu0LVbYqiKMnS7UrtpsIdyzaztLI2Zp//eWMf/+fKCwD49avVNLd5aW7zBTEuWrkz5rnhbrO1DWcpcLsC5/sZ3q9HhGE7lufU0JKetHpDrxGsblMURUkFFSQOefQf78cVIuBz9fWv9PNdLs7RPoEXuIU2T2QQ/6cnDOS7M8dGCIehJT1psYmkP3D8HNV1jRH9o3lOlRYVsui6S7jjuS3ku1y0er0h7siKoiipoILEAfWnm1m08j1Hfb2GwEo/fBfgNTC/YmiIQJpfMYRF8ybZXqu0qJDrLh3CH96qiTjmjydxypxJQ5hW3p/ahrMMLempQkRRlLShgsQBPhsDtDlIs/XvV42hoamFqpoT3PqJsTz08q6QXcCcSUNYOH204+C9r08bZStIkklBUlpUmLIAqT/drMJIUZQQVJA4YGhJT1qNEC+3ZGGei5qGM8xcvC7QdtWF/fnOzAtDJt5Egvf8hvQlG0KDDbMR/OevxRIuGBVF6d6IL5i8+1BRUWEqKysTPu/Rde/zkxcj1Vv5LijId+PxGm79xFjbPiNKe/D4gstSmvyzXTiq/nQz0x5YE1KLpUe+i9fvvEp3JorSDRCRTcaYCrtjuiNxyMIZF1B95HSIfWPS0D58tLw/4wb1YeoF/VkbJeZjf/05Zi5eF5K2JFEVUbZTkPhdiIOdB/wuxCpIFKV7o4IkARZOH82Ifr1YveMw79aeosr6AZ+6acHlI2Oe769kuP2DU51ORaQuxIqiREMDEh3iz4/14KpdvGsJj2D8NozZ48+PeZ3Xqo92yihzvwuxP2K/R75LXYgVRQF0R+KIWPmxgvl//6hm6uj+bKs9ycGT9oKhf1GPEDsDwLlWb6dQEakLsaIodqggcYDTsrHL3jnEsncORT2+YOpwDh5vsj2292gjEztBVcF0uBAritK1UNWWA1ItG5vvFn76LxeDgZ+u3GXbZ8Oe47btiqIouY7uSBxQXlbM6AG92HP0TFLnt3oMdy/fRmuMgMapo/slOTpFUZTsojsSB1TXNSYtRPzEEiIAowZodUFFUTonKkgcEM1GIvjUVoV5kY/x6g8NoFe+29H181yoG62iKJ0WVW05IJqNxADGa2gxho+NKeXDw0toavEwe1wZowYUMe2BNY6uP25QcUIG7GxHuSuKogSjKVIc8o3fv8Xq947G7ecCCqwYCyAidfvz7x5kzc7I6/zg2otYOOOCuNe/+/mtIa7IwdHyiqIomSJWihRVbTnkgXkTHfXzQiDIcPB5Pbjrmov46b9ezOt3XsWcSUO4dsIg2/MWrdwZNyjRLp4lvH67oihKR6OCxCGlRYV86bL4Ndv9tLR6mffbN7n3rzu4+Y9V/PIVn9tvNDVZgVvilr6NZqtxGueiKIqSCVSQJMBVFw1w3DfcScu/cygvK2Z+xdDI/ia6wb26rpFllTWU9Mq3PZ5qnIuiKEoqqLHdIeG2iWTwVzU8dCJ05yEQNW9V+H0vLOvNzrr26Phs1SZRFEXxo4LEAU5zbcVj0rC+vLLjMK9V14e0G2DweT0c3XdnXROPL5hMw5lW9dpSFCUnUNWWA9Jlg1jz3hG+uWST7bGVO+oc37fhTCvzKoapEFEUJSdQQeKAdNkgFq18L8J24qeowM2yypoQD6xo9401nvrTzWyuOZG1tPR+e456kilK90FVWw6wq5ueDBIjZGfxK9WB1/7YkETrtWe7prrGuChK90QDEh1Sf7qZqT9dTYvHWX+X+Dyx4iH4bCThrL5lRkBgOIlkz3ZN9eq6RmYuXhfRHvw5FEXpvGhAYhqobThLvjt67iyxfvfId9Ej38UtM8fSKz/08fbId1HgFooL8yjME746dYStEIFQ+0h5WXFcm4i/pnow/prqHYHGuChK96VDVFsi4gYqgYPGmE+LyCjgGaAU2AR8xRjTIiKFwBJgMlAPXG+M2Wdd4/vAjYAH+LYxZqXVfg3wS8ANPGaM+VkmPsO2gydpirIdyRO4/7MXU9twhl4FecweP5CS3gU88mp1RN8Xvz2dphYPrW0ent1UG/V+sewglXvrWbf7GDPG9KdiVCmQ/ZrqydhzFEXpGnTUjuQ7wD+D3j8ALDbGlAMN+AQE1u8Gq32x1Q8RGQd8HhgPXAP8WkTcloB6BPgkMA74gtU3rdSfbuaHz2+LerzNwPf/so1HXt3Dg6t2MXPxOv6+7TAVI0pC+n1kRAnlZcU8t6mGeb99kz9V2guSORMHRd19fPmxN5n32zd5eE018377Jl957E0g+zXV/facYDTGRVG6BxnfkYjIUOBTwI+BW0VEgKuAL1pdngTuBX4DzLVeAywDfmX1nws8Y4xpBvaKSDVwmdWv2hizx7rXM1bfHen8DL/9x/sJn2MneNZX1/OTF3bEjElxC9zzmfG2xyr31kfEoKyvrqdybz0Vo0qzXlP9vrkTWHD5SM1MrCjdjI5Qbf0CuAPwzyqlwAljTJv1vhbwuxYNAWoAjDFtInLS6j8EeDPomsHn1IS1TwkfgIgsBBYCDB/uPF+Wn/W742f9dcqj6/fGPN6rII/ahrO2QmDd7mO256zbfSyg4sp2TfXysmIVIIrSzcioaktEPg0cMcbYR+F1EMaYR40xFcaYigEDnOfL8nPRwI6bGGPZNWaM6Z9Qu6IoSkeQaRvJNGCOiOzDZ1y/Cp9hvK+I+HdDQ4GD1uuDwDAA6/h5+Izugfawc6K1p5VPXzI43ZcMwSU4smtUjCplenlpSNv08tLAbkRRFCUbZFS1ZYz5PvB9ABG5ErjNGPMlEXkWmIdPuNwALLdOWWG932AdX2OMMSKyAviDiDwEDAbGAG/h87odY3mBHcRnkPfbXtJGw5nWdF8yBK+B6WNLuX/uhLhqqf/9xuW2XluKoijZIluR7XcCz4jIfwLvAo9b7Y8D/2sZ04/jEwwYY7aLyFJ8RvQ24CZjjAdARG4GVuJz/33CGLM93YPtCBfWF7fWcevMCx3ZNypG6S5EUZTcocMEiTHmVeBV6/Ue2r2ugvucAz4X5fwf4/P8Cm9/EXgxjUONoLysmPOL8jly2vnOJFrE+remj6JPz3weXLUr4pg/zbyiKEpnQiPbHVC5tz4hIQL2QgTglfeOMHv8QNtjGrynKEpnRAWJA37/RmyX3USoPtrEiTMtfOriUGGiwXuKonRWNPuvA/bXn0nr9a7/3Zv0zHdT4IbPTR7O16aNVCHSgThJgqkoinNUkDjgvJ72tdKTxeOF082+vF1LKw9w66yxIcd1osscmupeUdKPqrYccE0Um0Y6aPXCjb9/O/D+7ue3MnPxOm5btoWZi9dx9/KtGbt3d8OudPGSDQe0CJeipIgKEgecPNcWv5MDCqM87arak1TurY850WW78mFXQFPdK0pmUNWWA9IxebsFjERzCvblyxrer5ftsSde38uf3z2YtcqHXQVNda8omUF3JA44fOpcytfwGJg6ql/U46P794o6oT33zkHOtXppbG7jXKuXO57bojuTJNBU94qSGXRH4oB0pUj5R1gK+GC+u3QLC6YOj6jRfu2EMtbvqqe5rb1olb/yYTaz/HZWNNW9oqQfFSQO+NTFA9mw53jG77NkwwFW3zIjZKI7caaFl3ccCenXkZUPuyKa6l5R0osKEgf07V3QYfeqqjkRqM8e7qqa7xbcLunQyoeKoijxUEHigH9+cKrD7uW3k9h5cLV6DH/8xhRN2BgDjcFRlI5HBYkDehV0zGMKNvw+8bp9WpZ99WdUkERBgw0VJTuo15YDzuuReUHy+ILJgUmv/nQzz71jX59LXVXt0WBDRckeKkgcsPVQ5lVb7x1un/BqG85S4I7801w7oSywY9EAxVA02FBRsocKEgfMGleW8Xs8uGpXIB1Ka5uHc22ekOOFeS7ut3Ysy6sOMu2BNXz5sY1Me2ANK6rSW124MwopDTZUlOyhNpIcYsmGA5xoamHFlsOBtnBPrfrTzdz53BbOtXo5hy+25I7ntjCtvH9aPLmWVx3kzue2dLooen+wYXAMjgYbKkrHoILEAat21HXYvYKFCER6atU2nCXf5QoIEUhfgGKmhVSm0WBDRckOqtpywNTR0VObdAQPvdxelndoSU9avd6Q4+kKUPQLqWD8QqqzUF5WHIjDURSlY1BB4oBRA4qRDrjP3ImDbNvf2HM84H1UWlTIousuoUe+i+LCPHrku1h03SU0NLWwrLImJS+lTAqpdNMZ7TiK0lVR1ZYDhpb0hOiJe9OCAMebWqIer6o5EVhlz5k0hGnl/altOMvQkp78cvUuvv1MVaBvsvETfiF1R5iNJFitVX+6OXDfbKm7OqsdR1G6KipIHNDQ1ILJoBABn4xaHyOpY7j3UUNTC7vrGjnWeM42fmLB5cmV7w0XUsHCIhcm8M5ux1GUrogKEgdkOxZh2ujQSPbwCG47gncwiVJaVBgxKefKBJ5JZwNFUZJDbSQOyHYswut76pm5eB03PbWJyr31cYUIpH/MuWKI70x2HEXpLqggccC2g7kRHf3CtsNc/+ibcftlIn4iVybwaM4GuhtRlOyhqi0H/KXqULaHEMATxVbz+ILJNJxpzVj8hBNDfEcRy46jKErHo4LEAX0Lc+sx5buF1iCJsmDqcK4eNzDj9w2fwP0ux9kI/rOz4yiKkh1ya4bMVVwdEUXiHLdL+OM3prCv/kyHT+L+CVxTtiuK4kdtJA74yIiSrN177sRBfOmy4RS4CbEJVIwqzVoEt6ZsVxQlGN2ROKBHhgtbTRtdyn/MHQ/43HZLeuVH2DtunTU2Z2wCsVK2a2oSRel+ZHSGFJEewDqg0LrXMmPMPSIyCngGKAU2AV8xxrSISCGwBJgM1APXG2P2Wdf6PnAj4AG+bYxZabVfA/wScAOPGWN+lu7PkUn33x9eexHfnHEB4IvVGFNWHCIs/KVj/cKld4E764IknSnbcyFSXlGU1Mj0jqQZuMoYc1pE8oHXROQl4FZgsTHmGRH5f/gExG+s3w3GmHIR+TzwAHC9iIwDPg+MBwYDq0VkrHWPR4BPALXA2yKywhizI50forysmCvKS3ktRuR5svz4xfeoaTjD5BH9IqLGK/cdt40ZyYQ9IpFa5+lK2Z4LkfKKoqSOmEzn/vDfSKQX8Brw/wEvAAONMW0iMhW41xgzW0RWWq83iEgecBgYANwFYIz5qXWtlcC91qXvNcbMttq/H9zPjoqKClNZWZnQ2OtPNzP5P1cndE6iFOa5aG5rj9MocEOLJ3r/1bfMSJsaKVnDeXVdIyu3+9Lezx4/MKHx1J9uZtoDazjX2v6Ze+S7eP3Oq3Rnoig5iIhsMsZU2B2La2wXkUYRORXtx8H5bhGpAo4ALwPvAyeMMW1Wl1rAvwwdAtQAWMdP4lN/BdrDzonWHj6GhSJSKSKVR48ejTfkCDa8n/6dSDjh8lzi/GnSlbYlFcP5kg37eHDVLh5ctYuZi9cFKjw6IVci5RVFSZ24gsQYU2yM6YPPDnEXvol6KHAn8AsH53uMMZOscy4DLkppxElgjHnUGFNhjKkYMGBAwucf64BU5d4wSWLwRunpw84ekUxq9WRrnafquZVqpLymkVeU3CER9985xphfG2MajTGnjDG/AeY6PdkYcwJYC0wF+lqqK/AJGH/R8YPAMADr+Hn4jO6B9rBzorWnlSvK+6f7khF8asLAkLQfP//cJBZMHW7b184ekWwd92gG8m2HTsacpJMVQH5SSXWS6Zr1iqIkRiLG9iYR+RI+bysDfAFoinWCiAwAWo0xJ0SkJz6j+AP4BMo861o3AMutU1ZY7zdYx9cYY4yIrAD+ICIP4TO2jwHewlfGY4zlBXYQn0H+iwl8JkecOBO9Tki6+Pv2Op6+8bKQIMNp5f155q0DIbaSArfwnavHhpzrJDNvNGN6eVkx8yuGsLQydDL+/Rv7+eNbB3hw3kRbA3g6PLeSSXWSK1mIFUVpJxFB8kV86q1f4hMkrxN/0h4EPCkibny7n6XGmL+JyA7gGRH5T+Bd4HGr/+PA/4pINXAcn2DAGLNdRJYCO4A24CZjjAdARG4GVuJz/33CGLM9gc/kiHW7j6X7khEYA198bCOFee6AB9OI0t4U5uXR4mkL9CvMc0ekTI+XWj2eMf1LU0bywpbDNIVZ95vbTNRJOhnPLTtX30RTnWgaeUXJPRwLEiuew7EqyzpnC/Bhm/Y9+Owl4e3ngM9FudaPgR/btL8IvJjIuBJldP9embw8AC0er/XbJzS+9+xm/viNKY7sCLHsDdFsGcGFr4aW9MQTxXsv1iR939wJLLh8pCO34XS5+qYrC3Ei7s6KosTGsY1ERBaJSB8RyReRV0TkqIh8OZODyxXaYtu900L4H6LVY/j87zYya9z55LmgV74rqh2htKgwIo3LR0aUUFpU6MiW4bdXFOZF/jvYTdLBhu7ysuK4qVqC1VGNzW2ca/Vyx3NbkjKUpyON/N3Pb2Xm4nXctmxLwt5mSnaprmtkWWWNpuPJMRJRbc0yxtwhIv8C7AP+FV/U+lOZGFguMbI08zsSO1nV5jWs2HzYeu1lfsVQ21V8dV1jRJne9dX1VNc1OrZl+O0Vf9h4gF+t3U2B222bKj6ZnUW61VHxbCuxouWd7NCU3EQTheYuiQgSf99PAc8aY06K5FZW3EyRn+fO9hAAWFpZy8LpoyMmvFi7jnkVwxzbMkqLCvn3q8fwxSnDbSdiO0P37cviG7ozURQrmm0lnqDTPGGdE10A5DaJuP/+TUTew5cH6xXLI+tcZoaVW7S2xQgx72D8E2HwFj/eruO+uRNYfcsMfj7vElbfMiPmKq66rpG17x2xzellF0TY3OblDxtjl/7tqKqGTlRo6cwTpnQcqbqbK5klEWP7XSKyCDhpjPGISBMJGt87Ky9uzZ0Kiet2H2FL7YmILX68XUd5WXHclVs81cHQkp4Bp4BgfrV2N1+cMjymYOiIqoZOVGjpyhOmdCy6AMhtHAsSEVkQ9Dr40JJ0DigXCbc/ZBO/zSSYJRsO8INPXkRhngvB55tdMaJfQtd1ojooLSrk5o+X818v7wrpV+COdElOh6tvojhVoSXibabkBroAyG0SsZF8JOh1D+Bq4B26gSA50ZT5gMRUWbTyvRDvskSD9JzaDr44ZTi/Wrub5rZ2d+HwyTpbWX0TqSvvZIem5Ba6AMhdElFt/XvwexHpiy8yvcszpKQnR5tasz2MmBS4XbR5k/eKcqo6KC0q5MF5E6NO1tEizwef16NDSgN3hApNyR66AMhNUqlH0gSMStdAcplp5aVU1cZNdNwhzK8YSo98V8gWf37FUFZsDrXjJOoV5VR1UH+6mRGlvfnbzVfQ1OKJmKzt7BQer2Heb98MuW4sg3+qxa4yrUJTFCWURGwkf8Wnfgeft9c4YGkmBpVr9CnMz+r9Lyrrzc66JlwCf3mnlv+aPylii39FeX9HKp1YxFMd2KmsJobtWGztFJ7QqPlYbpta7EpROh+OC1uJyMeC3rYB+40xtRkZVQZJprDV1T9/lfePxcxPmTHyBNps/kSbfjQzoUA8J8RKG5JIIaoVVQcDQu1cmydCkAD8fN4lzKsYFtKmxa4UJXeJVdgqERvJP+LcZIMxZmqig+sMnD6XPWO7nRABeGrDPq68qIzeBW7eO9zIpv3HafV4+eykIXG9p+yI5/qbSHR6sJ2itc0TotbyY2eT0YSMHU+qiw9FgfTWbO+RxmvlFFNGlbJia6TbbTZZ/Eo1v1m3J2T1DvDUxhqml5fyv9+4PKAmcovQ4vFy+6wLWfixCyKu5TSxYzTX2niuvk7dNhONgNdJMDVUjaiki3QKko4p/p4F9h/PjlorHuFCxM/66npe2XE44D3l5ycvvUf10UYWzZsU0j+a6++KzYe44aMjA0LBzrX2tepjcScjp26bibjv6iSYGlrXRUkn6RQkXZbqI9kRJF+6bDjL3qmlOYn0w6t21OG2yYW2tPIgC6dfEDKZR3P9ffy1PTy6fk9gkg53rQUCNo14k5FTt00n7rs6CaaOqhGVdJJIrq14dNkMjheWFWXlvl+bNpLfLaigMImckbPGldmmM4HIHYjf9TecphZvRL6q0qJCJg7rS2lRoW3urXyXiw3vH4ua6ttJGvDge9gR7b61DWejXtMJ3akOfCYSaSrdl4R2JCIyAhhjjFltlc7NM8b4Z4SvpH10OcK4IX15J8NxJBcPLmbbofbJ9ZpxZTS1eBh8Xg/E5QIbodAj32Wr3ppeXsrV4wZy+6wL+clL70Uct9uB+NVPKzYf4vHX9tDUEn+lajcZNbW0cfMfqwLvg4326UoDnolJsLupyhJRIypKPBKJI/kmsBDoB1wADAX+H75UKRhjtmVigLlAR2y1goUIwN931PHyP+twu4TPfngwy6sOYYyhzQv/flU5C6aOpLbhLMcaz7F251FON7dRVOjms5OGUDGqFICFH7uA6qONIfXYY+UnKi8r5oaPjuTR9XtC2qNN0uGTUXObh5YoMSNA2tKAJzIJOjHId1dVmWYBUNJFIjuSm/CVx90IYIzZLSLnZ2RUOUbl/uNZua/HgMdjWFp5kDyXUJDnRsRwwYAiSosK+eXqXRErfL8Q8bNo3iQWTr/AcX6iRFeqwZPRuwcauPevOyL6xEr1nWwdECeToNNdRne2F2gWACUdJCJImo0xLf7MvyKSRxf21Arm8Mnsl11p8xraWnx1Ufy5q5yu8BPNT5ToStU/GfUusDfmxEr1nUoa8FiTYCK7DLUXKEpqJGJs/4eI/ADoKSKfAJ4F/pqZYeUWRclYuzNIvsvFut3HbI/9+IUdrNt1NGWDcTyDtx3lZcVMLw/dEU0vLw0IsnCDvtsl7PggM7anWAb5cIN/RxXeUpSuSiI7kruAG4GtwLeAF4HHMjGoXKNfr0JqTuSOJ0+Lx8OMMf15eE11xLG1u46xdtcxXOE57hwAACAASURBVMAvPj8pqsE42HYApEVPXn+6mbf3N4S0vb2/gfrTzZQWFfKdq8fyp7fb3Zk9XpMxW0S0XcbTG/eztLI9s4/f4N/Z7QWx0tsoSqZJRJD0BJ4wxvwOQETcVtuZTAwslzjcmH3VVjAfGlRMxahSPnXxQF7YZh9x7wW+80yV7SQdbDs41+bBGEPP/LyUvZXi2RpqG85S4HaFxMVkyhZhZ+u5debYCC+2YHVgZ7UXpMsbTlGSJRHV1iv4BIefnsDq9A4nN+nXK7vZf8OpqjnFb9fu5vrLhpMf4y9ogA3vh1Z3rNxbz/ee3Ryoa97q8XmCRatxDs5iPyC+rSGTtgi7GJA5k4bw+p1X8dQ3pvD6nVfRGiWuZuX23Ep/kwjR0tuE/62c/g0VJRkS2ZH0MMac9r8xxpwWkV4ZGFPO8bELz+efdXuzPYwQfrrSV+42z+X7iRb8fux0+24qfOVqR/gOIZHVbjyPr0zFLsTyzgrdZUTzDem8PiNOKlvqjkXJNIkIkiYRudQY8w6AiEwGUgsl7iQcPpUd+8jXPzqCaeX9uXHJpqh92rxQmCfMmzyYZ94+GHF8WEkvllXWUNIrP64QgdAdwis7DtuududcMpj8PHeELaG6rpGWNi9Pff0y2+OQ/tiFRLyzZo8fxIOrdkdcY/b4QSmNIZvEq2zpJCGnoqRKIoLku8CzInIIX4zeQOD6jIwqx6htyI4ZqLSokPePOsjzZeALl43EayTEkDy2rHdMIWTHR0aUUFpUGHP38oXHNtIjzx2y+k9055IuW0QiMSBOq0Bmi2QM5vE+k5Mdi6KkSiL1SN4WkYuAC62mncaY3C5kniaKC7KT2/L3b+zl6On4j7jZY+hd4GbRvIksnD6aqpoT5Lngu0u3JHzP9dX1PPXG3pi7l1aPodXTBiQe05JuErW7OM1E3NGkon6K9Zni7VgUJR3ENbaLyFXW738FPgOMtX4+Y7V1efYfz86OxIkQAV/OrSYrWLG8rJj8PBe3LUtciPj50YrI6HQ/+e7QhDGxYlpiRbSni2RiQMrLiplXMSxnhIhTg3kson0mu/idXNqFKV0DJ0vtjwFr8AmRcAzw57SOKAc51+rJ9hDi4l+B159u5o5lm6Ma3x9fMJlVO+r4U2XiVZLzXeASIdg43er1Ro1p6ahVb2ePAcm0+imduzCNV8l9svE3iitIjDH3iIgLeMkYs7QDxpRzmBxLkN+n0E2L19h6Pj298QDNUerzLpg6nKvHDWREae+kBEmP/DwWzhjNI69Wh9y7YlQp8yuGRgT6+f+JO+Ifu7PGgEDHqJ8STZNjh3p/5T7Z+hs5Uv4bY7wicgeQkCARkWHAEqAM3zL2UWPML0WkH/AnYCSwD5hvjGkQXyKvXwLX4gt0/GqQl9gNwI+sS/+nMeZJq30y8Ht8cS0vAt8xxqTVn7O0Zz4fnMydyPbF109i0vCSiBV4dV0jv1oT6ZXkFvjTwssDCR3tDLR25LuEVm/7ozzb6qF/UQGPfOHDbK49yYwx/akYVcryqoOs2HyIXvkuWjxe7ph9UaCkb/g/9kcv6Md9cy7OmEAJF1qdoRxveVlxTEGcC6j3V+6Tzb9RIlbk1SJyGz4BEHAlMsbESo3bBnzPGPOOiBQDm0TkZeCrwCvGmJ+JyF340q/cCXwSGGP9TAF+A0yxBM89QAU+gbRJRFYYYxqsPt/El5X4ReAa4KUEPldcjjS1pPNyKXPjkk0RK43lVQe5/dnNEWncAcac3zsiK7Bf3bFy+2Fe3nGYKpt6K61eg9sluAQrcNHw/b+0Vwt4eE018yuGsmLzoZC6KA+t3sV1k4fS0NQS8Y/9xvvHmbl4XUZWSuFCa3p5KW/vb8j5GiN+Qdy7wEWzx3DH7AtZOOOCbA8rBPX+yn2y+TdKJLL9euDfgH8AlUE/UTHGfODfUVgFsP4JDAHmAk9a3Z4EPmu9ngssMT7eBPqKyCBgNvCyMea4JTxeBq6xjvUxxrxp7UKWBF0rbfTOz62kjRBqjPXHUtgJEYD36pr49h8j3YDLy4q56aoxPP7Vy8hz2evvPF5Da5TrAiytrI34J/K738YytidqTI6H3WpsfXV9III/OGo/lyohBsfBNLV4afMYHnp5V06MLRj1/sp9svk3SkSQjAMeATYDVcB/A+OdniwiI4EP49s5lBljPrAOHcan+gKfkKkJOq3WaovVXmvTHn7vhSJSKSKVR48edTrkAPmx8pBkEf9EbZfpNpwVmw9Hnbi3HzpJmzd5bWB4SV+/+228f+B0enU5uVa+y8XTGw8w7YE1fPmxjUx7YA0rqiKDODuSTJUNTjfq/ZX7ZPNvlIhq60ngFPCw9f6LVtv8eCeKSBHwHPBdY8wpf00TAGOMEZGM5qgwxjwKPApQUVGR8L0KJMes7RYjS30Zao41nuOMA88y/xY30m6Q2ue7Y/ZFPLR6V4Txv7SoMKYtJpGVUjxbh5NrtXi8PLJ2N81tJmcqISYaB5NNm0+uxuAo7WTrb5SIILnYGDMu6P1aEYkecGAhIvn4hMjTxhi/q3CdiAwyxnxgqaeOWO0HgWFBpw+12g4CV4a1v2q1D7Xpn1aONuVm3OW8377JhWW92VnnIPod32Qbnpfq1k+MpcAdfTfjX+FEEwYLpg5n4ccu4LrJQ20nOP8/9t3Lt/HGnuMh5zn9J3dS6dDOgSDcRnLTleU8um4PzW1tgT5Osg9ncvJOJP9YLtSVT4f3l5JZsvE3EqcOTiLyFPAry3aBiEwBbjLGLIhxjuDbtRw3xnw3qP1BoD7I2N7PGHOHiHwKuBmf19YU4GFjzGWWsX0TcKl1iXeAycaY4yLyFvBt2o3t/22MeTHamCoqKkxlZUzTTgSj7nqhE6f187Fg6nC+c/VYpj2wJsQwHovHF0zm6nEDAZ8Nwp8l96KBxdQ0nKF/UQ+mXlDqeHJNxg24/nRzxJh75Lt4/c6rbO8by2sLSOha0HGTt3+cvQvcNLV4IoRWos8hmXvnsmebkn1EZJMxpsLuWCI7ksnAGyLiX/INB3aKyFZ8GqpLbM6ZBnwF2CoiVVbbD4CfAUtF5EZgP+3qsRfxCZFqfO6/X8N38eMicj/wttXvviBvsX+j3f33JdLssQWdNzfsVz86gosHn8ekYX0p6V3A2veORDWq29Fwpn0ntv2DU/z32uqUapgks1JKtJ56+D3C40sSyT6cSELIVCktKuS16mNRhVam6srnwi5H6fwkIkiuSfTixpjXiK6Av9qmvwFuinKtJ4AnbNorgYsTHVtXpzDPxZenjKCpxcPGvce5/4UduEUCqVScEJxB9vZlW2hp84ZMZI3N7fm2MmVnSHcNk0Si4DM1edsRT2hlopZLRwpKp+PRnVHnJJGkjfszORAlfeS5YPb48/n0r14jzyWcbo4UHj3zXZyNoeLy2zBixaf4ydTkCumvYRKs+op3jUwW4gonntDKRC2XjhSUsag/3czTGw/wyNrdFLjdujPqhGQnra2SEfxZsNq8PnffaBS6hZs/Xs7WQyf4+7YjEcf9tpF48Sl+Wjxe3j3QwLHGczScaU27t0i6cmklmj4iU4W47HAitNKdU6wjBWU0llcd5I5lWwLll/2OENn2plMSQwVJF8KpLafZY3hw1S6mjS61Pe63jditWAHLzuKzkZxp9dDc5uXev4Y68KU7cj3VXFrJpo/oqISQToVWOnOKdaSgtMO/UGm2yTCajZ2RkjwqSLoxr++pt233x6cMLekZEWxY4BZe/PZ0SnoXsOH9em7+47u218i1PEyppI9oaGphd10jvQvcCU9siXiqZSOLcTYzJ0dbqEDH74yU1FBB0sXple/CCww+rwd7jsWvq5Lngvw8X0qY16qP4QlSfeS7hZ9/bmJgQtxfHzt+JdkcP6lmC7Yz2iabPiKVbKrJnJuNLMbZypxsp1oDX+nojtwZKamTm7k/lLTx8QvP56mvX+ZIiADkuV0MLekZUDsEax1cAtPK+wfev7yjLua1ksnxc/fzW5m5eB23LdvCzMXruHv51oTOX1510DYFSjLpI1IpOJWOYlVdnfCiZIV5Lr73ibG8cdfVamjvZOiOpIvzwrbDjBvsbFVfkNdeXXBzzYkItYPbJQG9dXVdI1W1J6NeK5kcP8nYMcIDDmO5syaaPiIVdZhmy3VGZy9KpvhQQdItiB+EWOAWXvz3KyjpXcDmmhP0LnBHqB3OtHh5euN+Jg7rG3WiLB/Qm+9/8iIazrRSXdeY0KTpZPINVntt/+BUSDDdZycNxhPmYRZutE0kKDKVbKqaLdc5nbkomeJDBUk3YPb4gby5p5711ZHG9eLC9uj08Il51rgyVmz+IKT/0spaFk4fHXVCHD+4DzcuaU9Zn4hNId7kG25zcLsEj7c9AeMzb0dWfUzFaGuXv8vpTiuVcxWls6GCpIuzYOpwSnoX8GYUD60brxhJ314FDD6vB196fGNIZtwXt9nHolTVnGBexTCml5eGCKfJw89jeZjgScR7K9bka6f28sRJfZ/vImWjbSrZVDVbrtJdUEHigJ55cLYtfr9scn5xPqfOech3+crdXnfpEL4+bRTlZcVsrjlBe7hiKL94pTrqNQvcQptNMOKkYX2pP93M2/sbQto3H4yssgiJ2QWiTb7J1C756rSRaTHappJNNZ2ZWFP1ZlOUTKGCxAEFeS7O2gRN5Qrf+fhoFkwbzfZDpwDD+MHnBQziyyprrLiQxFNPnm3xcumw83inpt2o7t/hrH3vCO6wOi2xBE8ihAuP8rLiqNcocLtwu7BN9zLbylycCrkyeafihpwLaB6tro0KEgecPJe7QgTgl2v38PDaPRQF2Tsq9x2PqF9uZyOJhYEQITJn4iAmj+jHtAfWkOeKTADpNTC/YihLK9ttFcnYBaJNmuFqrzwXiBj+7coxvF59lDf3tu+QppeXRtSpT5RcmbyTjcrPFTTDcNfHcT2SrkIy9UhG3vVChkaTGQrcYJfkd9m3LufOP2/h/aPOYkrsKMxzRaS06JkntHoNd8y+iIUfuyClVXx1XSMzF6+LaF99ywzKy4qp3FvP5x/bGLLz8dflWL/rCH/bephPTxjIZy8dFnGNdI6jI1lWWcNty7ZEtP983iXMq0jtc2aaTNZRUTqWdNUjUToLUdYGy96pTUmIgL0j8dk23w1/8tJ71J44w31zJ8ScbP1qjtY2D/vqzziyhfjtLPl5bnrmuWn0hFY5/NHz23jJcg5Y/c8jvFNzIqXdQy7FgXRmV+JcyTCsZBYVJF2QliiauP31qQkR8KmvYhFL5RKcLtzjNSFR83MmDmLGmAGU9Mq3va5/0rRLq9Hc5gkIESfjcEIuTd6d2ZU4FzIMK5lHU6R0I66vGBq/UwzcLuETHzo/bj+71fzyqoN89GdreOjlXTS3hQoRgBWbP+C2ZVu4cckmLizrHXIseNIMT6vRI9/F5ybbq3eS8fTyk0xKlUxy39wJrL5lBj+fdwmrb5nRaQztdn8vzaPV9dAdSTeiuEd+UkZ3Px6v4eV/1kW1wfgJX7XHShdux866Jh5fMDlqbZPwtBoNTS08/daBiOukunvItTiQdLoSdySaBqXrozuSbsQ3l2ziggFFKV2jxWMYN7hPYIUZXgLebtXu15MnQsOZVuZVDIs6cZYWFTLRqnKYyd1DeVlxzHEozgj+eyldD92RdCO8wO83pF4xuarmFMu+dTn5ee7AjiDWqj1auvBYJLqb6KjdQ67EleQKdvEhGjPS/VBBoiTFvvozAddT/64gGuGV+Fo8Xm7+eDlTR/djX/0Z1lcfZXlVe2qVZHcTmVb95EpcSa5gFx9iIOGYERXOnR+NI3FAZ4sj6QhunzWG2eMHOfri+yeKkaW9AruY8JVqrk8muRRXkgvYxYcU5rkAQ3NbZIxPtJ1JZxLO3X2npXEkStL4bQ/BrqcAD67azYOrdsf94judKDrCkJzKRJBLcSW5gF18iNslYARo98SIFTPSmSL2NTo/NipIFFtcAr/7ymSutvJVLbh8JH9+t5Zfv7onpF+sL76TicI/ufcucNPU4kl6tVd/upnth04CwvjBfSKukepEkEtxJbmAnd3Ll405VMMRK2akswhnv9dhtIJpigoSJQpeA9966h0emj+ROZOGsP2DUzy6bo9t32hf/N+8ap9Z+LXqY5SXFQcmd4BzrV4K3YK4JOFJfnnVQW57djOtVtqUPBc8NH9S4BrpmAg6c1BgJgi3e/mFMxDRFu0ZdxbhrNH58VFB0oUY078Xux3WZndCm9dw+7ItjBvUJ6J+ezB2X/z6082s2HzItn//ooKQyd1Ps8eAxyQ0ydefbuaOZVsCQsQ3brh92ebANdI1EeRaXEm2iRYf4jRmpLMIZ43Oj48Kki5EOoWIH7dLqLKp3+4n2he/tuEshfluWptDIxcFmHpBf9vJ3U+bx+t4kq9tOOvTzYePW9oFRTonglwMCsymo4JdmdxESud2BuEcbfelu5F2VJAoMfF4DZOG9Y2YiPNc8Mw3LwfgoVU7mTGmP317FQQmhKElPWn1RAqJKaNKaGhq4d0DDTS32YfHt3mhNcqxYOpPN3PybAttNvfxmHZBUVpUyK0zx7Jo5XsUuF14IaCG2VxzImLl3JETc6qeQOHODPMrhvKlKSM6lWdRLgrncDQ6PzYqSLoxhW5ojjFf57uFB+ddQnlZse2K7Bev7OY1K93Kw2tC7SFXlJfaqsLe3Ntg60Ybzr76MzHriQQbzw0+5wB/QkkXMO/SYTQ0tVBaVBgy2bZ5vcyvGIoBpj2wJsL43pHuqKk6ANg5MyytrOWFLYfwGNSzKM0kstPqbmgciQO6ahzJZSNLeGtfg+2xr390BNdOGMS2Q6cozHMxpKQng8/ryaGTZwHhnwdP8NOVuzI2tljxGdFiGP7rc5fwl3cP8sp7RwPtcyYOYkVYHXnwVXNsCatp8tTXL2Peb99MaCx+Et3FpKNOR7Q6Jcler7OR67FHXY2sxZGIyBPAp4EjxpiLrbZ+wJ+AkcA+YL4xpkFEBPglcC1wBviqMeYd65wbgB9Zl/1PY8yTVvtk4PdAT+BF4Dumu0nGFIgmRACeeGM/T7wRmU7Fba38M/mQ4xlc7ewrBW4XICFCBLAVIgC+f7f2T5HvcrFu9zHbvvHcUZPZxaTDASCed1Oi1+tME3NnCmTsDmQ6aePvgWvC2u4CXjHGjAFesd4DfBIYY/0sBH4DAcFzDzAFuAy4R0RKrHN+A3wz6LzweylpxpNBIXL7rLERKdLrTzezueYE9aebA212xvMWjzehtPHh641Wr5cZY/rb9o01YVfurbeNlamua4x5/3Q4ANglq0z2enc/v5WZi9dx27ItzFy8jruXb3U8jo4mWnxSvGeuZI6MChJjzDrgeFjzXOBJ6/WTwGeD2pcYH28CfUVkEDAbeNkYc9wY0wC8DFxjHetjjHnT2oUsCbqW0glpbvNS0rsg8H551UGmPbCGLz+2kWkPrGFF1UEgssZFvlvweL38YaOzhJTTx5Ryz2fGR9TIqBhVmlAW4eVVB/n87yJVYQArtx9mWWVN1MktXXU6guuU/ODai5K6XmebmGMFMirZIRvG9jJjjF/fcBgos14PAWqC+tVabbHaa23aIxCRhfh2OQwfHn0Fp3QMwYbxYB5/bS+Prt/DousuYdygPtz+7GZaPMY2iNDvRbP90Em+uaSSZo/PkO6Et/c28Pa+Bv7vp8dx8eDzQrxwnLqj+uJXNkeNrXlwVbv9KJraJV2eQMFeT9ddOjTh63WWCHM/nSWQsTuR1Xok1k4i4zYNY8yjxpgKY0zFgAEDMn07JQr5bqEwzxW1XG9Ti4dzrV5u+VMVs3+5PsQYDu06fz+lRYWc17OAArc7pF+vfBffvqqcxxdMtr3PuTYv51q93P+3HbYTbrwaJNV1jfzgz1tDkhPGItbqPl6djsq99Ty0aieVe50VI0um7kemJubqusaYu7JkybXqlZkgU88uU2RjR1InIoOMMR9Y6qkjVvtBILhm6lCr7SBwZVj7q1b7UJv+So7S6jHcdOVIHnl1b8x+HgPY+EzY6fxtcz4ZQ8XIEsYPPi8icjqYZKLbw428wbgF/s/HRvPIq5GpZJJZ3X/5sTdD3Kunl5fyv9+4PKFrOCETEeaZNoZ3hkDGZOmMjgTZ2JGsAG6wXt8ALA9qXyA+LgdOWiqwlcAsESmxjOyzgJXWsVMicrnl8bUg6FpKzhIZhe4Et8CtM8faRlH/30+No8At9C5wk+fyqc1uevpdpj2whooR/Vh9ywzu/cw4K815O4kat+1sCcF8d+ZY/uXDQ22PxVvdh69AK/fWB4SIn/XV9Y53JomSzprwHWVz6YrVKzubvcpPpt1//4hvN9FfRGrxeV/9DFgqIjcC+4H5VvcX8bn+VuNz//0agDHmuIjcD7xt9bvPGOM34P8b7e6/L1k/Sg7zoUGxdwnR8Bj4yUvvUXviTMgkt7zqIPe/sIOCPBfNbV5EhFaPodXTBvjsKq/feRVfnTaKfr0LUkpzEcuYW5jn4otThlNaVJjw6t5uBdq3Z4Ft33W7j8UM1EyFdEWYdzabSy7RWZ9dRgWJMeYLUQ5dbdPXADdFuc4TwBM27ZXAxamMUelYdh9p5L65E/jYmAHcuGRTwucHp6G3S/wYTrD6KlXjdrRdRWGeiwfnXZKwwR6ir0B/Mf8S2/7RXJRjXb+j1T/J2Fw6Q9GoeGNMx7PurI4EmiJF6VB+tbaakl4FNDW3JX0N/+osVuJHP+Hqq1TSXNjZEq6dUMb9cyfYGuydTCbRVqBtXpheXsr6IPXW9PLSwG7EycSbLV17ojaXzlA0Kt4Y0/WsO0tG5HA0RYoDumqKlM6KP2WJXZoRPz3yffaQTExK6VzlxyvhW7m3nnW7jzFjTP+AEHEy8eZCaWAnzykdqWIyTbwxZuJZ52KWgVgpUrLq/qt0booL3fE7JcBwB4bvj47uFwha9Bva892RBnyv1/C3m68ITLDpdKdMp5E3nitrxahSbp11YchOxK/Oa2xu41yrlzue2xIS+Q+5EbTn5Dn5d5XBhLt5Z5t4Y8zEs86EI0EmXYpVtaUkTWOs1MEOuX3WGMr69KSkV74jm0lVzQmm/PQV7ph9IWV9enD/CzvIc7lo9YSOJc/l4tDJc5SXFaekdugI3X0iNhWnObqc6tqzvfIdWtKTlrC/Xa4VjYqXzqYz2DUyreZUQaJkldnjB1FeVsyyypqofYIz9Z6x1As/efE93CJ4oqhmz7R6+OaSSr73ibFx68ZHoyN1905tKk5zdDnRtedCvMJr1cdCAlTzXKRUNCoTgj9eYatct2tEc+hw8h1wigoSJWtcWNY78I8ca/VmgJ55wtmwSPJoQsRPc5uXB1fttD0Wz53SnwKluc0+RYu/T0d7GiVSrS/WTicdk0uquxm/mi64TLLb5WJaeWKeaX4yKfjjefzlcoBkR7gUqyBRssbOuiaq6xopLytm+wencLsEj03+lII8F00O1Gh25+e7I9VeEF/t8PTGAxEpUIJVSNn0NErEjTnaTifVySUdu5lo5QASzTYAobajaII/VeJ5/GW70mO0hU1HqN7U2K5kld+t30Pl3nrufG6LrRABaPNE33kU5vmy3RbmuWzTqjS3enBLqDF+fsUQmlo8EQZqP/Wnm3lkbXVEe4vHw9CSno4N3pkkmZxawaQyuaQr+jodqfT9dAajfSaJlikbOiY3me5IlKzyp8pa/lRZa+t55adieAmv74lMDTJtdCkPf/HD1Dac5eTZVm56+h0aw+NThBAB5RZYXvUBL22ti7qTqG04S4HbFykfzM0fH0NpUSGbbVbzXq9h+6FTzBjbOZKCpqLXT6eq5KYry/nV2moK3MllG/CTTqHkJ9uOCE5xshvLtOpNBYmSE7TG2HW8vd8+v9R/zB1PaVEhDU0tvHvgOM1toUKkwC3ku100tbSrtjwGPG3egJC4bdkWxg3qE/LFspuU/ClQAHoXuCNiV1o8hm8uqeTBebkXTBeNZCeXdKhKglWDYFg4Y3QgxUwyJGI7yuVgzmRw6smXSdWbqraUtOAW3w4hExTm5fGpiweGtPlXz/7Kfvf+9Z+0eHwpIf2Fne6ZM562aDnrLVravHzy4fUhqgC7olN3f2YctQ1nqT/dTFOLxzb1ZHNbx6u4UiWZeIWS3gW4wh6ASwgpShaLcNVgc5vhkVcjVYmJMmfSEF6/8yqe+sYUXr/zKluBHksF5KezJU7MxG4sUXRHoqTEpycMZFp5f2aNH8gXfrchI/c42+bha9NG8q+XDmHVjjpmjSvj6nEDbb/wBvjpv05g6gWlvFZ9DE/QFyzPRSCpYzCtHsP3nt0cogoINmhvO3iS+/+2I7DS/daM0VGL6CSTmr6zUdtwlt4FeSFqxN4FeY4/dzrq1UcjlkE8lgrIP66hJT07XeLERHZjmUIFiZISf9t6mL9tPcyqHXXsqmtK+jpzJw5i+eYPbI+1eQzzftte0vZPlbUsmDqcS4bYq1LOtfpUWXc+tyWkgqHbJdz9mfH8x4rtEUWzWj2G7YdOMmPs+YE2/xfx+kc3hEw+dob4wHVyLJguE6S6Au7oFbTf1tEj32UrwJ7eeIBfv1odmIRvnTnW9jq5FGAYTrqqbSaLChIlLazdeTThc64Zfz4zPzQwoJ8/r9dWx+nll2w4wOML7A3bk4b1tV315rlcnNcjn/kVw3hqo919IhVW0VxU7cr6FuYlV3e9s5HqCtjp+emI0wm3dYSr5Fo8Hh5ZW01zW/tC4aHVu5hfMZSlle2VvHMpwDAaqSQkTRUVJErW+Pv2I9w266LAF9Rv/H3i9b38qbIGT5wS7A1nWqN6HtWfbo5Y9Ta1eLj5j+/aXivPBeMH94lot1s9eyFiogG4+9PjOo2hPRpOPZVSWQFX1zXS0ublqa9fRn6e2/b8dMTp2Kk+vcbnhFGY56bV6+WmK8t5mGT63gAAEeZJREFUdN2eEA+9fJeLL00ZwcLpozuF11YuoIJEySqvVR8L+ZKW9C7gz+8ejCtEwLfzmFcxzNbzyJ/Q8YfPb4t5jR5uX5qV+RXDaWhqsa3AaLd6nlben+ffrSXIIYz7X9jBNRcPTGlV2JEup+Er/kQ9lZJZATu5R7qCC6PZOn5w7Yf48PCSgCot3NDvV7OVFhWqAHGIChIlLbhFuG7yYJZWRnrBxOKnL71Hv94FgdWmkxojfvbXNwVcGu2+8BcPOY+iQjenY0TFjynrw9ZDJ3n6rQM8/dYB24nNbvW9ueYEhXl5tHjaDc6pGow70uU0fMV/68zkc5I5xWlalnQZ46PZNK4o7x9yv2wbqrsC6v6rpAWPMZQWFVKQYGb5cJdZO1VSNFbtqIt5fGhJz7juv1sPnQx5H83NMzySPN0G4450ObWLzI+VkyxdOE23nq5n6zSi24nbsBIbFSRK2nhs/V7y3YnXKHG7hLXvHaH+dHNAlVSYF/9f82hjM/Wnm9lcc8I2diM8HiTclP7R0f1sr+tk8rSLNUllJduR9UNs04m47Z93Oj2VnAYypvPZ3jd3Ao8vmMz1FUN5fMHkqDu8VFPOdHdUtaWkjTyX0NyaeI2SpmYP96zYzo+WbwsYVRvPtXH38m3ECHhnzc6jfPRna0LSa4SvJsPVUg1NLQEbBGBb2a6kV37gdSzPoXS6XAbf00l7Ktg6EBjD/IohIarJWJ5Kydhy7NKyzJk4yPb8dD3bYHWh3208VyPUOzMqSJS0cdam5K1T/GlMbnt2MzXHz/CL1btChIjbha0Bvjko3cnty+wNssFGYb8B1S8gwidPgBuXbGLB1OFMHtEvrudQulwuG860JtSeCtEcCOZMGsLC6RfEFRCp2HLumzuBk2daAzFDKzZ/QN9eW23PT/XZdkQdDsWHChIlp2jxGB5ctSuivdDt4kwc20lzm5f/u3wrv/6SbVnpAOGG5oXTR/Lo+n0hfZZsOMAzbx2gxUNcz6F0eFp15I4Eoq/44+VjSnVyrq5rjAg8zdTk3tki1DszKkiUTkGzw93Oi1vrAjVO7LBzLf2fN/bb9g3X0tl5DqXL06ojdyR+klnxpzo5p3tyjyXEO0MJ3K6CGtuVjFMQI0W8UxKxvKzcfti2vbqukSff2Ef4cNzh4c4W4eaZcM+hZD2t7BwEok1uI0t7UV3XyLLKmpxIGhhtnCW98h2NMZ2Tuz9h523LtjBz8TruXr415HhH1OFQfOiORMk44XmtskH4ziGY8JTwdgiRtcSTWV1Hi9i2M0TnueD6320MqaeSbWOx3TgvLOvNjUs2Bd7HGmO66ps7VbHlcgncroQKEqXLMXv8QOpPN7P90CnA0CvfHVWIOMUA4waFplBJdHUdL2L7vrkTmHPJYD7/2EbaPMZKOBkqhO0my1jqnWjHUsljFTw5n2tp40crdsQdY7Tzk53cExHi2S6B2x1QQaJ0ai4bWcJb+xoC7+dOHMT2D07xvaVVgcy/TvW3+e7IFPPBhE9S5WXFXFFeymvV7YW3Lh1+XtRJy0nEdn6em555bho9bbbXCB9HLBtNtGPpyGNVXlbMkg37ogroeDaPVCd3tX/kFmojUTo1wUIEYPnmD/juM1Uh6eOdOiW7XcKyb13O7bOcpRGvP91M5f7Q+79z4CR3LKsKHA+2hTiJ2HYS2e8fRywbTbRjlXvr01Jv3u76dmOMd41kbT/R7B9AztiTuhO6I1G6HMlYZPLcwqLrLqFiVCkVo0qpazwXV49f23AWt0Qa6pdWHqR8QDEPrd4VseqPl9cpPMbjTKsnwkbiH0cy0fDrdh9LSx6rWPdwYvNIh7dbuIpsyYZ9IQGm2bYnOaWz1IaPhQoSRQGe+cYUKkaVBmwH37l6bEw9fnVdI+8eaAhJPx7MolU7afOYwITtrw3vJGI7VjR+8DiON7XY3jvWbmDGmP48un5PSFuLx8vJs62BFDVOiHaPxxdM5upxA22P+UkmFiWaTcevIot2zctG9mPqBYllDe5IOlNt+FioIFFyllg2i49f2J+1O49FPVeIvjMZWdqTffVnA+/LB/SiYlSpre1gXsWwiPNjeYD5KXQLbUFjb2nzcu3D6/n55yYyZ9KQuBObXTR+MPWnm3lodWTgpluEHR+conLf8YhjC6YOp2JUaciO51ybB4/Xy01Pv5OQvSSa91U8IQKJe7s5selEu+b3nt2CCEnZgTJNV4q87xI2EhG5RkR2iki1iNyV7fEoqXPTlaMj4jsK81zc+5lxrL5lBv/ztSlMLy+Nev5nJg6iwCYR4ezx54cIEYDqo2dYvGqnI9tBPNsA+Ipe2cm/Fo9Jyh5hh13iRfBlYb592RbbMS64fCTQnu32kS99GJdAm5ek7CX3zZ3A6ltm8PN5l7D6lhmOV9KJGMrtMhXbjXH9bvsKnc1t3qTtQJmmIxN1ZppOL0hExA08AnwSGAd8QUTGZXdUSqpcOrwkIgPsg/Mu4avTRgVyZb1ls+r2s2LzB9w2ayw98l30KnCT7xZ+8MmL+MSH7FfMv3q1OsLe4bcdBBPtS377rLGBCXXRvIksuu4SCmwyGNtdMxkSSbfvJ3jspUWFnNezgIKwbM2Jjq+8rJh5FcMSWkEnEihom6k4bIx2aVfCSddzTyddyfOsK6i2LgOqjTF7AETkGWAusCPmWUpO03CmlXkVw6LaE3yGbhexYt779S7g9TuvCjk/mjdPgdtFqyd+DYxoX/LZ4weGTIRzJg1h3KA+XPvw+pCAzFRqlgTjN8rfvmwzzW3O3AvCx57umiqJ4DSWxMkYnazgO+pzJUK6gjNzgU6/IwGGADVB72uttgAislBEKkWk8uhR+y2wEokAvQvdRMkgklH8k160OhFDS3riMfHdZMPPLy8rZn7F0Ii+BrjnM+Pj1sBIZDVdXlbMzz83MW01S8KZM2kIb9x1Nd/7xFgK80J3bk7GmO6aKoniZDfjZIzRhHuBm6x8rkRIVj2Ya4gx2U9fkQoiMg+4xhjzDev9V4Apxpib7fpXVFSYysrKhO4x8+drqD6WW9viaEwbXUptwxn2B23jx57fm11Hmhxfw+2C++ZczDUXDwys5v++/TD/8dcd5FtG5IF9Ctl/vP0eM8pLGdi3J0sra0Ou5RL4yMgSNu5tj7eYM3EQ375qDFU1JxhZ2ov/eX0fL2xrz4/l1HNlRdVBbl0aGjPi9BqPrnufRSt3UuAWvKbdGOs04jsRl81UosidYncPp2PsiPGlSrwx3r18a8TK/jtXj835z9WZEJFNxhjb1NpdQZBMBe41xsy23n8fwBjzU7v+yQgSgJF3vZDKMOnp9tXTaLEe95C+hXx6wmCqak5Qua8hREFz8aAivnz5SIp65NOnZx7jB58X4gJ64kwL63YfY8aY/owaUMSG9+s5dvocV5QPCEwYlXvrA30qRpVGfNHGnt+bySNKKOldwLhBfbhoYB8OnTwHGMYPPs/2ixf+ZbabqKrrGlm5/TBnWlr50KC+TL2gNGrfYJL1pQ9PhbKv/ozja3SGCVRxTleIx8hlurogyQN2AVcDB4G3gS8aY7bb9U9WkED7zqSkh5t/uXQoPQrcDCvpxZCSXvTKdyU0iYXTEV8C/aIpipIsXVqQAIjItcAvADfwhDHmx9H6piJIFEVRuiuxBElX8NrCGPMi8GK2x6EoitId6QpeW4qiKEoWUUGiKIqipIQKEkVRFCUlVJAoiqIoKdElvLYSQUSOAvtTuER/IHra2e6HPo9Q9HmEos8jlM78PEYYYwbYHeh2giRVRKQymgtcd0SfRyj6PELR5xFKV30eqtpSFEVRUkIFiaIoipISKkgS59FsDyDH0OcRij6PUPR5hNIln4faSBRFUZSU0B2JoiiKkhIqSBRFUZSUUEHiEBG5RkR2iki1iNyV7fF0FCKyT0S2ikiViFRabf1E5GUR2W39LrHaRUQetp7RFhG5NLujTw8i8oSIHBGRbUFtCT8DEbnB6r9bRG7IxmdJB1Gex70ictD6P6myMnL7j33feh47RWR2UHuX+E6JyDARWSsiO0Rku4h8x2rvPv8jxhj9ifODLz39+8BooADYDIzL9rg66LPvA/qHtS0C7rJe3wU8YL2+FngJX5Xey4GN2R5/mp7BDOBSYFuyzwDoB+yxfpdYr0uy/dnS+DzuBW6z6TvO+r4UAqOs75G7K32ngEHApdbrYnz1kcZ1p/8R3ZE44zKg2hizxxjTAjwDzM3ymLLJXOBJ6/WTwGeD2pcYH28CfUVkUDYGmE6MMeuA42HNiT6D2cDLxpjjxpgG4GXgmsyPPv1EeR7RmAs8Y4xpNsbsBarxfZ+6zHfKGPOBMeYd63Uj8E9gCN3of0QFiTOGADVB72uttu6AAVaJyCYRWWi1lRljPrBeHwbKrNfd6Tkl+gy6w7O52VLVPOFX49DNnoeIjAQ+DGykG/2PqCBR4nGFMeZS4JPATSIyI/ig8e3Ju7UPuT4DAH4DXABMAj4A/iu7w+l4RKQIeA74rjHmVPCxrv4/ooLEGQeBYUHvh1ptXR5jzEHr9xHgL/hUEnV+lZX1+4jVvTs9p0SfQZd+NsaYOmOMxxjjBX6H7/8EusnzEJF8fELkaWPMn63mbvM/ooLEGW8DY0RklIgUAJ8HVmR5TBlHRHqLSLH/NTAL2Ibvs/s9Sm4AlluvVwALLK+Uy4GTQVv7rkaiz2AlMEtESiy1zyyrrUsQZgv7F3z/J+B7Hp8XkUIRGQWMAd6iC32nRESAx4F/GmMeCjrUff5Hsm3t7yw/+DwtduHzNPlhtsfTQZ95ND5vms3Adv/nBkqBV4DdwGqgn9UuwCPWM9oKVGT7M6TpOfwRn7qmFZ/e+sZkngHwdXzG5mrga9n+XGl+Hv9rfd4t+CbKQUH9f2g9j53AJ4Pau8R3CrgCn9pqC1Bl/Vzbnf5HNEWKoiiKkhKq2lIURVFSQgWJoiiKkhIqSBRFUZSUUEGiKIqipIQKEkVRFCUlVJAoiqIoKaGCRFEsrFTot6XhOn1F5N+C3g8WkWWpXjfsHvtEpL/1+o04fX+QxPW/KiK/SnZ8SvdCBYmiJIGI5MU43BcICBJjzCFjzLxMjcUY89E4XRIWJIqSCCpIlG6NiPxQRHaJyGvAhVbbqyJSYb3uLyL7rNdfFZEVIrIGeEVEikTkFRF5R3zFv/xp0H8GXGAVeHpQREb6i0CJSA8R+R+r/7si8vGga/9ZRP5uFTValMBnOG39HiT/f3t381JFFMZx/PurRdkm6JU22aoXqLhk0MLshdZBQSFkSS2j/oQWtiiC2oQg9ELUwoWrok2ERKFIqZSlIbarpUWBRYFYPS3OkW5202yEovv7wIXhzDkzh4HhmTlzeR6pK5/3uaQGSeeAmtzWnvsdltSX2y5Jmp/bj+Vr0QfUF764VjWme6oy+69JqiPleCqR7oUnwOMZhm0BNkfEu/xWsj8i3udlpkeSbpOKGG2MiFI+z5qy8SdIyWA3SVpPStG/Nu8rkVKQjwMvJLVGRHla8ZkcAu5GxJkcHBZFRLekk2Vz2QA0AvURMSGpDWiS1AmcBuqAMeA+MDCLc1sVcyCxatYA3IyITwA5CMykMyImizoJOJtT638l1Y5Y+cuRyXagFSAiRiS9AiYDyb2IGMtzGQZq+bE+xUz6gWs5E+2tiHhaoc8eUrDoT7kGqSFlpd0GPIiIN/n8HWXzMpuWl7bMfvaZ7/fGwin7PpZtNwHLgbr8xD9aof9sjJdtf2GWD3qRKhfuIKUevy6puUI3ATciopR/6yKi5U8nbAYOJFbduoB9kmpyuvy9uf0l6akdYLqP5IuB13mJaDfpDQLgA6l2dyXdpABEXtJaTcqKW5ikWmA0Iq4AV0nLcAAT+S0FUjbaA5JW5DFL8rheYKekpbnvwbmYk1UHBxKrWpHqbHeQ0uTfIS0NAVwAjksaAJZNc4h2YKukIaAZGMnHfQv05A/e56eMaQPm5TEdwNGIGGdu7AKe5Xk3Ahdz+2VgUFJ7RAwDp0jfZgZJdcFXRaqH0QI8BHpIdcfNfovTyJuZWSF+IzEzs0L8ry2zf5ikXmDBlOYjETH0N+ZjVomXtszMrBAvbZmZWSEOJGZmVogDiZmZFeJAYmZmhXwDX2CJY+XYP6wAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["df_train.plot( 'odometer_value', 'price_usd' ,kind='scatter')\n","#it's a good feature"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":297},"id":"uHydGrU913ya","executionInfo":{"status":"ok","timestamp":1654721158988,"user_tz":-180,"elapsed":18,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"6bb470f4-b721-491f-9dfe-0a5774fc70cd"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":39},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3hU1bn/P2uuuQJhwHBJwsUACggoUUCEWrBq1QMeRVqrjae10l+Pnlq8oPZiW21Pq7VSPfW0tuppaa2I2ApaFQW0IAISNFzlMlxDgAAhQBJI5rZ+f8zsYS57z+yZTG5kfZ6Hh8zaa18m4nr3u973/b5CSolCoVAoFOliae8HUCgUCkXnRhkShUKhULQIZUgUCoVC0SKUIVEoFApFi1CGRKFQKBQtwtbeD9DW9OrVSw4cOLC9H0OhUCg6FevXrz8mpeytd6zLGZKBAwdSUVHR3o+hUCgUnQohxD6jY2prS6FQKBQtQhkShUKhULQIZUgUCoVC0SKUIVEoFApFi1CGRKFQKBQtotUNiRBirxBikxCiUghRERrrKYR4XwixM/R3QWhcCCGeFUK4hRAbhRCXRFznjtD8nUKIOyLGx4au7w6dK1r7O7WU2oZmVuw4woodR6ltaE46311Tz8KKKtw19W3wdAqFQpEabZX++0Up5bGIzw8Dy6SUvxRCPBz6/BDwZWBI6M844HfAOCFET+DHQBkggfVCiMVSyrrQnLuAtcDbwLXAO23ztcxT29DMgbozbK4+yY8Xb8EXCKouW4DffHUM08b01z3vu39bz+KNh8OfyyeU8Nj0i6LmLNt6mPe21nD18EKmDu/Tat9BoVAo9GivOpLpwJWhn/8MfEjQkEwH5smgtv0aIUQPIUTf0Nz3pZTHAYQQ7wPXCiE+BLpJKdeExucBN9JKhqRiTy0rdh5j8pBelA1ymT5vUWU1D72+EasQNHr8UccCwHfnVzKxtBeuPGfUse++8mmUEQGYt3o/5eMHUlqYD8DVcz9kR00jAK9WHGBYYS5LZl+Z+pdTKBSKNGmLGIkE3hNCrBdCzAqNFUopD4V+PgwUhn7uD1RFnHsgNJZo/IDOeBRCiFlCiAohRMXRo0fT+hK3v7CGGc+v4dnlbmY8v4avv7DG1Hm1Dc089PpGmryBOCMSyT8+PRD12V1Tz+INh3TnVladAIKeiGZENLbXNLJs62G90xQKhaJVaAtDcoWU8hKC21Z3CyEmRx4MeR+t2l1LSvkHKWWZlLKsd2/dCv+EVOyp5SN3bdTYSnctFXtqDc44y4G6M9gtyX/Nm6pPRX3WjIUeY4p7APDe1hrd40bjCoVC0Rq0uiGRUlaH/j4C/AO4DKgJbVkR+vtIaHo1UBxxelFoLNF4kc54Rnmj8mBK45EUFWTjDQSSzps2um/UZ81YxM/rc3Zba3ih7hyjcYVCoWgNWtWQCCFyhRD52s/A1cBmYDGgZV7dASwK/bwYKA9lb40HToa2wJYAVwshCkIZXlcDS0LHTgkhxoeytcojrpUx/AH9LSl/wJ80o8qV5+RH1w9PeP1hhblxQfLSwnzKJ5REjU0f3Zdnbx0b/jx1eB+GFeYmvZZCoVC0Jq0dbC8E/hHKyLUBf5NSviuEWAcsEELcCewDZobmvw1cB7iB08A3AKSUx4UQjwPrQvMe0wLvwH8CfwKyCQbZMx5oLyrI1R3/2H2cV9addYD0MqoARvbvTp7TSkPzWYNkE3DpoAK+dcVgw4X/sekXUT5+IJVVJxhT3CPsiUSyZPaVKmtLoVC0KyIYoug6lJWVyVTVf9019Vw1d4WpuUtnTw4v+O6aeiqrTjDQlcPtL31Ck/fsFleW3cKqh6bEZWrpoaUOFxVkm5qfKtpzGhkrhUKhEEKsl1KW6R3rcjLy6VBamM/1I/vwz83Js6GWbDlMaWE+j76xiXlr9ofH+3ZzcMjrCX++dECBrlGINBoAL6/dz3Mf7MRhteINBPjR9cMZ2b97xoxK7HMaeVUKhUJhhDIkJnnsxpG8/3kNHn9iD+60x4e7pj5qcQY4dMoT9XmluxZ3TX2UB6DVm9gtFs54fUgJ2u2afT4AfvDGZvKcVnwByZM3j2J4325pexN6zxlbp6JQKBTJUIbEJK48Jz+eNoKfvrkVpDQ0KDkOGx+5j+kei6Wy6kR4wY6sN2kicZaXFmuZvWAD/sDZ50jVmzBKMY58LoVCoUiGMiQmWVRZzU8WbSYQAOOyQvjdv3bh8SVP94XoFF+t3iSZEYkk0oiAOW8icuvMKMXYaFyhUCj0UOq/JqhtaObe+ZV4kxgRCHoLHr/EEiMdGZumWz6hJGrBN1tvkoxEhYyLKquZ+MRybn9hLROfWM7WQ6fiUoxnlvWn0eM3JSapUCgUoDwSU/w9Rr4kFrtV4LAKGj1nDUGuw8YvbhpJkzcQjl8kyo5y5Tl58uZRPLBwo6FH872ppfx+xW7sFgsef4BmnXlG3oTe1tl9r21g/rfGhVOMaxs9zF26g3c21eANBHjy5lGGYpIKhUKhoQyJCdbvq9Mdtwqw2yz86IbhPP7W1qhj3kCACedHCzGWFuYn3HaaNqY/w/t247pnV8bFYGaWFfG9Lw3j6xMGhremnlm2g3mrozOujK6vt3Xm80tmPL+G8gkl3Dt1KBOfWB5laOa8vlFXTFKhUCgiUYbEBGMHFPDulnj9qjsmDODuKUNw5TnJd9qYE8q40t7mtQU4lTqN0sJ8nrplNHNe34gF8PgD3H1lKVMuLKS2oRlXnjN8XTMFixqJts7mrd7PZQN7xhkau8XCgbozypAoFIqEKENigpsuKeLnb2+LG9eMCAS9iYmlveIKB9Op04i81ubqkzz+z628tGqvbh1JMi9HQ9s6u++1Dfh0Ms6ONXjiDI03EAjXsygUCoURKthuAleekytKo/uPTCp1xb2pu/KcjC7uEeWJ6NVpmOl06MpzUlSQzeP/3EqTN0B9s48mb4AfvLGZ215Yw8QnlrO4sjp8HzMdFKeN6c/8b43TPXZFaS+evHkUWXYL+U4bWXZLlFelUCgURiiPxATumnpdGfnYgsJYktVpxEqfxG6BGaUEa3Ukc17fyEfuYyyoOJsMkMzjKRvkonxCiW5spbQwX9erUigUikQoQ2KCdAv3Vu7Ub6I10JXDL9/5nBc/2o3DasUvJWUDCqKMlRYAT5QSbBFEGREwV0uSKLYSGYNRKBQKM6itLROkU7jnrqlnkU6Hw0tKuvOVP6zh9//ajdcPjR4/Td5AnMczb/V+6ho94e2mXIc17lrNXn0jk6iWRKO0MJ8ZZcVRRqS2oZkNVSdUDYlCoUgJ5ZGYoCDXYXhsxY6jgGREv+5Rb/JGi/nGAydJItcV5o8rd3PXpMGsemhKMPB+8CSPLtoSrmg3uk46lemROl+qhkShUKSCMiQm2HLwlO741XNXhKMXdqvg17eMZtqY/rhr6qk51aR7js1iwWeygv3VigO8WnEgHPfw+vxxsiixJKolMUKvWFHVkCgUCrMoQ2IK/cU70hx4/ZIHF27ko51HWbBev9vvNSPO48Pt+nGT8YMKWLNHv/Bx3ur99O+Rw1PvbU/4lA9ePZS7pwxJOEcPvaC+qiFRKBRmUTESE4zo1x27VSSdJwSGRgRgyZYjXDawJ7aI37rVIvj+ly9g/rcvZ+nsyXylrEj33Kfe2443yZ6Y3Zref069YkVVQ6JQKMyiDIkJXHlOfn3LaJw2CzkOK06bBT274jWh+rvSXcv8u8bz/74wGLtVkGWz8PTSHSyurKa0MJ+7Jg3WPc9hwkg8vXRHWoFyrVhR1ZAoFIp0UFtbJomtXF/lPsZ9CyrRbIfdKrhm+Hm8tSleSiWW51fsZqX7GF6/xOs/WxMysbQXpYX5cXUeM8v6szgmA8xmEViRNEfYrpZsRxlV5isUCkUylCFJgbpGDztr6vH6/Axw5fLuvZM5eLIJLWurrtFjypC8//mROI8m0giUjx9IYX4WANeM6ENpYT5XlPaO0vIKC0VGbEl5/H5OnvGENbnMEFsUqQyIQqFIFWVITBKrmWUVYLEIHrx6GLO+cD4Q3CKK9SaMiA13NDT7KCrIjrtPTX0Tj02/SNdjiBSKPOP1EZDwnb9+itcf4Mf/NoLbxg/QvbdWQX+80cPTS3eolF+FQtEihJQmixrOEcrKymRFRUVK57hr6rlq7grD4zPL+vPkjDHhz39csUtX5DEZL5aP5c556+PGl86ebJjSW9vQzJaDp7hrXkVcf5Kf//tIbhsXbUxiDVUkWXYLqx6aEuWVpKJcrFAozl2EEOullGV6x1Sw3QTJKsUXVFRHCSaayfDS44WVe1K+vyvPSfdsO7bYlozAT9/cGhV81xORjETbXtN49I1NXDV3BQ8s3MhVc1fw6KJNZr6GQqHoYihDYgIzleJLthwOK/CO7Nc9rft8sud4WvcvKsjG44/PGLNbRZRhSGYQI1N+W6JcrFAouhYqRmKC0sJ8JpW6WBmjhxXJr97bEf75uosKsVtF0rqPWPxA33wHh+o94bFJpa6kW0ofuY8R0Kl49/llVC2IkUHKsVsIQFTKb7pClQqFouuhPBIT1DY0x4kqJuLtTTVYRHrbW5FGBGDdvjrcNfVRYoqR/Uc0eRM9m9XsC/DMsrMGTkstjmTyEBe///pYVj00JSrQno5QpUKh6Jooj8QEq3fVGoikGHPzJf15/dPquAB4qsiA5Lr/+QinNZhZFSs3f/3IPro9SzRiZeUfm34RRT1y+OW72whIWLGzlo931fL0zDFRhkSvniUdHS+FQnHuowyJCT4/lFyWPZZBvXL59S2jmLNwE6e9/rTv3eyXgMQTMkixntE/Nx/GkSS4H7kdVdvQzK/f30HkTpgvAA8u3BAn0phKT/j2JrYeRqFQtB3KkJggx2HXHbdZBA6b4IwnEOexaOm/6WZwaZiJtdwytpjXPzuABTit06MkcjvqQN0ZrDoZXlahXxVvtid8e6Ik8BWK9kXFSExwzYg+uuNTLziP0zpGJJJAQOK0BTWs7BbB+EE9ebF8LEtnT+apGaNYOnsy1444z/B8MwH7b0wcyKqHpvDKrAnMjBF9jN2OKirI1pWi98vOKdIYKYGv9bWf8/pG1ZxLoWhDlEdiAr14wbTRfeP0r/SwWSz8sbyM7tn2uG0XbYG/6sI+vLvlSIJrCLLtVryBAJcOKIjKHos0FK48J6OLezBr0mDD7ShXnpNfzRjF/a9tCBspmwV+NWN0p9wSUhL4CkX70yaGRAhhBSqAainlDUKIQcB8wAWsB74upfQIIZzAPGAsUAt8RUq5N3SNR4A7CWbJfldKuSQ0fi3wDGAFXpBS/rI1vsPYAT2jDMnRU+beeL3+AJsOnGDcoJ5RNR2rd9Xy+aGT5DhsXNAn8daRRcBzt10c7sKoV22uVbhrul8zyooNr6fJrWw5eBIQ9OueRaPHn5JGV0epeFcS+ApF+9NWHsm9wOdAt9DnJ4C5Usr5QojfEzQQvwv9XSelLBVCfDU07ytCiOHAV4ERQD9gqRBiaOhazwFfAg4A64QQi6WUWzP58LUNzdw7vzJqbLVB8WAsAc7WmNitAiklAQlJGh1G4bRZ6Z7tCC/ysXGLRZXV3B+jRKx1azTCledk8tDzWFRZzay/VKQUX4iVWdE6OLYHmgT+nJgYifJGFIq2o9VjJEKIIuB64IXQZwFMARaGpvwZuDH08/TQZ0LHp4bmTwfmSymbpZR7ADdwWeiPW0q5W0rpIejlTM/0d/jN+zuSTyK4oC6dPZkHrx6q+4v1+iW+QGpGBBK/Ydc2NPNAhBHR7vPgwuRxgnTiC2Yr3msbmqNqX1qTaWP6s+qhKfz1W+Pi6mEUCkXr0xYeyW+AOYD2Cu0CTkgpfaHPBwDt//z+QBWAlNInhDgZmt8fWBNxzchzqmLGx8U+gBBiFjALoKSkJPZwUlbu1G+PG4nNAvdOHYorz0mjx8+zy9w068iWpEK+05b0DfuHb2xGJ1ELq0UkjROkE18wU/HeHllUSgJfoWg/WtUjEULcAByRUsZL2rYhUso/SCnLpJRlvXv3Tvn8koKcpHN8AUIxh+C+vTQoEEyFX9x0UcI3bHdNPe9sPqx7zB+QcV5MrJeQTnwhWcW7yqJSKLoerb21NRGYJoTYS3DbaQrBwHgPIYTmDRUBWqPzaqAYIHS8O8Gge3g85hyj8Yzy2QFz8RAI1me48pw8dcsYYqs17FaBzRIMnpuhyetP+JZt5B1YLYJfzYj2YhZVVjPxieXc/sJaJj6xnMWV1Wm12NWTWYnMHNO8nEhiVYUVCsW5RatubUkpHwEeARBCXAk8IKW8TQjxGjCDoHG5A1gUOmVx6PPq0PHlUkophFgM/E0I8TTBYPsQ4BOCK/eQUBZYNcGA/Ncy/T3qm80FNfp1z4rKZqr44VWs3lXLsYYmRvbrjt1mDb/tr95Vyyr3EepO+7i4qDu/WBIfhxnoSuwJGR3/w+2X0Cs/K5yFFeklaNtYWmvfdFrsJqp4V1lUCkXXo73qSB4C5gshfgZ8BrwYGn8R+IsQwg0cJ2gYkFJuEUIsALYCPuBuKaUfQAhxD7CEYPrvS1LKLW36TUJk2S38+v0dUVtNibKZPtlTyyvrgs7Tu1v02/Ou3n2cskEu3WPhOERM5fukUhd3v/JZVHxigCs3YSwknfiCUcW7yqJSKLoeqkOiCUb/5B1ONiWOeVhFfPtc0O9umKzjoobTZuHjh6cAwS0jr8/P2j21NHr8vLByD56IG9osgudvv4S7X/mMpojou8MK904dwrPLd0UJSOp1Q8wkSvtKoTi3SNQhUVW2m6B7lp2TTYmDxUb2WK9/R7IGUxoOq4WX1+7nfz904/UFdA2Vhi8gWb7taJzn4fHDr97bCQRjJ1l2C16/5Ec3DG/VBV5lUSkUXQeltWWCIw2epHOM/BW9LCebyd96k9fHcx/spMmb2IhovLa+Co/fWGnYH5A0e/3YLYLH39rK4sqM5yUoFIouiDIkJijtlTz9Vw+j/h27j502df7UCwpxWK2m7+e0WfnmxEEJ5/gC0Ojxq7RchUKRMZQhMUHPfP2Mo0EGWVMPXj2UpbMnGwbaz8tzmLrvtyYNotlnvpdJk8/PiH7dyXOaMz5m03LbskpdoVB0PlSMxATNHq/u+J5afc/ioqLuhkKGsTpVRpRPKKFskIsBPXPYebTR1HMKBPe/tgF/QH+jTUCU5L2ZtFzV60OhUCRDGRIT7DjSkOIZZysOI7OX6ho9SY2IVcDPbxzJl0b0wV1Tb9qIAHhCkixWi8AqJHabhUBAcsvYYr4xcSBbD51KKS03Uf2JCqQrFAoNZUhM4LRaCarXJ8dmgRH9giLHsW/zN19clOTsYArxY//8nJ+8tZWSNIv4tMZV/lAa8LjBPcN1H6kUH6peHwqFwgwqRmKC7rn6rXZjsVvg6ZljAFix4wgPLKiM0px6bX1VkisEOR0Khu84ktgbuXFUH743tTTp9e57tTIc39CaX9U1elhYUYW7ph53TX3450jSrVI3ul6m5isUio6F8khMUGsi/XfiYBfPfu1iPnIfY+ITy3XrPvwBSUlBNvsjAtzZNsEZX3pFodWnmundPbnX4pPw6Bubee72sUDiOI1Wja9tyf3ohuE8/tZW09thqfYq6Ui9TRQKRXooQ2KCQJLqf4dV8OzXLgYIxxT08EuijAiQthEBGNgzmz+t2mNq7j83H2Z26I0/UZxm3ur99O+Rw9ylO8LG40fXD2dk/+7hOM/CiirdzohGvUrKxw/UTT5Idb5CoeiYqK0tE/TvYfzWn2W38NQtwX7nesq36eC0WciyW5hUqq+zBZDnsPDmpsO6vUiMqKw6Yaqq/qn3tkdtyT3+z60UFWTzzNIdXDV3BQ8s3MhVc1fw6KJNcdc3um8mxhUKRcdEeSQmkAYtDQe5clj4ncupa/Twp1V7cNos4cyplvDrW0Yz4XxXXH/25//lZuGnB3FYwRMAkaJOWjI1YQ2H1YI3okLebrGweldtUu/BqFeJ0X2T9TZRKBSdA2VITFB3Rr+OxOPz88zSHabqQswyrDCXG0b3C3/Wsq1qG5p5c9NhJNDsBz1RFrtVYBHg88u4+IxVwK0vrEVKaSgwCTCzrD//+Oxg1FiTz88xg2LESC0xrVfJvNVnfx9WAbe/9Ilu/YnefCM1AIVC0XFRhsQER07pL6I1J5szakQAttc04q6pj1tM9VJxs+zBOhGnzRoOhPfrnsWM59fEXha/BL8Jwa5rhvfh759Ga3BJKRkZSmmOJdZ7eGz6RUwb1Y+v/nENvkDoviE5Fr36k0S9TRQKRedAGRITWK3g9ekciC0VzxB6isF6qbgAb393Eo0ef7guZGGFuRRjI97bWoNVCHwRX8wqBHab1bT3YLdZybbbqG8++0tLVH9i1NtEoVB0DpQhMUFRjxzcOkKLfXtkUVXXlPH7RfY/jyweHN4nn0+rTobnXdAnj4JcBydON/Dnj/cyuFcONada1tJ2wuCevFpxIGqs2S/JdVgNvYfIOE5pYb7qkqhQdDGUITGBw0D3Pd9pY1hhLttrzMuYJEN7y4+tih/RN9qIAFRWnaLs50sNe6EkwmaB83tHP/ukUheDeueTZbdEpTBn2S00eoLBd8170IoIV+w4wuKN8V0hVZdEhaLroAyJCfwGWVunPX72Hm+ZB6Bx95WD+feLi8KB9ViNq/X7T+qel26Dy/l3jadskIuKPbWs2HmMyUN6UTbIZajwG+lNJCpo1DK50ukFr1AoOieqjsQEF/brrjteYFIO3gzPfbibeWv2AmSsHsWIYYW54V7wZYNc3Hf1sPBnred6lt1CvtNGlt0S5U3oFRHGotWBaHIsyogoFOc2yiMxwYh+3Xij8mDc+GUDevKZgaeQDvNW72faqH6c9voTdjpsKUaZYRqR3sSmqjoWbzhIIBDgxkuKTRULjinuERc3aW3a+n4KheIsypCYwG7V9w769siOy2RqKTOeX0O+04YniXSKIBi7afbpF0CO7JfPJQMKDJ9NLzMsEleek+ufXcHhU0GdsaWfH+GJd7fxlzvHJ3yu4O9jb5vqZym9LoWifVGGxATVx/WD6dXHG6MymWrrm/jFkh0tvl9k2qweL5aPZUxJAat31XLPK5/pzvnNVy6mtDCfLwzpzZ3z1scdT1Y9/sanVWEjonHolIfN1SfijOf00X2ZNKR3+JpXzV0RdV5r6mcpvS6Fov1RhsQEH+0+nnBcy2T6zl/jF+xMM7xPHgNcubjynNwwuh8rdh5lQUy6rtUiKMgNxm+mDu+TVvX4W5sOG46/cMelhkWERnUsyTygdEmk16UMiULRNihDYoIbR/Xl80PxvTLGFndnQ9WJsCruO5v1F99MsvVwA1fNXUH5hBLunToUq4ivi8yxW9ly8CTdsx14fX5G9e/Bi+W9qTvtpSDHzrbD9Ty3fCcX9Mln2+F6QHLNiL7htN7KqhNcWtKDpZ8fibt/7zxHOL6iZZi9taGaYw0erijt1eb6WV1Vryu2xkihaE+ETDd/tJNSVlYmKyoqUjrn+Q92Gm5Z2Sxgs1q4+eIiXv4ktVjJ4F457NYpdGwpFhHUuPIHohW5hhbmsiNBzUtsTUyiXinlE0oYO6Ans1+tJDI7unxCCUCcB9SqMZJFm9r0fu1NbI2Rno6ZQpFphBDrpZRluseUIUnOlU8uT1ov4rCCJ41Eq+9NLeWZZe7WUFrJCI9cM5QPdx5l9e66uGN2i8CrU2OzdPZkAJW11QrUNjQz8YnlcQWjqx6aojwTRauSyJCoOhIT9MhO3mrXabNx/cg+KV+7qCCHP3/zMrIMqufbG1d+FjdfUqx7TBqYPy0+8cULzqPR4zcscswkpYX5zCgrPqeNCOjXGGk6ZgpFe6FiJCa4sF83KqtPJZzjDQR47MaRjC7uwZNLtuGwWvAFJAN65rDzqPF20pjiHsHAuMj0U2eGRLEGYaBaOaa4h9p+aSWUjpmiI9IxX4M7GEUFxg2hbBbC1d8ATy/dgS8Ap70BPH6Z0IgA/OOzA9Q1epg5tiijz5wOJTGLkZbdpfUNiT1267h4T6V8QgkFuY6wxIvWZXHO6xvbxDM510mmPKBQtAfKIzHBNSP68Kv34oPtP5s2nCyHLbwvv6HqBF6DAkEjnvtwN899uBtLG3skDgs8eO0FeHwBPj90kvc/P0rdaS8Oq+CWscV8Y2J0HUas8m9BroOJTyyPvqZVcO/Uobq9UxLJyCtSQ+mYKToareqRCCGyhBCfCCE2CCG2CCF+GhofJIRYK4RwCyFeFUI4QuPO0Gd36PjAiGs9EhrfLoS4JmL82tCYWwjxcGt8j9LC/Lj+6SU9s3j87W389M2t3PDbj1hcWY3X5zfsPJiM2Ji1kV1xWAWlvc21zO3TzVgLzGK1cNMlRYwb1JN3NtfQ7At6Dx6/ZH7FfvbVBj0pTeXXXROd/qy3V++0WcOLm9p+aV2UjpmiI9HaHkkzMEVK2SCEsAMfCSHeAe4D5kop5wshfg/cCfwu9HedlLJUCPFV4AngK0KI4cBXgRFAP2CpEGJo6B7PAV8CDgDrhBCLpZRbM/klahuaWbcvOmtp//FgHxJNomTO6xu5/qK+GbunkT3y+CXuo/opw+UTSsJew28/2MneWv0ArM0CP7p+uGGbYH8A7py3nj7dHHHV7Rozy4oMjYW2/aJk5BWKrkGrGhIZzC1uCH20h/5IYArwtdD4n4GfEDQk00M/AywEfiuEEKHx+VLKZmCPEMINXBaa55ZS7gYQQswPzc2oIdHbqolFAIs3xAs7tiXTRvWjtDCffbWNhkYEIMtu5advbsGTxH0yMiIACyoO8P0vX8DTS3foGouWbL90lVReheJcIakhEUIES58NkFLqN/M+e74VWA+UEvQedgEnpJSaoNQBQEvn6Q9Uha7rE0KcBFyh8chG5JHnVMWMj9N5hlnALICSkpLYw0kxanMbyRlvarGR1uDPH++hbJCLn7yZ2I42NGdGWbhnroNVD00xNBauPGfKXogSYFQoOh9JYyRSyvyQsXgGeJjgAl4EPAT8xsT5finlmNA5lwEXtOiJ00BK+QcpZZmUsqx3794pn69t1TisrfBwGeTNTTV895X1VLVRTcGY0AeJ1IsAACAASURBVB59pvbqjQQYY+MzCoWiY5FKsH2alPJ/pZT1UspTUkptK8oUUsoTwAfABKCHEELzhoqA6tDP1UAxQOh4d6A2cjzmHKPxjCMBISzYrcEweJY9+LO9gyVQL97Q+npfYE74MVUSCTAqFIqOSyoxkkYhxG3AfILr6q1AwiIJIURvwCulPCGEyCYYFH+CoEGZEbrWHcCi0CmLQ59Xh44vl1JKIcRi4G9CiKcJBtuHAJ8QDE0MEUIMImhAvsrZ2EvG0FrfRvb+8PkDzL9rPLe9+Akk2fbq7Fgt8Opd4+mR42jV2EVXFWBUKDo7qbxPfw2YCdSE/txC8kW7L/CBEGIjsA54X0r5FsFtsftCQXMX8GJo/ouAKzR+H8GtNKSUW4AFBIPo7wJ3h7bMfMA9wBLgc2BBaG5G0Ut19QXg/1bt5eZLzq1qbYdVENnHy2aBuTPHUDbIlZYMSW1DMxuqTpgqRjQqfFQBd4WiY6NEG01Q29DMhF8s081yerF8rG7jqM6Kw2bh7f+6goMnzwCCEf26RcU/ksmXR2ZcbTl0SlcmJZVrKCOiUHQMEok2mt7aEkI8CfwMOEPQKxgFzJZS/jUjT9mBceU5sRgkrtWd9jLQlZ0w3ba16e60ctrrJxOJY3kOS9Qi7q6p54NtRxhT3IO1e47z0ze3YLda8EsZp58Vm3GlKXFpadNzXt9IfZOPx/+5NaEGlybLohVDmjUoqkeHQtE+pBIjuVpKOUcI8e/AXuAmYAVwzhuSNz6toskgY3b5tsPtakQATmYonRfg+GkfDyzcCMT3J9Hw+IP3m/P6RiaW9sKV59TNuIo1vVYh+OlbW/H4AlHGRbtGJLFGadrovjx76yWGz61EIhWK9iOVGIlmdK4HXpNSnmyF5+mQvBrTyjaStzfHdxE8V9AzIpH4/IGwfLmZzCqvP4DDGi3+oieBrmeUFm84xL2vfKp7XS0ZQolEKhTtQyqG5C0hxDZgLLAslJHV1DqP1bE40XjuLUiZ0Ij0BcDr8+OuqafmlL5XZhGQ47CQZbfw438bgS9GVExPg8vIKC3acEi3pkT16FAo2hfTW1tSyodDcZKTUkq/EKKRFOpIOjMHT5579jJTKRY/fGMT2xJ4LgEJpz0BZpYVcdv4AeRn2ZJqcP32g52G19OaZkWiRCIVivYllWB7ecTPkYfmZfKBOiLN6fTQ7SLoGZFvXD6A//t4X9TYgooDzJo0OKkG17KtiWNOejUlbSUSqYL5CoU+qQTbL434OQuYCnxKFzAkvuRTzkkmDnaxandtyuedNjC8mjeRSIPrva01htdNVFPS2j06VDBfoTAmla2t/4r8LIToQbAy/ZxnoCvHULr9XObyUhffvGIg2w4H4xLXjOjDU+9t590txos9wNXDC3UTFLLsFmobmhMu8kbn/mzacG6/fFDC+6YjEmmGyGB+smwzhaIr0hKlqEYg8f/Z5wh3XjG4vR+hXfjVezu4c956auqbuHvKEEoL8ylO0HYY4KoLejN1eJ+4CnWLgEf+vpmJTyxncWV1VMV75M9Th/dhWGFu1LnDCnOTGpFMoVeJr4L5CkViUomRvMnZGK0FGE5QtuSc5/CJrueNRDJv9X6+MKQ3VXVnmLdmX8K5K921LK6sDrfm/ch9jP9++3M8fkl9c3CT8P7XNmAR4LBaafL5kVKSbbeFt4yWzL6SZVsP897WGq4eXsjU4X3a4muyqLKaB1+rRGBBEuCpW8YwbUz/lIP5Kpai6GqYlkgRQnwh4qMP2CelNC6w6KCkI5Fy6ePvcbTRGzfusIDn3NZrTIssu4VVD03BledkQ9UJbv7dKsy2so88ty2pbWim7GdLo7LZBFDxw6tw5TlZXFkdF8zXi5GoWIriXCUjEilSyn8luclqKeWEVB+uM+AL6AePs+yCL5b2ZsmWc7coMR20bR9XnhOvz2/aiMSe25as3lUblxItQ+M3jO5nKpivYimKrkomW+1mZfBaHYrigjzqzpyKGz/VLNlzNHH1d1ek2efns/115Dqs7K1NbVuwveo/jjXo1wpFjicL5uu1ZG4vw6hQtCWZNCTnrIxwTb1xQeKOI8qQ2CxgtViwWQWnm/14/DLc7nfa6L665zisAqdNP0bSHovuFaW9CXYi0Bs3hyqMVHRVMmlIzlmM6iK6Olk2Cwh48uZR1Df5+NGizXFvE4s3HGL6mL4sqjwUHiufUMK9U4eGt4mApMHp1paW13qhzFsd3S8+lXu1VWGkQtHRyKQhyYR8U4dkYM9sNh1qaO/H6FDYLII/lJcxol83AC7/5XICBj7ppNLe/NcXh8QZgsgFNtFiG6sEXD6hhMemX5Tx7Cgt06wlBqu1CyMVio5ISoZECDEAGCKlXBpqnWuTUmoqel/P+NN1EGw2a3s/QrsiCLbblVLgD2X5SSlZvq2G3Ucb6JXnxGoxfo/QFuV0FmY9JeB5q/fTv0cOc5fuyHh2VLrPGUlrFUYqFB2VVOpI7gJmAT2B84Ei4PcEpVKQUm5ujQfsCNx8cX8+q+oyqvlxSGDSkF58vKsWf0gvxi/hTx8nrimBoBHaeuhU2ouzkRLwU+9tx+uXKjtKoegApFLZfjcwETgFIKXcCZzXGg/V0TiaINjeVfhg+zGsIvXdSwkt6g2iJ9II4LCqSnOFoqOQiiFpllJ6tA9CCBvncKZWJK+s63R1l63CmTR7+VqF4INtR9IyJloQPJKZZf3DW2wamciO0pNHUSgUyUklRvIvIcT3gWwhxJeA/wTebJ3H6li48hwcafAkn3iOk+5bQ6PHzw/e2Iw/IJlzzTBmfeH8qOPJgub3Th3KZQN7cqzBwxWlvSgtzOeK0t4ZzY5SFekKRfqkIpFiAe4Eria49b0EeEGavUAHIR2JlDc+reJ7Cza20hOde9gsAouQWIWFMzpl7TPL+vPkjDEAvLxmHz99aysOq8AXkHELeKIFPlNZW7UNzUx8YjlNER5Xe0m1KBQdlUQSKalsbWUDL0kpb5FSzgBeCo2d82w9FN/eFWBQry7x9VPCIuBr44oRwkLA4B1jQUU17pp6Xl6zjx+8sRmPL0BDsz+u13qyXuyuPCeji3u0eLFX6r4KRctIxZAsI9pwZANLM/s4HZPFldW6441NPhzWc7Z8Ji0swCufVNHsC9DsN3ZWP3If5advbokbl1Ky5eBJ3DX1/PnjvXH/QFtjgVcV6QpFy0glRpIlpQxX5UkpG4QQiZtTnCNIg1pLISwM6pXD9gQ9y7saPkkwNzgJXr/EbrXg8UerBjT7JOUvrTM+rxUWeFeek5lji6LqVWaWFaltLYXCJKl4JI1CiEu0D0KIsUCX8P2/dKG+3tLo/vnKiKSJ3SriMq8SkW0XOGwWfnTD8BYt8O6aehZWVLFs62EWVlThrqmntqGZBeujM/MWVBxQ2VsKhUlS8Ui+B7wmhDhIMNjeB/hKqzxVR0Po29uDp9RCkwy7BfSyhq8o7c2TNzu577UN+Ex4MB6fJMtu4fG3tpLvtKWVURUrtaJx3UWFSrVXoWgBpj0SKeU64ALgO8D/Ay6UUq5vrQfrSJz2+HTHj5xShYqJsFsF79w7Oa4OBGDemr1MLO3Fz6aNMHUtvwymEccG3M2iJ7Wi8famGjz+5DESzZtx19QnHDP7POmcp1B0RJJ6JEKIKVLK5UKIm2IODRVCIKX8eys9W4fB69NX/z3SEN81UXGWQECyds9xyscPjFLVhaBe1qvrDuCwWrAIDAUf9UjHWzCSWtG4+ZL+/P2zasO6FD3hSCS6YpLJMBKhVCg6K2a2tr4ALAf+TeeYBM55Q2K1dm3RxnTxS/jBG5u5+ZJ+usebfQGaDdon2kQocK9DOgF3I6kVjW9OHMT9Vw/TrUsxEo6MZd7q/ZSPH5hQV8zoWsnOUyg6MkkNiZTyx6FixHeklAva4Jk6HHlOZUhawuINh5LOybJbCAQkTpsVbyDAzRcX8fIn8Yu1zUJaVex6/UY0hhXm6krbayTzZmLnJjIIRtdKdp5C0ZExFSORUgaAOaleXAhRLIT4QAixVQixRQhxb2i8pxDifSHEztDfBaFxIYR4VgjhFkJsjMkSuyM0f6cQ4o6I8bFCiE2hc54VIg1lwSQU91D1BG3B29+dxHO3XcIfvj6Wf79Y34uZf9d4po3pn5Iuljb33qlDebF8bNzx7TWNvLXhoOG1knkzqcw1Op7KPRSKjkYqWVtLhRAPAK8C4ZxXKeXxBOf4gPullJ8KIfKB9UKI94H/AJZJKX8phHgYeBh4CPgyMCT0ZxzwO2CcEKIn8GOgjOB22nohxGIpZV1ozl3AWuBt4FrgnRS+V1I+O9B1JeQzgTdBVpYAnHYLT948ii2HToXlUBqa4xMcyieUUDbIlZIuVuzcmy7Wn3f/gg2IkLcTey2j7olAyh0VM9GJUaHoaKSitbUHHd0+KeVg0zcTYhHw29CfK6WUh4QQfYEPpZTDhBDPh35+JTR/O3Cl9kdK+e3Q+PPAh6E/H0gpLwiN3xo5T490tLbu/NNalm07ltI5CvP8bNpwbFYLP1i0GX8CgeGlsydTkOswrYulp6HltFkM4zKJrgX67X7TbQHc2q2DFYpMk0hrKxWPZDhBxd8rCBqUlQQbW5l9iIHAxQQ9h0IppbZxfhgoDP3cH6iKOO1AaCzR+AGd8dh7zyLYlIuSkvhU1GTsPqqKDluTHy7eampeZdUJhhTmm6750DS0Iuc6rBamXtibtzfV6N4jUUaYXvfEdDsqZqITo0LRUUilsv3PwIXAs8D/EDQsfzZzohAiD3gd+J6U8lTksZB6cKsqCEsp/yClLJNSlvXurV+lnojaRlUv0hEYU9wjJV0so7mPT7+IpbMn85N/uxBHTB7FGZ8/nO6dTn8SVR+i6Iqk4pGMlFIOj/j8gRAi6aukEMJO0Ii8HFFzUiOE6BuxtXUkNF4NFEecXhQaqya4vRU5/mFovEhnfkbJtjk4hapib08i4whP3jzKVC8SV57TcK4rz0lpYT4en+TJJdsIBCAA+PySGc+v4YpSFxX76lLqT6LqQxRdlVQMyadCiPFSyjUAQohxQMJgQyiD6kXgcynl0xGHFgN3AL8M/b0oYvweIcR8gsH2kyFjswT4by27i2BPlEeklMeFEKeEEOMJbpmVE/SWMkqzXxUetic2C0wb1Y8NVScoKshm2pj+TCztZaoXSaK5RpIpAB+5awHC22L3v7aBft2zKBvk0p2fifoQFTdRdFZSMSRjgY+FENr/LSXAdiHEJoI7VKN0zpkIfB3YJISoDI19n6ABWSCEuBPYB8wMHXsbuA5wA6eBbxC8+HEhxOOAJgv7WES22H8CfyIoa/8OGc7YAmjypNdiVpEZfAGY8fwanFYBAu754hC+Nq6E0QYps7ELsmY8NPl5V54zoWSKHt6Qp2LkZbS0PkR5M4rOTCqG5NpULy6l/AgMNNhhqs58CdxtcK2XCDbTih2vAEam+myp0KSvkKJIg2Hn5bD9yOm0ztX6m/z6/R389gM33/nCYAISJg/pxaDeeRyoO8OT72xj1e7a8DnlE0oYO6BnOAXY4/dzzxeHkJ+Vyj/9sxh5GS2pD1HV7orOjun/m6SU+1rzQRRdg3SNSCzNvgC/WeYG4NnlbsN581bv55W1+/EGzm5T/fr9HUkbkk0qdbFmz3HdGhg9L6Ml9SHJvBm15aXo6KT3WqZQtBKj+3dnQ3VmC0D1ZOw9fhknFjl9TF8mlfYOL9gVe2qZ8fyauHONvIzHpl9E+fiBuot+rDGI/FyQY9e9XkGOXW15KToFypAoOhSZNiKJyHXY+MVNI2nyBnTf9ssGuVL2MvTqQ2KNwbDC3KiGaBMH6wfwtx1WW16KzoEyJIouizcQYML5vRJmfSXyMjQSbT3pxT9iu2pGxnTMoAQeFR0NZUgUXQqbRZBttyasP4klURV6sq0ns8rBEwe7ogzK5YN7ckEf/XsqgUdFR0MZEhM4BTS3au29oq2Yf9c47DZrwvoTs8FtM9lWZhf9n04Pdop8dNFmPt59PPwndhtMCTx2HWobmk3VSnUElCExgX6jXUVnY9rovoYFhRrf/ss6lmw5Ev6cKLhtpnZEL5vLyDi4a+r5eHe0mPb2mkZeLB9L3WmvytrqQqSicN0RUIbEBAlU0BUdjBvH9GVx5SH0SkiHFeYB0W96QPjnWfPWsX5/dLA/UXDbbO2IXpxFz+tZsuWw7vXqTnuZUVYcN67Sgs9Nahuaeej1jTR5A+GU9Tmvb2RiaeJ4XnuiDIninOKeLw6hd14Wf/xoT9yxX723k9W7j4c1tJp8fqSUOKwWmrwBXeMDxsHt0sJ8hhbmsiPCuyjtnUOjx09tQ3PU//SxcZbSwnwKch0cqDtDbUMzzyzdYVhpr2ewVFrwuYueanUiVeqOgDIkinMGi4CCXAc9DOoyIF5DC8AXSCyBY+R5uGvqo4wIgPvoab72x9X4pX6TLI3IrYtmnw+PgXqCXkwk05XwnWkvvr1pi99VKgrXHQVlSEzgEOBR21sdCquI33IMSCh/cS1bDmVOwn1QrxzDrSijGEmjJ/F2hN7WhR4PXj2Uu6cMiRvPZN/3zrYX35601e8qkWp1R0UZEhMM75dHZXVDez+GIgKjuFUmjQjAr24eFbeNpFXAG1Wka/j8AdMNt/S4ZkQf3fFM9X3vjHvxrY2Rx9HWv6tUFK47AsqQmGDrIWVEzjXsVoGUkgRdd7EKOHnGG7eNtKjyEIsqgw0+B7qy2Vt7Rvd8X4Bwk6xI9LYuYhlWmGvoXWSq73tn3ItvTRJ5HO3xu9L65nQGUumQ2GVRKvLnHl6/5PnbxxpKU0PQ67lz3vqE1zEyImePx4tUalsXWXYL+U4bTlv8/4bbaxoTdll8LNTl8akZo1g6e3JagXY9g+bxB/hsf12X6/AY6XHUN/to8gaY8/rGcHfMzhi3aEuUIVF0WTYcOEmes3WdcqPtpmlj+rPqoSn89VvjeOTLF+jOSVYVX1qYz4yy4rRTf2MNmtUiaPYF+MmbW7lq7goeXbQpret2RjSPIxLN44D431WW3dLh4xZtidraUnRZfIEAzb7WKzdNtt2kbV3kxjaOD9EWUijaXvzqXbXc88pnUce6kkCkGY+js8Ut2hLlkSi6BAN6ZsWN/e+Hu/H4g53XkrQnwSbgJ/92IVOG9TZ1P4dVUDagp6m5pYX5XFEaXXE/qdTVZgu4K89Jk1c//9isVlh7UNvQzIaqE+Htp5Zg1uNw5TkZXdxDGZEYlEei6BLsO95keEySXL3AarXQK8/JS9+4jJuf+4j1VWcr4CeVuviPywcy66/r8Ydeaj1+aTqrp7ahmYp9dVFj6/bVhYsa26J2IVOZYG1Fa6TiKo8jfZRHYoK+3Rzt/QiKdqbZF+CeVyqZs3ADWw5HB6LX7avDbrOSY49+L4vcY09Eov35RZXVTHxiObe/sJaJTyxncWV1y7+MDlomWCQdVSAyWWC8JSiPIz2UR2KCC/t049CpY+39GIoOwIKKA+Q6ohd9C7By55G4eEvkHntsQaPmZXh9fjYfPIXHH78/f6y+iQde24DXL9ukdsFM75VUaC0tMJW23PFQhsQE5xfms3yHMiSKIM0x+2CnvQH+uHJv3LyZZUW48pxxBY2TSl2s21eH1xeI2lKzWgQ5oV4plw4o0E099gdkqy6YiXqvpEJraoGpVNyOh9raMsHOQ23X/lXR8ZlzzTAcVoFBslWYBRUHqNhTG1fQuNJdS5M3EBeX8QckI/t3Y/aUUla69bsmev1St8ixJbQ0aB17vpEWWKZqU7TAuNNmCf9Rqbjti/JITPDJvo6buaJoW8onlHDg+Gk8JnoL2C0WVuxMzZNdvfs4q2N6ksSyt/Z00r4qZmlp0FrvfI+BXEAmWwRX7D1Oc8R9KvYdVxph7YjySExgEaq0vatjEbDw2+MpHz/QUO49Fo8/gD+JFEo6ZCqTqqVBa73zH1y4Aa9f/ztn6rlb2+NRpI4yJCawWZLsYSjOeQISeuQ4UqqraPYFeO7D3Rl9jkxmUiWr5jZzvjfG+2j2SR7/5+dx0jOZfO5E6seK9kFtbZnAlefkRFO8ZpKia7FkyyHGtWBL6RuXD+D/Pt4XNz71gl4s2xa/BfazacPJctgoyLFnvNWuu6aez/YfT5hpZnSelonl9fl1629Oh5qrOKzw/esu5IrS3hnN2upsNS9dAWVITDDAlcOuY8qQKASnvQHdXihm2HzwlO64nhHp283B7ZcPAs5Kmxfkpl7PpFfMGJtRJYA8pw2PP8DdV5YaXueHb2zmnc1n2wFPHJzYqDptNi4u6ZnxWpRMqR8rMocyJCbItasdQAUcOtnEM8vWpWVEANbtrUs+KcSxRi+1Dc185D4WFcy+76qh9Mx1mPJO9ALhw/t2i4svSOCmS/ozf91+/rBiN8996I4Kui+qrObB1zbEJRis2q2fWabR7PMb6oi1lEzXvHQFWquuB0BI2bVa/5WVlcmKioqUzhn/i6UcPtnyqlmFIhV+e+vF3P/ahqjspEgS1WbUNjQz8YnlNHnPnptlt/DwtcP4yZufx823WYjqzZJlt7DqoSkAcddJhEWA3SJo9kuyQi9gquti+5OJuh4hxHopZZneMfWqbYJsq/o1Kdqe333oNjQicDZTyV1Tz8KKqqisJaNAeq+8ePFKAIdVP+iud51E3DCqL1IEQ+1N3kDSTDC9Z+9MdIbnb4sst1bd2hJCvATcAByRUo4MjfUEXgUGAnuBmVLKOiGEAJ4BrgNOA/8hpfw0dM4dwA9Dl/2ZlPLPofGxwJ+AbOBt4F7ZCi6WK8/BnuPmMlkUikxhpm3wf/zfWg6cOLtITxvdl2dvvcSw+nvC+a64+MK1I85j6edH4uZqQfdk3RwjWbzhELkOK56IMSP5ktasfm8LOsvzJ8pyy9QWV2u/av8JuDZm7GFgmZRyCLAs9Bngy8CQ0J9ZwO8gbHh+DIwDLgN+LIQoCJ3zO+CuiPNi75URvnRhYWtcVqFoMZFGBIIL+b3zP00oix7ZXXH66L68u+VIeFvLKoiaG3sdMwtGrBflDQTw+vxRb+6dvRakvZ4/HQ+oLbLcWtUjkVKuEEIMjBmeDlwZ+vnPwIfAQ6HxeSGPYo0QoocQom9o7vtSyuMAQoj3gWuFEB8C3aSUa0Lj84AbgXcy/T32HlcZW4rOw6LKQ3x9XG1CWXTtTfSBhRujzvVLePWbl0VVzmvX2XLwJHfNq6DZl9jpLy7IpvrEGZy2s7phM55fEz5ePqGEUf31F7GWviW3ZkA5krZ4y48lXQ+oLbLc2iNrq1BKeSj082FAe93vD1RFzDsQGks0fkBnPA4hxCyCXg4lJSV6UxKyepcSbFR0Lm59YS2/vmU008b0N9SgMloM9SRYXHlOumc7cFitSbtK7gn1qR/eL4cfXjc8yohA8M39xXL9BmEteUtuy62mtq5lMfKAzHawfGz6RXxhSG/e21rD1cMLmTq8T0afr12jyCHvo9XTxqSUf5BSlkkpy3r3NtfhLpLTzZkVyVN0HUToT6YY3ifX1DxvqLFWIrmTVBfDooLsOLn7RFRWneKD7Ud0j9Wd9ma0/0lbbzW1df+WllbzP/rGJu6ct55XKw5w57z1PLpoUyYfr108khohRF8p5aHQ1pX2L60aKI6YVxQaq+bsVpg2/mFovEhnfsbpkevgSKO3NS6tOMeZNMTFx7tqSZB8lZTpo/syaUhvXvlkH+v3m1eiTtajo7Qwn2GFuWyvaQyPDSvM1V0MtcLGb04cyO/+FS/7ItB/Izx5Rt97GVPcgxllxRmrBWnJVlO622FtWcvSEg+opd6MGdrDkCwG7gB+Gfp7UcT4PUKI+QQD6ydDxmYJ8N8RAfargUeklMeFEKeEEOOBtUA58D+t8cCZfKNUdC1WuWvTLmDU8AYCFOTYUzIi2nmxcieRiyYQZUS0z+6a+qgFJrKw0eP3x9WcOG2CB64exs/f3hb3DDeO6YfFguH+fKb6n6S70LZ0OyxTz2/mPunGOf7x2QHD8QevvTAjz9fa6b+vEPQmegkhDhDMvvolsEAIcSewD5gZmv42wdRfN8H0328AhAzG48C60LzHtMA78J+cTf99h1YItAM0p+DOKxSRtNSIALy9qYYlW/S3iPSwWwVWi+DJm0dR1+jhg21HGFPcg3mr90YtmkYSJ5Fv8ZEKv1pHQpsFnDYLDmu09PyKHUej+qhMKnVRNij4x+jNPZE3kEqv+nQW2rZ4U88k6XpAJ8/o76YYjadDa2dt3WpwaKrOXAncbXCdl4CXdMYrgJEteUYzDCzIZm+tqiNRtB/+QGKLdO2I87iofw8u6JMfFnict3ov351faXiOkcRJ5Fu8XlvbbLuN5267hO7Z9qhF/i/fGk/FnlpW7DzG5CG9ogL2BbkOhhTmR+mFJfIG0umTkupC2x6ZVy0lHQ+ouIe+CKfReDoorS0T1Kj4iKIDkEgs8t0tR3h3yxGsQpDjsNLs85tqvuW0QmQuSfcsa9RCZVTYOKJfN10vQfNAtK6JRQXZcXphRppfmjdQkOuI84LM9qpPZaHtKirCu2v1yxeMxtNBaX+YoLi7auGpaH/sNgsvlo9lVP9uhnP8UlLf7DNlRCDaiACcbPLzxqdV4da5iQobjVhUWc3EJ5Zz+wtrufyXy7l/QWVc86yP3Pop9ZVVJ1rcJyWSRAV8bZ151V5MGNwzpfF0UB6JCarqmtr7ERRdHLs1GPMY4MplZP/ubDl4KiPxFz1mL9hIntMWtaVkVNgYi15MJe67WCz0MrjGmOIeFOQ6dL2gRH1S9DATSO8KKsI9DfTVjMbTQXkkJpBSBdsV7cusSYNY9nkNV81dwd8+qTJlRBJlG/7gugsMj0sIew/3v7aBij21uPKcjC7ukXRryYzIY6TmVySaN+DKc3LfVUOxWSDHbjHlBcViFEh/bvnOOO+ktDCfGWXF56QRCWL0jyVz8w7vJgAAF55JREFUbyLKkJjAYbe39yMoujjPfbibRRsOJZ8YgdUS7DMfm51VPqGEmy4pMjgrGq9fMuP5NaYL2PRiKnarwGkTuppfC789nu9OKWXht8fz2PSLqG1o5jt/Xc9/v7MNXwBOewNMG93PlAx95DaWUSD9V+/t4Kq5KzJekNeR6ddd35MzGk8HtbVlggmDe7KxOrUcfoWivXHarNhtVl6eNV43zfauSYP4w8o9pq5lJi1Wy9j69uTBPL9id1RwXW9rTGuYJYTg9//axVcvK2b+J/vxxMRtFlQcYNakwQnvHbuNNW10YgmQjpzmm2kaPX6c1mCPGA2nVdAY+4tuAcqQmGBQL3OyFApFR6LR42fzwZOMDhmP2EXz+9cP56WP9hCpwWgBrFaBV2fvzCgt1l1Tz6x569gdkSI/flABj1w3PMpwRG5N1TY0M/vVSoJZzcF7RdaAmL23dv/YbazFGw4zfXTfhF5cR07zzSRFBdkIS3TKn7CIlGNOiVBbWyZYu0eJNio6J4+/tdVQb2vZ1sPECvkGgAeuGqI7P8tujbvWd1/5lKvmrogyIgBr9tTh9fkN4xqrdx0jSWlMFJEpuVpqsfYsRttYF5cUsHT2ZB68Wv/7nGtpvka48pzMHBu9lTmzrCilmFMylCExwYbqU+39CApFWuilzWoL8Zsb9d/Wd9eejguEC+CRv29i4hPLeXntPjZUneDbf1nH4gRv/Ct2Gr+AfbD9qOnvEJmSG5laPPGJ5SyurDY0CL94ZxtbD53i7ilDO3Wab6zhrNhTy9Pvbadij35Bqd75r6yrihp75ZOqhIKeqaK2tkxQV6/6tSs6J7Fps5EV401efUFFTWa8fPxAlmw5xNylO/EFgplcAD/4x2Zy7ILT3sQuhVFWmLumnkWV+vqqNgHZDhtnPD4uHdiTb00aFJY810stnvP6RlY9NCVOHgWCDba0QsbOmuYbW+Ff0jObHSF9tGeXu5lU6uIv3xqf8BpbDp6M26r0+iVbDp5k8tDzMvKcyiMxwSklI6/oZFgFOKxw88VF1DUGG99W7Knl/tc2hIsDvTpZ7cMKc8ML95ZDp3hm+S5d5eJkRgTgd//axZ9W7YlKt11UWc2Xn1lhqIZcPmEAVwzphU/C6j3HoyTPExUqPjb9In5768Vk2YwLGTtbmm+k4dTSsXfEiGyudNea8EyMTHrm5GiVR2KCVPZyFYqOgF+C3w8vf7Kflz/Zz/m9c9h1NF4Swx4TWB8XShV219Tz4GsbTFfI6+HxS37y5lYguJV079Sh3L+gMqGk/u6jDXy4M3ph1DKsjORaNI9rwvmuuLXRqJCxrToptgQ9nTM9Vuw8FteILJIR/brFKTbbLMHxTKE8EhMoGXlFZ0fPiABxWx7zVu/n+X/t4rr/+ahFRiSWeav3896Ww0n7ssQaEY3KqhNJ5VrMyrk8+sYmrpq7ggcWbuzQNSV6hlOPyUN6JTzuynMyuHd05un5vXMzGmxXHokJsu2gdBsVXYUnl2xPqjac67Di9QdSMjZbDqaftKIF1JPJtSQ73h7S8el6P5phnBMRIxnQMzuqh4wm1Z+Iij21cVti22saqdhTm/RcsyhDYgJhMer/plCcg0j9f+s2C9isFn50w3BG9uvOyTNeyl/6xPRlR/TrFreVZobyCSUU5DrCasKuPGfCt2ntuLumPtyLRVvAU5WOT6Unih4tbZylZxiNpPqNMMqeS7YllgrKkJjgdLMyIgqFBJ679eJwMP6vH5urite4dGBPfn3LaB5cuBEIZlUl48XysTR4/Ex8YnlKvUmMFvBUpOPT6YkSSaa8n1jDqUn1m+W8PEdK4+mgYiQmsKogieIcwprkeEDqxwX9AaKyqN7adNj0PTVJjmlj+vPxw1OYlGRfH4KL/5iSgrjMpTmvb0xYA2G0gGsthM3UlOhlTCW7byyJvJ+25EiDJ6XxdFAeiQlU1pbiXCJZMnuyf+7aW/XgXjms2XM8yewgkZIcrjwnVw7pxdLP49sH3/vFwRS78sLbURuqTsRlLmkpvXpbTe6aev64crfuM2jbV2ZqSvQyphLdV4+O0jirLTwSZUhMoKpIFIpoPnIf45tXDOZv6w4kneu0ibjsqSyH/tLjsNuYUVYc/pws5TeS2O2sWCIX8GSdFFO5rxHp9JFvDbbVNKQ0ng5qa0uhUKTM429tZeuhU3HbRLELSo7Dyh/Ly+JiCwNdObrX/dV7O6LScROl9EZKhehtZ0WS6gKe6L6xkiWJeGz6RSydPZmnZoxi6ezJKQXaIV4eJR0cBnvzRuPpoDwShUKRMn4JD7xWyY0XR4sBxobPA1Iyol/3uPPdR4zfhmMD0nqZS7e/sIaP3MGak2eXuxl6XuYVuvXum04APpU+8pHo3Wt4324ppxJ3y9bvp2Q0ng7KkCgUirTw+IO9QhLx7cmDAaJSdwEq9iWOrcSm40ZmLlXsqQ0bEY0dR6LrJGKJNU5mU2gj72uk9TWxtFdKqcFmUor17jV7wYao+h6zqcRLt+oLay7deojvfWmY6edOhDIkCoVCFwswaYiLfxlUm5vh758eiGtyNW1Mf87rlrhfeKKAdCJV4URoxinWmzEjfAiZCcCb9Wj07hVbJGo2lXjPsTMpjaeDipEoFApd/lg+liuG9G7RNarqmqJSaB9YuBF3TT03XWzc6jdZPCOZJIgRBTl2Xlm7L86bMSd82PIAfCopxWblUcykEvul/nWMxtNBGRKFQqHLnfPW8/O3t2X0mh5fgOueXcnaPcexWqKDvRZBuHd7IsoGuejTLbXUVYuA77z8KY8u2qJ73IyXY1bLy4hE6sXJ7uW06S/ViTw3LVDfpN8twHA8HdTWlkKhMM1F/fLYdLBlaaMev+Snb24h226hIaJFQ67Dht2WrFwyWCty+FRqxXQBSUJdMLM1Fcm0vBJRVJBNky+6mKDJ5zf0aGLv9cyyHaZTiSO30NoCZUgUCoVpWmpENOxWC00xDVESLapwVvyw5lST7vEHrx4KBFOIU2XNnuPcfvkgU3OTaX0lQsbomMV+TnQvs8259AL1rY0yJAqFos3xBQIpLarJig0BLuiTT93p9GS6Txt0i8wkB+rOkG23hTtNAmTbbXHBes1gFuTYqTvtDf+tGY9kwXWzfUwyiTIkCoWiTbEKuPXSEl7/tDrpogr62ll6aIutEQJw2vRjA7ddNiB8r2Rv/LFzzMrEmwnWJzOYyVJ+3TX1fLb/OM2+1jeMkShDolAo2gSLCMYq/BL+tHpfnDCkUQaUWZHDlTuPsvGA8dxLBxZw+fkufrPMHXdsgCvXlOR77JxhhblR/UH0zok0NLH9RSKD9WYMpl7Kr1aX8vKavSxYXx0eF0CeM9oDai2UIVEoFG1CrPhp7EbWpQMKdGMPZkUOF23QL7zT+GRvHZ/srdM9tmTLoaSS73oL/faYhlGx5+gZp1UPTdEN1ps1mH9cuZu7Jg2mtDA/HFS3iqC6ciQS+MVNF3HPK5+Zum5LOCfSf4UQ1wohtgsh3EKIh9v7eRSKzoAzeYJUFMP75GO3tF5PhZXuoGZWLHrS75ef3zPDd9f/XpGLu9mFXptnJGdf1+hhdHGPOKNp1mC+WnGAq+auYM7CDeGgeqwR0Wjyto3kbKc3JEIIK/Ac8GVgOHCrEGJ4+z6VQtHx6W5Sa2n66H4snT2Zt783mV/PHN2q/XmWbNHvcRInfjhtZEbve0Ef/dhG5OJudqHX5v1t7T7d40bjegYzEQsqDiT9b9FWkvXnwtbWZYBbSrkbQAgxH5gObG3Xp1IoOji3XlrMMx/o9+6I5L+mlEYJKPbrnsWM59e09uPFEZuxpCfRDkSNmaXutDep5LueLLxejEQ75+BJ/TRlo3GITvGNzNp6b2sNr+romjUnqI1pS8n6c8GQ9AeqIj4fAMZFThBCzAJmAZSUmLf4GuNKerB2f9t2NVMoMonegjf7mgt5YdUeGj2pLUZlg1xxC6pZpo/uy6QhvSnIsXPnvPVxx68Z0cf0tYzqKqaN6setL6xNqTf8mOIezCgrTlqnoXdPo6ytW8YW8e6Wmrhr3DLWWB4G9NWCB7hydQ3JnGuG8fT7O8LB+/uuGkrPXEfUs2Tb4IxOvD07g6u/SFYQ09ERQswArpVSfiv0+evAOCnlPXrzy8rKZEVFRUr3qG1oZuzPlrb4WRUKPWwWgS9JG04BnJfvoKY+uqK7fEIJJ097DQPNt11WwjcmDky44H3l96tYu/fsi9K1I87jqgv7JE1nddfUs2TLYSqrTrB8+9GwqKAgOpA+fUxfJpX2jrveo4s2xXkAqfbrMGJxZXVUdtS3Jw1GEtTpWrzxYKvdN5Zr5n4YZcCHFeayZPaVaV3L6PeVTE24Yk+trge58NvjU+r9LoRYL6Us0z12DhiSCcBPpJTXhD4/AiCl/IXe/HQMCQT/YX53fmX4c68cK6e9AWwWC6ciZB7GDyrAabNy4rQXp1XgPtZArtPKgIIcDp5qpneunVPNPvr2yKEw38nGAyc51tjMpPNdfLzrOAdPRQu4ZVmgKSL1fFT/fPp0y+J4oxe/lHxWdTJ8rHxCCdNG9WPJ1sMM7pXH6t21LI5YYIzSAb84rBfXX9SPMcU9KMh1hP9Rfm/+Z6yMELgbel4u147sy+BeOfzynW0cjljUXDk2invmhBYTQX6WlTW7/397dx5jV1nGcfz7m6V0m7bAAB0K0kJa6VAWWQzITgmpNRSJlVApWwhGFFARFMVERE0kBiUm0IKAoBGLZcvIbmpLgVjosHRgCkLZC6UtMJ0yXejQefzjfSdcp3c50zP33t65zye5mXPPee85zzN3ee9Z7vN2ZP1JVMNONew/toHGhqF83LWFofW1jBszlE3dW+nc1M2LK9exdsPnMU7YdRgLrziJ+597lzmLXmdzdw+Tm0bSsbGbtZ9spra2hoPHjea9zs3Uq4bFr38e8/B6UVcjjp/YSMem8Dydf/R4Fr6ymofbV3PipEYOG78rrW9/TE9PD/9a/gFdW6CpYQgXHLsvH6z/lCl7NrBuUzfdW40tn/UwpK6G+toapuw5itfWdLHwldWsWr+Zdz7cSGfGa6F57AhObm7iuImNdG7qpmXZKg4cN4rTDw3fSNvfXw+E8Tr6lr+YcfBYLj1pEk+u+JDGkUM4ar9Qqrz3wxvCt/fMK4peeHcddTXQvuoT9m0cwSkHjE38C+ykv4XI5aOuT2l/vxMQB+w5io4NWxKtL+12C8WU6wO2mNvta8HyD3hs+WpOad6Dqc3J97iy2d64z75lyf+9l5NWPM402DuSOuBVYCrwHrAU+JaZZa3Otr0dCeR+YQ70i7Lv+vKNnVBo25nLMzuJpG/0NNve3rYwsG++Uko6zkU2pfxwc9UnzWsTBnlHAiBpOnA9UAvcZma/ydU2TUfinHPVKl9HMhhOtmNmDwEPlTsO55yrRhX/OxLnnHPl5R2Jc865VLwjcc45l4p3JM4551IZFFdt9YektUD2YjfJNAKFB3geXKot52rLFzznapEm533MbLdsC6quI0lLUmuuS+AGq2rLudryBc+5WhQrZz+05ZxzLhXvSJxzzqXiHUn/3VzuAMqg2nKutnzBc64WRcnZz5E455xLxfdInHPOpeIdiXPOuVS8I8lC0jRJ/5W0QtKVWZbvJOmuuPxpSeNLH+XASpDzZZKWS2qTtEDSPuWIcyAVyjmj3TckmaSKv1Q0Sc6SzojPdbukO0sd40BL8Nr+gqSFkp6Pr+/p5YhzoEi6TdIaSS/lWC5Jf4z/jzZJh6beqJn5LeNGKEX/OrAvMARYBjT3afNdYG6cPhO4q9xxlyDnE4Hhcfqiasg5tmsAFgNLgMPLHXcJnueJwPPAzvH+7uWOuwQ53wxcFKebgbfKHXfKnI8DDgVeyrF8OvAwYay7I4Gn027T90i29WVghZm9YWZbgHnAaX3anAbcEafvBqZKUgljHGgFczazhWa2Md5dAuQfeHrHl+R5BvgVcC2wuZTBFUmSnC8EbjCzDgAzW1PiGAdakpwNGBWnRwPvlzC+AWdmi4GP8zQ5DfiLBUuAMZKa0mzTO5JtjQPezbi/Ms7L2sbMPgM6gf4PObbjSJJzpgsI32gqWcGc4y7/3mb2YCkDK6Ikz/MkYJKkpyQtkTStZNEVR5KcrwZmS1pJGNfoktKEVjb9fb8XNCgGtnKlI2k2cDhwfLljKSZJNcDvgfPKHEqp1REOb51A2OtcLOlAM1tX1qiKaxZwu5ldJ+ko4K+SpphZT7kDqxS+R7Kt94C9M+7vFedlbRPHjB8NfFSS6IojSc5IOhm4CphhZp+WKLZiKZRzAzAFWCTpLcKx5JYKP+Ge5HleCbSYWbeZvQm8SuhYKlWSnC8A/gFgZv8BhhKKGw5Wid7v/eEdybaWAhMlTZA0hHAyvaVPmxbg3Dg9E/i3xbNYFapgzpK+BNxE6EQq/bg5FMjZzDrNrNHMxpvZeMJ5oRlm1lqecAdEktf2/YS9ESQ1Eg51vVHKIAdYkpzfAaYCSJpM6EjWljTK0moBzolXbx0JdJrZqjQr9ENbfZjZZ5IuBh4lXPFxm5m1S7oGaDWzFuBWwu7vCsJJrTPLF3F6CXP+HTASmB+vK3jHzGaULeiUEuY8qCTM+VHgFEnLga3AFWZWsXvbCXP+EfAnST8knHg/r5K/GEr6O+HLQGM87/MLoB7AzOYSzgNNB1YAG4HzU2+zgv9fzjnndgB+aMs551wq3pE455xLxTsS55xzqXhH4pxzLhXvSJxzbpArVMgxS/t+Fe70q7acc26Qk3Qc0EWosTWlQNuJhB9onmRmHZJ2L/TbMd8jca4PSVdLurzI2/hZMddfYNuLKvwX+q6fshVylLSfpEckPSvpCUn7x0X9LtzpHYlz5dHvjkRSbTECcVXrZuASMzsMuBy4Mc7vd+FO70hc1YmDdL0Ubz+I866S9KqkJ4EvZrQ9JL6Z2iTdJ2nnOH+RpD9IapX0sqQjJN0r6TVJv854/GxJz0h6QdJNkmol/RYYFuf9LVe7OL9L0nWSlgFHZcllmqT5GfdPkPRAnJ4T42uX9Msc/4uujOmZkm6P07tJukfS0ng7evv/425HI2kk8BVCpYoXCOWPekvJZxbunEX41f+YvCss9yAsfvNbKW/AYcCLwAhCyZf2jHnDCeNSrAAuj+3bgOPj9DXA9XF6EXBtnP4+YQyLJmAnQuHDXYHJwD+B+tjuRuCcON2VEVO+dgackSefOkKtqBHx/hxgdpzeJf6tjfEelBH74VnimEmoggtwJ3BMnP4C8HK5nzu/pX7tjycOdhVf56tytJsLnJ9xfwFwRL51e60tV22OAe4zsw0Aku4FvhbnbYzzWuLf0cAYM3s8PvYOYH7Gunrrcb0ItFssfCfpDUJ11WMIndTSWJ9sGJDtePPUPO22AvfkSsZCLalHgFMl3R1z+XFcfIakbxM6mybC6H9t+f45GU4GmvX5eG2jJI00s648j3EVwszWS3pT0jfNbL7CE32QmS0jFO6cBfw5aeFO70ic2369pfR7MqZ779cRhjK9w8x+WmA9+dptNrOtBR4/D7iYcDK11cw+kTSBcNz7CAtX3txOqGrbV+Zlm5nLa4AjzWwwjAxZ9XIUcjwLmCPp54SijvMIQxH3u3CnnyNx1eYJ4OuShksaAZwOPBjnDZPUAJwKoZQ80CHp2PjYs4HHs600hwXATEm7A0jaRdI+cVm3pPoE7ZJ4nDBG94WEDwMIhy42AJ2S9gC+muOxqyVNVhjI6/SM+Y+RMVKgpEP6EY/bwZjZLDNrMrN6M9vLzG41szfNbJqZHWxmzWZ2TWxrZnZZnHegmc0rtH7fI3FVxcyei9/On4mzbjGzZyXdRfg2toYwhkWvc4G5koYTdu8Tl9w2s+Xx295j8YO6G/ge8Dbhipk2Sc+Z2Vl52iXZztZ4gv28GC9mtkzS88ArhGFVn8rx8CuBBwjjb7QSzhsBXArcIKmN8DmxGPhO0txddfEfJDrnnEvFD20555xLxQ9tOVchJN0HTOgz+ydm9mg54nGulx/acs45l4of2nLOOZeKdyTOOedS8Y7EOedcKt6ROOecS+V/eUsEa6rapuYAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":571},"executionInfo":{"elapsed":3855,"status":"ok","timestamp":1654721162831,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"},"user_tz":-180},"id":"FVFB6stBtpp_","outputId":"6fed979d-8f13-446d-a24a-04cad85cec56"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["[,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ]"]},"metadata":{},"execution_count":40},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAEDCAYAAAAlRP8qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5RU1Z0v8O+vq/oJ2C3SYDeooGAENYmmL+rNxAfMZNCkNVkzGpjE13XFmIxZA8mNY2LEiKMZ9a4BZ665I7mTZJI1kaAzk0s7JMYgapaC0vjkIQ8RI9DSCHRrYzdUVf/uH3W6qXedqtrnWd/PWiyqTu3aZ5/T5/zOqX32Q1QVREQUfDVeF4CIiMxgQCciCgkGdCKikGBAJyIKCQZ0IqKQYEAnIgoJTwO6iPxERHpFZJPN9NeIyBYR2Swiv3S6fEREQSJetkMXkYsBDAD4uaqeUyTtDAArAcxR1cMiMlFVe90oJxFREHh6h66qzwE4lLpMRM4Qkd+KyEYR+YOInGV99FUAD6vqYeu7DOZERCn8WIe+HMA3VfVTAP4ngB9Zy88EcKaIPC8i60VknmclJCLyoajXBUglImMB/HcAj4nIyOJ66/8ogBkALgUwBcBzInKuqva5XU4iIj/yVUBH8hdDn6p+MsdnewC8qKoxAG+LyHYkA/wGNwtIRORXvqpyUdUPkAzWVwOAJH3C+vjXSN6dQ0QmIFkFs8uLchIR+ZHXzRYfBbAOwMdEZI+I3ATgywBuEpHXAGwGcJWV/EkAB0VkC4C1AL6jqge9KDcRkR952myRiIjM8VWVCxERlc+zh6ITJkzQqVOnerV6IqJA2rhx4/uq2prrM88C+tSpU9Hd3e3V6omIAklE3sn3GatciIhCggGdiCgkGNCJiEKCAZ2IKCQY0ImIQqJoKxcR+QmAzwPozTVmuSRH0XoIwBUAPgJwg6q+bLqgANDf1YXepcsQ37cPEAEyOkU1XnQhpv70pwCAbRdfguHeykbYjbS0YNzl89D/m99C+/pGl02643to7uxEf1cXeu69b/SzQvloXV3h8ogk/w0PZ39WU5O9PGX7Iy0tqJlwEmI737K9bdLYiJr6eiT6+oBIBEgkEG1vR+1pp2Jw3fq09dSecTpib+3K2t/S1IS2u38AALb2g2tyHBt51dYCsVjefFrmfwlN55+PfYvvAgYH7a2+sREaj+fPFwAiEUhdHdROnrW1kGg0f9pIBJFx45J/y6KFk2T5Pvqo+H7Kddyl5ANVSEsLcPSore0YPeb6+xFta8PERQvR3NmJnrvvRt+KX9n/mxVQO/0MTH/iCQAZ8cI6xk2QpiY0X3VlWlwoVWqsMqloT9Fik1CIyBUAvolkQL8AwEOqekGxFXd0dGgpzRb7u7rQc+di6NBQwXSNF12Io2/tqjiYFyK1tWj+y79A32OPA/G4Y+sJhEIXIqICpKEBDed9Mv0GwoDa6Weg9WtfsxUvvFRuUBeRjarakfMzO13/RWQqgCfyBPRHADyjqo9a77cBuFRVewrlWWpA3zFnbvJK6xcGr/hEZFa0vd1f8SKPmW9uLfk7hQK6iTr0yQDeTXm/x1qWqyA3i0i3iHQfOHCgpJXEewpeH9zHYE7kW76LFy5x9aGoqi5X1Q5V7WhtzdlzNa9oW5tDpSpTJOJ1CYgoD9/FC5eYCOh7AZyS8n6KtcyoiYsWQhoaiqZrvOhC1EycaHr1aaS2Fi3XXA1E/TY/iAdEkg/PiEokDQ1ovOhC4/nWTj/DdrzwkhPbbuJMXAXgOmsyigsB9BerPy9Hc2cn2u5ZAqmtzZtm5CHDx5571khQj7S0YNwXvpC1rO2+e9F2111o/+F9tvKRhgZHLzKRlhbUTj+jpO9IYyOkri5tWbS9HXVnnZWVNnr66bnzaGpC+wP3o/3+vy9p3Y47Pn2hEe0PPlDaF+xc6Ev5hVcsrQikvr5wGofImDH20zY2jpazZtw4tN2zBFN/+lM0feYzxsoz0srFTrwolzQ1oWXB/IrycKqVS9GAnmsSChG5RURusZKsRnLmoJ0AfgzgG8ZLaWnu7ETDOVnPZQEAk+64I20Hfey5Z23ne8ryR3IuP3P9OkxatGj0vTQ14cz169Dc2TlaHjsmfP3rRcvTdu+9OZfXZwTYE664PGc5R5pq2XXWKy/jhM7Pj74/8bprMePpNZj07W+npWtduBBn/Me/587j5Y1o7uy0vR8yNXZ8qqzvpRp//fVZy2Zu3YLxN9xQ9Ltt996Lhk98vGCaaHt71vad8bsn86Zvmj0bE265JW3Z1BWPZpdx8ybbv/CikyYV/Lzt7/4O46+7zlZeH3vtVVvpIi0tGDev+DzseuRI2vuWa67Jm/asV17G+Gu/AgA46eavju7X8SnBMfN4n7z0H9Le100/AzXNzTnzP/PF9WnnQXNnJxpmzQIANJx9drFNsScaxVkvb0TbXXdlfWT3AefMN7c6EswBG+3QVXVBkc8VwF8bKxEV5P6EJFU0AUpGu2tpaMDERQs9LFBStT7go9Kx8rMUjgbTKgqcPvHRq69iaMvxu6rIySenfd52z5Kcvz7e+cq1Ja2n0ouwZw/4zNZcOY+zrzGgu2Fo61bsmDO3vC8brg8Om77HH89atmPOXBz62c+Kfrf/179O682ZeO+9tM/zVSXFHey0lkXE7K8Eu0HPpeOuv6sLPd///uj7eLGel4zZBTGgu+DD3//eXCcHHtBphjPqcAHY39eZXfN92Ns1Only2c8o/G6k93fi0OHRZYn9+z0sUfAxoFegv6vLXkK/Dg+Qchcm/CXgS9GWFs/W7fQx0bt0WXbXfDs918tY19D27WV8K3iC15DaxXqyHXPm5n0gNXJ3QVSVCg1qZoe687A3fuhQ8kUlZU3LMI6tM2flfK5RdrWqQbxDLyC+b1/aBURT7rRz3l1UIt+FKnO52w9+HFxf/OBBx/K2JbONslMdpIJYTVbs7rzcX50p+brxsDee8VzECNWc1Xp+GDuGAb0UKVd5NiWrXOydvHPduuKEz30u7X39zOxOVVVLBAUrNwxc6HP25rRTzZMnTa7WRGrqzjwgGNDLVNLdhY3eau63L89knSRu1qUPe7vNjeemd1Kra2+vPFPT+y/EzzaaOztx8pIlacsimZ2oKtx+J3qK+hkDeplKGSuiooPK4xPa+wuNmwzsa7/vr1LK58Kx15zSWxkAoiecYDT/aEbfgrBjQC9FSlftkbEi7LB1Wvg9EIRRaHZ5aDak+HlQ4nkSHT++gsIET3gCugsBUTLG3vCkfXCIHoqixuPqBF5ECwtxdU+lIiedlLUsaqLKrkLhCehBZze2GAxCttsZO3Ri15421ZF8/SegFw4/BPRcx7sPyjXloWVZy2Y8vcaDkqRjQC9FmcF0OAhP2j04SWpz3OWQTxQ5Hvw+1ni1Cl7HoiDya0/RFEffest/87YGkQMXRts9km3Ydt759hIW2QynJl+Of/BB2vsj3Rsry9AHd/NuYkB3QwDqao+88ALnSTVx8hv+W8cPH66qHsmJjIHP+leu9KgkwRS8gB6A4JhFpPxyu3WDUSiYB3Gfh0R8/35z3db9xGbPaN92DPLpOcE6dDcYnXvU7VYu7q7OVT49KdN4FNAEUt7NRNF9Wl1VIG5jQC9FmQHAVseivHcsZa2SbHFp51Zy4aiyno5FBeEi7CEG9IBxrOdmKZMWk2uikyZ506LEq4eJGevNeTNUZQ86S8GAXgIN3UPD4yfGmE9/2sNyhIjhYBM98UTbPZKNEvFkjPzIxIlp75u/9KXsRPnKxbt3BvSSlBnQ7T3Y8fZgrJ8+3dP1+4If7/xEQjtjUS6ZY7mM6ejwqCTBxIDuhkraoWfGGJ/dhPR3dfliYH8jfNhs0Vs+vMBRQcFrthhEQT7JC5R9ZNYmpzqZkMfKucD58VdOFeEdul/4NegXKJfxWZvCyq9/WyqbX4eVZkD3Cb8eIIUEftamAO5z13h2p212+NxqE7iArn6rRLYjpD9D3ZgT0kmOXERD+rc2IW1MGif2PYN98AK6p8qdRNhk5xAfHbSlzNqUE4Ofvxn++/QuXRaav7kXTTrtCFFAd2GCizI739QEOKAPbd+W9yQsZdamnHx0caIMIsaDb2YVXX9XF3bOLaOFVAnlih86VHr+ARaigB5O4mTTMRsnxsAzz6L/v1bn/TxUbaRN7OpcF6l8Fy6f3uU5JbWKbujNN9Fz52LE96UH+czhcyu5Uevv6kLs3XfL/n4QMaCXwNH7yTwnvWvPDPLFlngc7//TP7lTBrfxB0J+DlxrJi5aOPr6yPPP52whlTho7o66d+myqvsVyIDuhoAfVPH33vO6CI4Y3LzZ6yJUldRfc8Mffpg7kZ1OeDYvNoFvhVUGWwFdROaJyDYR2Skit+f4/FQRWSsir4jI6yJyhfmi+kAshh1z5hqdQSYIoief7HURHHHkuefMZxqSahSnqvqGduwonCBrqOkSypFx4+RkK6x3rr3OsbwrUTSgi0gEwMMALgcwC8ACEZmVkez7AFaq6nkA5gP4kemC+kV83z703LnYu6Bu6G4/s/yFntpHTznFyDr9ZjirvpbSGI7p/V1dOPKHPxRMExk/vnAmJRz/ExctdPUC64cbPTt36LMB7FTVXap6DMAKAFdlpFEAI6PqNAMI9cSUOjSUrJ8zmqnZ7IrJLP/hFSvyph3q7nakDLGDBx3J166ajIGgfNkUzYdFKlfv0mVFq1Qi48alvd+7cGGelMU1d3ai9tRTy/5+qfZ95zbX1pWPnYA+GUDqo+I91rJUPwDwFRHZA2A1gG/mykhEbhaRbhHpPnDgQBnF9Q+36ueyfvoaukPPLP/wwJH8iYeHjawzU+yddxzJ164xF1+cscSZ6Ol0L+D9Dz6Igz/+saPrMMGLOu1osTv+kDH1UHQBgJ+p6hQAVwD4hYhk5a2qy1W1Q1U7WltbDa3aG9LcXEJiG4HC5Qenvujl6dCFwq7GWek1h8f27k17X9ZPaA8egA/39ZvPtMx26P1PPJH3M1PHnN36/f6uLgxt2mRknUFhJ6DvBZBaiTrFWpbqJgArAUBV1wFoADDBRAGzOHC+HPq3X5b+pSNH7J/wPvwpX1L9YpXMZjT0xhtp7z19VpLCqzIc+2Ppbbj1o4/yfjZx0cKi8+sm8rV+KdHoSKB+nWTaIXYC+gYAM0RkmojUIfnQc1VGmj8CmAsAIjITyYAemDqVYg9qctFYzHw9up31GrqildQhKHQzNeWR8YuhrGclDly8vTjOABi/u23u7Eyr5oqceGJWmkQlVbGqo+Pz7/vObVU5EmjRgK6qcQC3AngSwFYkW7NsFpElInKllezbAL4qIq8BeBTADRqk4QPL/Okf32fu2e/+e+/NuXxo+3Zj6/CdcsfGMaT3gQeKpvFDW2ZPyiBS8G67XA0zZoy+PvnO72cnqCBsfPC7p6zep6Fuk1GQrQkuVHU1kg87U5ctTnm9BUBwJ6WsqSkvqIs4X2dayWxHPld72mmIvf2218UoyA/PGqJtbZ4EKWlqciSoV6LQL9SDy5dX5V15KvYUBTDmM58p74sB+hHiR7UnneR1EdJlzjjf0JDWXb1sFR4mRspQhoZzzvFkveWK9/Z6XQTPMaADGP/lvyopfbS9vaT0ww4/mNkxZy62zszs62VIgTrhrTNnhWc+UQCRiektr9ruWWJm8LEKL/yeDIAmgvrTTiv9e25Uo+U5JjP7FVSjwAX0+OHDOZcPbnJvXI4ZT68pLagfPWpu5TmCQ3zfPsd+LYy57LL8Y56rVlYV4LPWP5mdWnwxkqSXPwLL+PtESmnOm0sFF4ThgYHsFlk+O8acFryAnmegqIFnnnG1HBVP7lAul0/whhkzMGnx4uIJKXy8CIZ2msjmK1cikd0iq8qqRQMX0JGn+qKicTnKOHArntzBriLtditiZ7NV0fy5cI61RgVU2Z1tWAQvoOeZ/aei+rMyr+Ju/CRvOPNMx9dBFj/ezDGuUgkcvP1zRnTSJMT37MlaPvbSSzwoTXDtmDO3qtvr5uRY8PTjlcKnAlxFIo2N0MFBT8sQuDv0aI7eZQDQePbZLpekBPX1XpcgC4N5Nl+OtuiVMndFor/CcWWKBfQCH4/7wheyn2u5+DetqatzbV15y+B1AapBTSX14JkHpJ/uYBgAQ6vsCS6KddBz8JCZ9K1Fac+1ou3trg6fW/HFzAAGdJ+L9/V5XYS8IhMnel0Eo4I0WoXjRICaYF2wd199Dfbd9rej72c8vQZRv3VecxgDuhsquJPN6v3mdtApsL4oO3KEWtCqoOL796cdr34YKdNtgXsomq9jEZD8A/YuXYZ4T48vxuAwwuPhPw8/+ihqp03ztAxuie1Pv3j2d3X5oqeoF47t3o1ju3cbzXPrzFmoGTNm9P2RjRtLziMxMIBhm79ae+69DzhSYOKWEApUQO/v6kJ8b+ZQ7EmDmzfjw989NTo4j68e+lVypxONejpA1/DAAPYvydPePmB3cMVoxljcPXcmO1Q51jy1WoYlHqGa7M1p6V/5WHaaInXww4cP275Aqo+rK50SqCqX3qXL8v4xB555NpQjrUV9UE+dd7+GLKBncmTu2FQez9jktZyTTxRt5RK8XztuClRALzQudGhncPdzK5cq4Ifx0InsClRAL1QvHtaR1jgkqLdKfhYT8l8t5G+BCuiF5sGspKfouzd/razvufIUvcrmRPSTssZDL+UXlMczNgVSsQtmlcx/m0+gjqjmzk5EWltzfuZFT1G79aupD4JKljF2zZEXXig/L9NCdjcqGcPn1jQ0YN9tf1vSmO+Dr7yCoW3b0hfmCPL9XV1VWYdeM3ZsZRk0NRX+vNoeNGcIVEAHgMgJ4/J+VurEE5WyXb9aQb23pDTzCh2fXRBqM24WEn19JY/5rseOYWDt2rRlA+vWZaUbaUFTTNk9Nn2q8YILKsvAZ1Pi+U3gAnohbk/V5UZb92pseuUZUxeYjGamh378f7OShLFFlh1H1qypLAM2CigoUAG95+67cWznWzk/U1XXZpgZmfItUe13C5UGQL+dnD68GR7ctMm56QUpdALTsajn7rvR9+iKgmnc6uo78hOcd88h47PrC4CqrxOm0gTmDr0vV6+yDI52AqFsPryjrcSxd94xk5GTs0wRFRCYgG7nTsW3nUB89vCP8jAxxEI0irGXXVZ5PhRaW2fOwo45cx2pUQhOQC/SvvT9H/2fymccd0jNuPwtc4Ls6PYdXhfBlwaeesrrIpCfWS2neu5cbDyoByagt1xzdcHPhz/4AIlK2ntT6TwcNMxNWbPgFFIl+4Qq58RYQYEJ6G133YWWBfMLJ3L7ZLJZlTKcMYofBUvqLDhEJpmuJg5MQAeSQd1XD5zsNrvzW/M8KolbzWGp+ojhauJABXQAvvpJG2lp8boIRBRkR44YrUcPXkAvMKBRSXWdBoy7fJ6r6yOicNFYzGg9uq2ALiLzRGSbiOwUkdvzpLlGRLaIyGYR+aWxEmYqUH2hR486ttpcinV0osJi77/vdRGIPGeyHr1ohbSIRAA8DODPAOwBsEFEVqnqlpQ0MwB8F8CnVfWwiDg3zU6h+mjWVQdKzFRHHodV42TD5B6TY0LZuUOfDWCnqu5S1WMAVgC4KiPNVwE8rKqHAUBVnZuVwU8PRakyARk+lj2QySlljblfgJ2APhnAuynv91jLUp0J4EwReV5E1otIzsplEblZRLpFpPvAgQNlFTgyfnxZ3yMql297IFOgRdvb0XbPEqOtqEzd7kYBzABwKYApAJ4TkXNVNW30KlVdDmA5AHR0dJRVPxIZNw4JTstGbmJVHjlgxtMVDiWcg5079L0ATkl5P8ValmoPgFWqGlPVtwFsRzLAE+XHKdiIjLJzRm0AMENEpolIHYD5AFZlpPk1knfnEJEJSFbB7DJYzuM4zlVo1E6d6nURiEKlaEBX1TiAWwE8CWArgJWqullElojIlVayJwEcFJEtANYC+I6qHnSq0ERElM1WHbqqrgawOmPZ4pTXCuBb1j9nsTozNGK7d3tdBCLP9Hd1GR9WInCVmAkOdBUeAWm2SOSEnu/dUb3D545IHDrkdRGIiCqmsRj233uf0TwDF9D9NDgXEVElEobnJQ5eQGdPUSKinAIX0NlTlIjCQgwPwR28gB7S+TmJqPq03fE9o/kFLqDH2O2fiEKiqpst9nd1QdlskYjCIBIxnmWgAjqHMSWi0EgkjGcZqIDOYUyJKCycmJM4UAHd5MweRERecqKfdKAC+sRFCwHhcItEFHxquFMRELCA3tzZCdTVeV0MIiIjdt94o9H8AhXQAQBHj3pdAiIiIwbXrTeaX/ACOhER5cSATkTkIZND6DKgExF5yGT/muAFdI62SEQhYrJ/TeACujQ2el0EIiJjTPavCVRA7+/qgg4MeF0MIiIjpLY22b/GkEAF9N6lywDlLNFEFBJjxhgdcTFQAZ1juRBRmJjuLRqogC4NDV4XgYjIHMNDmQQqoOvgoNdFICIyx3AVcqACOhER5ceATkQUEgzoREQekaYmo/kFK6CzUxERhUjb3T8wml+wAvrQkNclICLyrUAFdGlu9roIRETGmJ74PlABnZNbEFGYmO4saSugi8g8EdkmIjtF5PYC6f5CRFREOswV8Ti2QyeiMDFd61A0oItIBMDDAC4HMAvAAhGZlSPdOAB/A+BFoyUkIgop7e93fYKL2QB2quouVT0GYAWAq3KkuwfA/QAceXJpcqOJiHxB1fUJLiYDeDfl/R5r2SgROR/AKar6X4UyEpGbRaRbRLoPHDhQUkFNPzwgIvIDX01wISI1AP4BwLeLpVXV5araoaodra2tJa2HIy0SURi5PcHFXgCnpLyfYi0bMQ7AOQCeEZHdAC4EsMr0g9EImywSUQjVnnaqsbzsBPQNAGaIyDQRqQMwH8CqkQ9VtV9VJ6jqVFWdCmA9gCtVtdtYKQEMm8yMiMgnBl/aYCyvogFdVeMAbgXwJICtAFaq6mYRWSIiVxorSbFyGB4InojIFxIJY1lF7SRS1dUAVmcsW5wn7aWVF4uIqEoYnOQiWD1FiYjCxuBMbMEJ6JGI1yUgIjLP4KCDgQnoLddc7XURiIiMc7vZoi+03XWX10UgIjJu7CUXG8srMAGdiCiMBp59zlhegQnoHMuFiMLIV13/3cKxXIgojKqyDp1juRBRGE1ctNBYXoEJ6CavYkREYRSYgG7yKkZE5Bf7vneHsbwCE9CbOzu9LgIRkXmxmLGsAhPQiYiosMAE9N033uh1EYiIfC0wAX1w3Xqvi0BE5GuBCehERFQYAzoRUUgwoBMReah2+hnG8mJAJyLykH40aCwvBnQiIg9V5eBcRERhVJWDcxERhVFVDs5FRESFMaATEXnI5FwPwQnoIl6XgIjIuKp8KCqNjV4XgYjIuKp8KKqD5tpqEhH5xdhLLjaWV2ACOmcsIqIw+vA3vzWWV2ACusmrGBGRXyT6+ozlFZiAPvDsc14XgYjI1wIT0OP79nldBCIi46SlxVhetgK6iMwTkW0islNEbs/x+bdEZIuIvC4ia0TkNGMlHBGJGM+SiMhrzZfPM5ZX0YAuIhEADwO4HMAsAAtEZFZGslcAdKjqxwE8DuABYyUckUgYz5KIyGsmq5Pt3KHPBrBTVXep6jEAKwBclZpAVdeq6kfW2/UAphgr4QjeoRNRCLndsWgygHdT3u+xluVzE4Df5PpARG4WkW4R6T5w4ID9UgK8QyeiUJLmZmN5GX0oKiJfAdAB4MFcn6vqclXtUNWO1tbWkvKOtrcbKCERkb+YDMJ28toL4JSU91OsZWlE5E8B3AHgSlU9aqZ4x7EdOhGFUaK/31hedgL6BgAzRGSaiNQBmA9gVWoCETkPwCNIBvNeY6VLwXboRBRGro7loqpxALcCeBLAVgArVXWziCwRkSutZA8CGAvgMRF5VURW5cmubGyHTkRhZHKCi6idRKq6GsDqjGWLU17/qbES5ROJ8MEoEYVOc2ensbwC01OUwZyIqLDABHST3WOJiMIoMAEdH31UPA0RURULTEDXY8e8LgIRkXH9XV3G8gpMQCciCqPqnCSaiCiEqnKSaCKiMKrKSaKJiMKoKieJJiIKI7fHQ/cFtkMnojAyOaxJYAJ6w8yzvC4CEZF5BifvCUxAH3xpg9dFICIyz+CwJoEJ6BzLhYjCyOTkPcEJ6EREIWRy+FwGdCIiD1Xl8LmcU5SIwqgqx3Ix+bOEiMgvqnIsF5M/S4iI/IJjuRARhQTHciEiConqbeUStTWnNRFRYJisTg5WhIzH834UnTwb9R//EqRuLABAjw0gvmcDom2fgDSOB3QYkBro4CEc3fyfiO99yfZqo5Nno/7sL0Iax6d9P235sQEAgNSNzZ/G5rrt5Gtarv139PVfAUDB8peyfYXS1p87H7XTLgEk/R5jpBz51jnyd02niO16BkffWFHa9mfkqYOHEO95bfQYKlhmHUbs7WdLWqcpxf4G5RyD5awrbR+OcGC/2D0/8v1NKz2HTO5P00RVPVlxR0eHdnd3l/SdrWfNzLk8Onk2Gs6/HhKpTVuuqhCRrPSqikTvFtSMO7noH6X+3PmoPf2ytHx0OA5NxCDRhpz5A4DGj2L4SC9qTpiS/t1EDEMv/2veYA8ADeddC4nW5853OG4FMBk9WRKHdhU/oVOCNaAAJH2dn7oBUhPNXpdq2n7V+FHE3nn++IUSSN8+1dH8U0+i4Q/fQ2TirKy0emwAw31/zPosrRyqQHwIiDYAqoBI3rSp34ntWps3kEQnz0b9J78MiTaMLst3rKSVOX4UQ6/8ApHxp2cfF6pAIgZY+yvzpqLiC/qxASDaCKlJGftDE4BEso4xjQ8l/9459le+fVMsIOc6z0b+hvE9G1B72qdzHrcj59vguodyX4zzBNvM8yPe8xqiU/4bpG5swWMl0bsFNS2n5k03EvNy3SzkWu/IOZK6b3IdE6PndI4bo0I3d+0PPlDSXbqIbFTVjpyfhSGgj/nsD1HTdFJJeWWdqAX2Q7HgYXcdx5cPI7brmawTYCQYStYdZ+F1QBVSc/w7IwcYANSfdx0kUpv/BEjEgJpIyessdZ8U+k45+dla5/AwBlbdAiDjJI0PFcnhfEEAAAb+SURBVLwYFzMcG7T9/VzHWWYgyb7gln/M2aWqwHAMQy//HPG9L2HMZ38IaRxfMAAWKlexv6GdPDLTZaa1e5yUcjxpIobE+9sRaZ0JpHwnV2woVm5NxHKeayMXmVw3NLFdaxF/97c4c/06W+W1yhHOgJ76k9fpE8A0p4JYav6A84HBzwoFh0rzrTSvkYv38Ad7s37FucluoA0zp8/FQutQVQx1/wtmrPlX23kVCuiBqUMf6U2V+bMwqAeh0+UO6n4xyal9YCLfZB7iaTA/Xo7q5sY+yLcOEUH92V80tp7ABPTepcvy1pUTBRUDKqU9s6hQYJotxnt6kg+xGMyJKESk1ly1d2ACev3Zn01rkUBEFAZSa+4mNTBVLnXTvwiAP0+JKFx0sBpnLApSUYmIPGArSorIPBHZJiI7ReT2HJ/Xi8ivrM9fFJGppgtKRESFFQ3oIhIB8DCAywHMArBARGZlJLsJwGFVnQ5gKYD7TRfUq/byREROMhnb7NyhzwawU1V3qeoxACsAXJWR5ioAIy3jHwcwV9gei4jIVXYC+mQA76a832Mty5lGVeMA+gFk9cUXkZtFpFtEug8cOFBeiYmIKCdXnzSq6nJV7VDVjtbWVjdXTUQUenYC+l4Ap6S8n2Ity5lGRKIAmgEcNFHAEQmNsx6diEJFVXE0MWgsPzvt0DcAmCEi05AM3PMB/FVGmlUArgewDsBfAnhaDUffqQ/Mwe7bnkYkOE3niYgKOpoYxPT/9efG8isaHVU1LiK3AngSQATAT1R1s4gsAdCtqqsA/AuAX4jITgCHkAz6xk19YI4T2RIRhYKt211VXQ1gdcayxSmvhwBcbbZoRERUCna/JCIKCQZ0IqKQYEAnIgoJBnQiopDwbE5RETkA4J0yvz4BwPsGixME3ObqwG2uDpVs82mqmrNnpmcBvRIi0p1vktSw4jZXB25zdXBqm1nlQkQUEgzoREQhEdSAvtzrAniA21wduM3VwZFtDmQdOhERZQvqHToREWVgQCciConABfRiE1b7nYj8RER6RWRTyrLxIvKUiOyw/j/RWi4i8o/Wtr4uIuenfOd6K/0OEbk+ZfmnROQN6zv/6PVUgCJyioisFZEtIrJZRP7GWh7mbW4QkZdE5DVrm++2lk+zJlHfaU2qXmctzzvJuoh811q+TUT+PGW5L88DEYmIyCsi8oT1PtTbLCK7rWPvVRHptpZ5d2yramD+ITl871sATgdQB+A1ALO8LleJ23AxgPMBbEpZ9gCA263XtwO433p9BYDfABAAFwJ40Vo+HsAu6/8TrdcnWp+9ZKUV67uXe7y9bQDOt16PA7AdycnGw7zNAmCs9boWwItW+VYCmG8t/2cAX7defwPAP1uv5wP4lfV6lnWM1wOYZh37ET+fBwC+BeCXAJ6w3od6mwHsBjAhY5lnx7bnB0CJO+8iAE+mvP8ugO96Xa4ytmMq0gP6NgBt1us2ANus148AWJCZDsACAI+kLH/EWtYG4M2U5Wnp/PAPwP8D8GfVss0AmgC8DOACJHsGRq3lo8cyknMNXGS9jlrpJPP4Hknn1/MAydnM1gCYA+AJaxvCvs27kR3QPTu2g1blYmfC6iCapKo91uv3AEyyXufb3kLL9+RY7gvWz+rzkLxjDfU2W1UPrwLoBfAUkneXfZqcRB1IL2e+SdZL3RdeWwbgNgDD1vuTEP5tVgC/E5GNInKztcyzY5vzufmMqqqIhK4tqYiMBfDvABaq6gepVYFh3GZVTQD4pIi0APhPAGd5XCRHicjnAfSq6kYRudTr8rjoT1R1r4hMBPCUiLyZ+qHbx3bQ7tDtTFgdRPtFpA0ArP97reX5trfQ8ik5lntKRGqRDOb/pqr/YS0O9TaPUNU+AGuRrDJokeQk6kB6OfNNsl7qvvDSpwFcKSK7AaxAstrlIYR7m6Gqe63/e5G8cM+Gl8e213VQJdZXRZF8YDANxx+MnO11ucrYjqlIr0N/EOkPUR6wXn8O6Q9RXrKWjwfwNpIPUE60Xo+3Pst8iHKFx9sqAH4OYFnG8jBvcyuAFut1I4A/APg8gMeQ/oDwG9brv0b6A8KV1uuzkf6AcBeSDwd9fR4AuBTHH4qGdpsBjAEwLuX1CwDmeXlse/7HL2MnXoFkS4m3ANzhdXnKKP+jAHoAxJCsE7sJybrDNQB2APh9yh9TADxsbesbADpS8vkfAHZa/25MWd4BYJP1nf8Nqzewh9v7J0jWM74O4FXr3xUh3+aPA3jF2uZNABZby0+3TtCdVqCrt5Y3WO93Wp+fnpLXHdZ2bUNKCwc/nwdID+ih3WZr216z/m0eKZOXxza7/hMRhUTQ6tCJiCgPBnQiopBgQCciCgkGdCKikGBAJyIKCQZ0IqKQYEAnIgqJ/w94dQrLzPQAHQAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"source":["plt.plot(x_train, '-o', y_train, '-o')"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"sGQtGALaEiK4","executionInfo":{"status":"ok","timestamp":1654749396641,"user_tz":-180,"elapsed":953687,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"af287488-4ab1-4d86-ce07-5a399c27dc9d"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["{'boxes': [,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ...],\n"," 'caps': [,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ...],\n"," 'fliers': [,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ...],\n"," 'means': [],\n"," 'medians': [,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ...],\n"," 'whiskers': [,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ...]}"]},"metadata":{},"execution_count":19},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYMAAAEDCAYAAADX1GjKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO29e2xk2Xkn9jv3weKbrJqqqeKwhnW58XRE1oyTaU28O9PBKuoZEOOJ0CKQ0codxoiCUdpbAJUA8kohQcDBKhCEZVAbIF4F7cG6B8sAlONdIIKwaUcETC8248SOR/D6IS0kjJUNLCuGHyvJcNtS6/HlD/I7/d1T99a9VaxiFau/H3BBVt1b5/Gdc773OdcQERQKhULxeMMbdQMUCoVCMXqoMFAoFAqFCgOFQqFQqDBQKBQKBVQYKBQKhQIqDBQKhUKBEQsDY8w9Y8yfGGN+P+fzf8cY8xVjzJeNMcfDbp9CoVA8LjCj3GdgjPnbAP4SwBERPZvx7DMAfhnATSL6ljHmSSL6k8top0KhUEw6RmoZENG/BPBv5XfGmH/HGPO/G2O+ZIz5P4wx7zm/9V8C+CwRfev8tyoIFAqFYkAYx5jBmwA+RkTvBfD3APxP599fA3DNGPPrxpjfMMa8OrIWKhQKxYQhGHUDJIwx8wBeAvBPjTH8deH8bwDgGQD/EYA6gH9pjHmOiL592e1UKBSKScNYCQOcWSrfJqJ/P+HeNwD8JhF9H8D/Y4z5Gs6Ew29dZgMVCoViEjFWbiIi+gucMfoPAYA5w793fvvzOLMKYIwp48xt9PVRtFOhUCgmDaNOLf0cgP8LwL9rjPmGMeYNADsA3jDG/A6ALwP44PnjXwTw58aYrwD4NQCfIKI/H0W7FQqFYtIw0tRShUKhUIwHxspNpFAoFIrRYGQB5HK5TFEUjap6hUKhuJL40pe+9GdEVBl0uSMTBlEU4Z133hlV9QqFQnElYYz5f4dRrrqJFAqFQqHCQKFQKBQqDBQKhUIBFQYKhUKhgAoDhUKhUAAAEXW9ANwD8CcAfj/lvgHwPwJ4F8DvArieVeb57ygIAgIQu0qlEh0fHxPj6aef7njGGNPxXdZVr9dpd3eX6vV67DtZ1/HxMTWbTTLGdK0jCAIyxtDc3FxmvUEQUKFQSLzn+36sP0EQUKlUin1XKBRod3eXtra2Btbnra2tjjYVCgV67rnnEsckCALa3d21NJLlpV3ct6TxzUM3vjzPS6R9Ek0LhULifEm7SqVS6thwH3Z3d+n4+NiOC7fh6aef7jpHSqWSpRM/5/ZFjm8emnK5eZ6v1+uxNmfRuFQqxeia1Fb5fJ6+y/L4b9L8YhoZY6her1O9XifP86jZbNr16Y5B0hx12zw3N9e1nVtbWyQh139aO935nfWcbB/PpaSxk3Mkbe2I6zt5eGyvVx6m/bcBXEe6MHgNwK/gTCj8LZwdJpdZrmSS09PTtLy8TLOzs2SMocXFRTo+Po4t7OXlZXrqqac6JiX/H4Zh7N709DTNzs4SALp+/TotLS2RMYaWl5fp5OSETk5OqFarUaVSoePjYzo+Pqb19XU6ODig6elpW8573vOeWLmzs7NULBZj9c3MzNDU1FRH/fPz83ay1Gq1mJCRTOjll1+mcrlM8/PzdmK0Wi1qNBq0s7MTmzAf+tCH8kwWunXrVmKfZ2ZmCABdu3aNgiCgW7duked5VKvV7KSdmZmx7Zyenqa5uTnyPI+2traoUqnQysoKXb9+PdciYLpsbm7mep6v1dXVWL9ffPFF8n2f5ubmbP9937dMw50DxWKRGo1GrEy+/9JLL9Hi4qL9/ubNm/Taa6/Zzz/2Yz9Gn/nMZywNwjAk3/fp8PCQ7t+/b8e0VCqR53n2M7crDEMyxlAYhuR5HrVaLVpYWIgxko985COxti0vL9OtW7cS5zaAjrk/Oztrx5Kfl4xPKhpMe1f5aDabtLi4aD8vLCzQzs6OnafcL75frVY7GNjzzz8f++769evk+z7NzMxQpVKhnZ0dCoKAbty4EaMVjy+3iZnw7Ows1Wo1Ojo6otPTU1pfX6fd3V1aWFiwYyDrfO2112Jza2lpie7cudMxn1yhwHOBBYJc/5VKxSosSYJBrt1CoWAVQ1excNeQMSbGKz7wgQ/EeM3q6qod9+np6dh8np6ejj07EmFwzvAjpAuDXwBwW3z+KoCVrDKnpqYoDEMqFosURRGdnp5SFEVUrVYpDEO7wI0xVKvV6PT0lJrNZgfBPc+zZbgM4fT0lFqtFhljKIoi8n2foiiymgDX2Ww2qdls2jq43FarRYVCgWq1mmXUYRjS6empfaZWq1EYhhRFkV3M3B5uC39fq9Wo3W6T7/sUhqHVZprNJkVRRFEUURAE5Pu+bR+3BwC12+3YZ75arVaMeVSrVSoUCol9ZpobY6jdbhMRUbvdtsyA+9hut6ndbtu+VatVS8fT01MyxlCxWLQLpVqtUqvVIgCWVgAoiqIYHWW7uf/yecnYisVirD/tdtuO8/z8PIVhSNVqlYjI0pgX4OnpKRUKBXrppZdiDIDbIsvheeV5Hk1PT5MxJkYXpj2DFyePaRRFlnb8G2ac3D6eC4VCgcIw7Cg/iiI7t6VQWFhYsMxZPh+GYWx+MS0kww6CwNKu1WpZ4cS/YTpUq1U7J5vNpv0dz+UwDGl+ft7SiMfI931qNptULBbJ9307R+S8aTab1G63Y+PPa5LbVCwW7X1eX81m064BphmPgTGGFhYW7O8KhYIVjDzXJQNngfPSSy+R7/u2r7wOiCi2/uVaZH7keV6MTtwX/p/Xu9Tsq9VqjBZSiWu1WrH1yHO93W7HymZaS/44zsLgnwP4D8XnXwXwQsqzdwC8c37FFv7Dhw9j0lsyN8/z6OHDh+R5Xqr5mmQOPnz4kL797W/HyuPBJyJbJ5fLdfDv3d/Kct12ep5Hf/qnf5rYHv7e8zx68OBBRzu5fvkbbp+s+8GDB4n953Ymlev2Wd5/8OABEZFtk1sXf++OC/ffbUtSOzzPS6Vj1uU+/+DBg8RxJqIY7eUYffOb30xsozu/3DKbzSbdu3evg1YuDXnsuIyk8ZW/4eck3dPmS9KYJNHJ7XvS5Y6NnJPdaJ5njJLGifsk5zw/x21x28T3ed7zGnDHoFu7ea4ntdWdC3J8XB6TRQd3/qS5o5LWEPc9qZ1pa9zlj8MQBpcaQCaiN4noBSJ6YWpqCmEYYmlpCY1GA2+//TYajQaq1SrCMMTGxgYAwBiDJ598Em+//TY2NjYQhmGsTM/zUCwW0Wg0ACB2/+2338b+/j6MMVhbW4Pv+/Y5vt9oNLCxsYGNjQ1bB5e7v7+PQqGAJ598EvPz87b8t99+2z7z5JNPIgxDrK2t4Y033gAA2x5uC3//5JNP4u7du/B9H2EYIggCeJ6HjY0NrK2todFoIAgC+L5v28ftAYC7d+/GPjP29/fheY+GslqtolAoJPY5DEMUi0UYY3D37l1bLgDMzc3ZZ+7evYu7d+8iDEM7LkzHt99+G8YYLC0tIQgCW+f+/j4AWFoBwNraWoyOEtx/+TzTlcuX/bl7967ty/z8PMIwRLVajdGYX4r09ttvo1Ao4PXXX4/1nduytrZmy9nY2LD94DH7+Z//efzsz/5sjPYS09PTAM7GdG1tzdKOn+N28V8uNwxD+78ss9FooFAoxPrCY2KMiY2XW84bb7xhacH1MX2Zdvv7+wjD0M6TN954w9KhWq3aOcm04HKKxSLCMMT8/DwKhYL9ved58H0fGxsbWFpagu/7do7IebOxsYG7d+/Gxp/XJLepWCza+7y+eJ7zOPKc5DGem5uzv+OL6ch9Z/B6ev311+H7vu0rrwMAsfW/traGtbU1Swemm6QT94X/5/XOdOGxl7Tg75kG/PtisYhisWjnhCybaS3549AwAMugLzeRxgw0ZtDtuuyYgXRVjWPMwL3GJWbg0pjdIRozeDxjBv8x4gHk/ztnmZpNpNlEmdcos4m47nHKJmKhPM7ZRHNzc5pNlNC+Scgm+hyA/w/A93H26sk3APxdAH/3/L4B8FkAfwDg95ASL3Cv9773vaRQjAs4gCghA5mjwDi2SSKtffV6nZrNZgdDVwwGAN6hUVkGw7hUGCjGCewmOD09pYcPH1oXxSgZGQc1JWRwddRIat/R0REBGCs6ThqGJQx0B/IVx+c+9zk8++yz8H0fzz77LD73uc+NuklXAi7dAODTn/40Pvaxj2F6ehof+9jH8OlPfxq3b9/O/O2waM5BTQk3qWCUSGrfz/3czyGKIrz//e9HGIZ4//vfj1/8xV/Epz/96RG1UpEbw5Awea6rbhmwf3EUprD0bYZhSAcHB2OjhV0GXdLqyFv3RayAy7QgxtFakUhqHwA6OjqKPXdRa2aUa20cAXUTjQ9GuUhl3Zubm9Rut2N1j9KnfBl0Satjd3c3d90X8cVfth9/3Bmh2756vT5Q+oy7QBwFVBhcAvIuPJchHB8f2x2tw16wsm722crFNkqf8mUwyqQ6Dg4ObDaKpH9a3RfxxY+7H3/UGDTzHkUQfdwFsAqDCyDP4PYyiSVD4N+dnJyQMWbomousmxeKZEajtAwug1G6dTD9gbPdm5L+aXVfJcvgKmKQzPSyhe8wLJEkelyERioM+kTewe1lkctn+X/3PJVhMQdZN/et3W7T5ubmyE3oy7CY3Drk2Tf8PdM/bRyuSszgKmFY2vRlC99B15c0XyqVClUqlb7nkAqDPpF3cHvRQOQAe55HJycnscG8TM3l4ODA7ngdtUkr23Z0dEQrKysdu0kv2j63/57nURRFsZgBn2HUrb6LMK9xdyNcNoYpIC9b+A7aEkniP3wQnkQvAkeFQZ/IO7i9agTMEICzLfhycj7OPs3LoIvsf6FQoIODg8Tvx4kuk4xha++XOd8H3Zck/sM7uCV6ETgqDPpE3sHtVwNRt0EyLsvXq/QfPSYpqH4ZAXC1DEYkDHoZ3H41kHHW1EeFy/T1Kv1Hi0kLqg9yPmnMYIyEAZEyi1FANfbHBzrW3aHZRGMkDC4KFSb9Qen2+GCSxnrc+6LCYERQrUeheHxwFdb7Yy8MRiWtJ8kfOu4az1XCKGl50brl79PeHzCqto26nquw3h9rYTBKaT0pmRJXQeO5KhglLS9a9zD3glwWXYZZz1VY74+1MBiltL4KmkIeTEo/xgFXeT4Oc/f8ZdFlmPVchXXyWAuDUUrrSdGor4LGc1UwSlpetG75e/5f/v4i/bgsugyznquw3h9rYTBqaT0JvvZR03CSoJbBcNo2LvWM+3p/rIXBIKT1uA/wsHEVNJ6rAo0ZdJbZbF7ey5Ye97n8WAsDoosfLHbRBTQJgmRS+iExqj5pNtGjskZxcOIkzuW8eOyFwUVwEbPycddCxhk6NqOHuh8vHyoMLgDP8+jo6CimSRwdHeUKODWbTTo4OIj9lj8/bhg3bUwZ0eihiQmXDxUGF0C9XqeVlZWYBrmyskL1ej3zt8YYiqIo9tsoijqOoJ10jKMWroxo9FCB3IlhK00qDC6Aer1OtVotxshqtVouYVAoFKjdbse+4zdrPU4Yx0U/jm163DCOSsIocRn0UGFwAVzETcRvzHIH93GzDMZRC1dGNB7oRxMeN5fjoHAZCooKgwvgIgOkMYMzjKsWPqlMZZIxyUL8MpQmFQYXwEUm3yRP3F6gdFAMCuOqWAwCahmMuTAg0hegS/Tbn0mjg2I06EV7vuw5N4g9HBozGHNhoDiDaviKUSOv9nzZc3VQ9Wk2kQqDK4FJNtHToBbNeCEv073suZpU38HBARUKhbGaOyoMFAPBOGYFDRNqCY0n8gjoy56rbn08d4wxYzV3RioMALwK4KsA3gWwl3B/DcCvAfhtAL8L4LWsMkcpDCZNU+ylP6z97O7uUqFQIAAUhiGVSqVLbPEjZLVd3i+VShQEAQGgQqFAu7u7meU/jpZQGuSBcoVCYejnB/ULbicAiqIo1r7LtAyazSa12+1Yfaenp1Sv13s+2ynPGs07PiMTBgB8AH8A4G8AmALwOwA2nWfeBNA6/38TwL/JKndUwmDSNMVe+3N8fEwLCwvk+z4dHh7S/fv3qVgskud5uZjrZbZd3m+1WuT7PhWLRbp37x61220KgiCzzY+bJZQGpuXBwQGtr69Tu92mKIrs53GZ/8M4VbWfunmOuMLo6OiIAPTUvjxrtJfxGaUweBHAF8XnfQD7zjO/AOC/Ec//n1nljkoYTJqm2EswjjUTALS4uBjTUoaxqzpLG8pqu7zPO8Hl/TxtnrTx7hdMB0kP/jxOfnF3vI6PjymKIgKQaTkOou2yvEKhQAcHB7H7URRRFEWxtma9DyJtDkoLg+tKGh+3zFEKg9cB/GPx+acB/CPnmRUAvwfgGwC+BeC9KWXdAfAOgHfW1tbyj9AAMWmaYp7+uJoJAGo0GrGF8+DBAwIwsHbl0Yay2i7vA6AHDx7E7udp86RZgllIY45MS0nThw8f2h324+IX7zXtdJhjm1Q+ADo6Ooq1NetNcUl9khaGtEJ4HGRZbpnjLgw+DuBn6ZFl8BUAXrdyL2oZHB8fU71eJwAEgOr1eq5JwJJWLpooinKdUzSOyKP5us8UCgVqtVoxzaRWq1EQBBdqS5ZW5barXq9TFEUxxtXNMtjZ2YlpiTs7O7msmbza46CfGyaS2pDEvCqVil0n5XKZfN+3a6ZSqVAQBIl+8TyW0zDo1YslN2irL42m8rt6vW7rvIhlIC0MfoYt3XG2DPK4ib4M4Gnx+esAnuxW7kWEwfHxMVUqFVpZWaGTkxM6OTmhWq1GlUolc2Fe5LfjiH408N3dXesuun//Ph0eHpLnebS4uNj3BrTd3d1Mf6vUcPKMg+zbK6+8QgBofn6e3nzzTWq1WgSAtra2BkHG3FrmOFgaaW2QjIqfW1lZoSiKqNVqkTGGjDG0tLREd+7cIWOMFRJp49RrGy5Kr7z+dQ4wb25u9tz2QfXnIjEDaWHIZwCMdcwgOGfu6yKA3HSe+RUAHzn/fwPANwGYbuVeRBg0m017rDTj9PTsaOk8WkGWRnrV0I9vfmFhwWqInJmT13ecNLnDMKTt7e2YZbCzs5Oqcea10OTCX1hYiGUTcX2DQF4tcxxiEGltABAT+s1mk05OTux4VioVqlarln5SGLhlZfVnmPTqNp/l3Nvc3KR2ux1jlr2MRa+WbNLv+s0mcgU30aM9DWObTXRWN14D8LXzrKKD8+8+BeDW+f+bAH79XFD8KwBbWWVeRBh4nteh7bL/M49WkOaXZOJf1Px3XVjsxtrd3R2Je6EXzSSP7zhpgRtjKAgCW8fBwYFl3Enl9Rq7GVSsJ8unnlX+OMSc0trAPmj53MnJie2v53n04MGDmH+b52evls6o6CXnHs/ZdrtNm5ubPVlpvWQODXq9Sv4QRVHPmVIjFQbDuEZpGSQxM35360XNf3Z/LC8vU61Wo8PDQ6pWqzQzM0Oe5w39ZeHd2tVNM2GfZR7fcdIC5z0LEjs7O1ZAu4upV41xEBp5N1fAJFgG9Xo91r8oiqhWq9n+RVEUG2NeMzJ2lJfpjYpeSRvDNjc3U7ON8rbfnf/SxTbI9eq6mTgGljfmSaTCIIaL+v3T3Bx5zcRu4EUnhRWXX61W+wrUDQN5NKM0DS7NMkgSpmnvfRiGL7lbX9nVlLaJaRJiBm7As16vU6VSsYxneXmZfN+nvb29C8fKRkWvQQmXrN3GUpBepJ487e81tXfihMH6+vqFXCauK6YXycq/l/XLlC6GdB3l3bXJ5ribwsftlMw1b6BuWK6lLJ9p2iRlYcxxlyiKyPf9WMyg2cx+70OvfeuHFpIZsdtEMiM3qJ2n/GGOSV7009Z6vU6lUilxzeR97qJtuCi9+hUuvfjsOblCulGJBuMOzBJCefozccJgampqpNqVi26uo152bQ7SMrhMLdSti33+SW4tKQz4HdELCwtWCx2XMSWKjyv/L+l+lRMHBgXXdTFIC2IY6EeJSEq5XVxcjM1h2cdhuQOz3FN56pk4YXDt2rVYB0e9KLu5juQAcju7ZRoMKmZw2f7pbpbC8fGjnaBpmRf9+J6H0fa0wDCP8cnJCRljxkZgjRquwEyLLVxVoZmm6Pm+H7Nu09KahxUz6NU9y5g4YXD9+vVYB8dhF3Ca68h1+STtCnTLGUQ20SgzV7ox0X4mcD/oxQ2RNzAshdqoXDzjBjnWaVlHeTP1xhFJ62hzc7MjnuUqWsNyB2a5Z9UyGENzXVoAeS2DYdQvcVl06uZe6ce07RW9aGbd6DQOAd9xx+NoGXieR5ubm7HvRqGQ9jM/J04YjFvMIAk8UKM66XEQGTQXCdCnBV6Tgl587MGgtKheBGGWBTUOAd9xxlWLGfSKYWYPDqp9vczPiRMGF80muizwQI3qDPiLZtBcdM9EWkqmzLyQKYyDEu69uMhGGVsZxlwYhfDqJ5voInWMOqbkHp8yrgppEiZOGFzWEdbjohVeZjsGzRyzhMswmHEvZY4y62rQdU2qW2sc+zVq3tBv/SoM+sC4TMDLbscwAs/dJu4g65OWGJvyeTelXcbCHrYVMso40TAxTv0atRDgNvTLE1QY9IFxmYCX3Y6rWl/SXocwDMfq9YzDzvAah7OPhoFx6de4KIgXWTMTJwymp6dTJXOa5O7Vf88TUJaXlFI2bPS6EFz/ba+BWRn43tzcJM/zKAxD2tra6vCbDkJD2t3dtUx7c3MzM8CeNo68K1T2v9tJphdpd1IZecodlqDtFp/ppfxh+P77mY8uLZN2/Mp+Za35fsY66bdp4+fukRnkoZJuqnm9Xk898SCPcJw4YXDt2rVEyZwmuTng0+tuYL7P5bXbbQrD8FI1gX793xd5B6zLoLe3t2M7irvtMO4FaYIn7d3E3TK0AFCr1YqN18nJCQHInB+9MomkHal5guDD0CwHNebDyArqp2290jdrzfebTZf02yQm7L51bFBrg9vhnqO2tLRkBYMUNI+tZSDdRJIIaYyT3wAk78vPaYw1DENqt9uxQc06M2fQ6EVzdnO+T0/7Oz7BpWOzGd8b4H7upWzG8fFxooXWrRw5Xu44RlFkD7uTbZI57oPQzJPKcN881a3cQfuc3fYcH/e3Mc6dO4PYL9DPfMyrfWclIMi3fsnv+5n/3cpMe+tY2troZfx5HLjO4+Oz01AXFxctb+o1XX2ihYE0j9JcO3wufq+7gZkBy4G7TF9lr5qzuxv04cPu71hNm5iua8rdVcqf5TscenGhcb+4HKk9daOvHC93HFlDOzk5iQnvo6Ojjvnh9l1aD1lIctt5ntfR91Hs9r5I3cPYSdzrfOynP2nPuy/rySonT5n8zmdpMbiH0rl0k/X2ahnyOHBbms2m3ckv116hUNBsIqJOyyDJtQOg53OCuLxetItha31Z9feiiXWbmHksg52dndix07240Lpp+P1aBqenpxQEQa73Isu+n5ycUBRFuU+vTLJmerEMBo1BxSH6tQy6zflBWga9rtFhWAYydsAxkCAIYvOhm2XQT9+kZcAbOOU49Cr4J04YdIsZJLl2tre3u54gmhbw6UWSD8Mf3E/wOK+PNmvCdzuFlH30Ozs7fbnQpAXH9bClkRU87hb72dra6upS499HUUQnJycx/3KWa6Vb3XljBsPAoOZdLzEDGcTvlsI7qJhBnjnhPp81Fy5K07T54MbX5G/7Wc8yZtBoNGhubo583ydjjN2w2YtLcOKEQbdsojTXTtq7BboFmpIi+WkEz5L6/VgNbOnI37kM1y1XCrZuGSFZE7Nbuc3mWebK1NRU7D3IebUUSStZTx5zl58HYN/DWygUaGtryy7O1dVV2+dSqdSxiOUhgKVSiSqVSuZppFltdjXGfrK4ep0fkikPYoe7bEOpVLL0BUC+79Pu7m6MUa6urtr3IvPccjXd3d1d+ya7IAioVCr1nE2Ud07IudrNvZqnfNlunl+S1jJzy50PacplP1acy4NYCXvrrbcsLVutVm4lYOKEQbd9BoMyM93XAObx76Ux126aRreJubu7S0EQULvdpgcPHlC73aYgCGKTulsbWbNIOmr3ogzZ932qVquxcvNaBhfVZpN+zxpqlgvItR75rVSy7UnzJW+qsaR50ln3/dIjjeENwxpxNVJpGcgUXo7RSDrLGM0grZY0y71Xpis1+rQ4XJplvL29ba0AALS3txfrT5YylEaPvKmo9XqdyuWyFQrlcjlz3rp4rIRBrxOwW1Cxl8Oouk3AfgVOmmXAmRVZeeX1ep1WVlZi5a+srFgtrtd0W0a9Xqfl5eUYsyiVSuT7fk8MvVdNmJFET2OMtVSYJrw43biBjCt5nkeHh4exeEfSonZ/lxYnqdfrVKvVYjSv1Wod+x2y+uNala6A8X1/aIelub5qLptdaQ8fPow9I+mcN3srr1WTptC4wlBuMuz2prE848jtllZotVqlIAhsfyqVCoVhGFOgkuifZWHnFepS+HJfoiiKCd88lvnECQPpmkjC1tZWzKyam5vr6t5hBsuMZG9vr4PRHh8nvzw7j/+0W8ZDNyaQ9LtWqxVzkXTTTnjySHDuPbc9CIION1IWU+Fy5URvNBq23GHDpQtr+/xqUD4llQVpUsaZdAPwbxlJ7j2md1acBAA1Go2YkJP7HZIEYJbLrl6v09LSUowhAqBisRgrz9XKuzEh1+pwXREAaHNzMzav+HumBe/raLfbtLm5afvJdQGg1dXVmMvs6OjIxobyKCKseMi+Ly8vxxgzKzbcjm7vIGaLTq477pt8baXcs+J5Ht2/f9/2R9JobW2NAFjLyXXTZsWSXMHDfXSVB1dAN5tNSzeef3nehzxxwuD555/vcJkwdnd3rc/z/v37dHh4SJ7n0eLiYqpvMAgCqtVqdP/+fVtuqVSyWQHuZJPmXZp2ksdszUp/c3/HzLtareZyceQRBm46ZqVSsRM+iWnwIm80GrF7stxho16vx7KG6vW6zW7i4LDU9rpZBkdHR9aqcQObrpVpjOnIHnHjLADo8PAwtvhZucibvUXUOY6utcFMK8kCSXNzdHsN6crKCu3v71OtVrMpjTs7O/Y5LqNcLtP6+jrVajWqVqs2OYMtllKpFIsplEqlWNC4VqtZRi77LaUPhugAACAASURBVD+7wlX2ndshhRX/TrplV1ZWKIqiRFq7wleuW15XTC+eMzs7OwTA5vjfunWLPM+zm8AqlUqs73J9plnuRGeKwNHRUex37mbJpOeOjo6oVqtZKyjvZreJEwbsJmq321QoFGKdLRQKdvIwmDEkabvMHFjSs8kaBAFVKhUyxqQGyvKmr6W5rvJss3cnlzSBedI3Go3E4GeWy8LVNri8arXaIfSk5VQsFhMXeTdXyKCQ5M9m/6lsJ1sqSXEUN+OMs4FcAegyadbG5Piyu4+FpO/7tLy8HHNBBEFgF6rr8pPKRpoGyQJGYmZmxmrpnC3DLkDXvVgoFGhnZ6ej3ezC5DnA/T04OCDP8ygIAjo8PKRGo0FBENDS0pIVIExn3/dpdXXV+t5LpZKlGbsppRK1srLS074f2Xem082bN23fJROXa4f3nSTFGdzxD8MwRh8W6o1GI5Y99+KLL9p6G40G7ezskO/7du4AoO3t7ZglyTwlzQXZzSUnxyvJgiiXyxQEgR3jPG7DiRUGDx486NBGeQJIyc/PJfnT+FnpX+c0x+XlZauBNRqNmObIk83V7LtNQtdM7zVwyGaqnDhcX5omnxTMdM14NmU3Nzfp8PAwppWw1iTTMfmF4Cwgy+WyTXfr1f/fK5IWRRiGVC6XY/3uliqadzNhkjtqfb3zxTxMP8/zaH9/nzzPo0qlEnOfMf3lWPO4cNlpbpwk7Vi6cpgGrVaLPM/rqIvbIYPd/D1fkhlLl5C8XD+8dFmyQJLPsTYr3avy+Ia8lkG1WrXzkxkwW1rcBtbQ87g63V39TC9Jc7aOeTxYAEg3GT/DCgmAWKCZrSdua1K7kqxzNxAv514ar8ibHXjOLydPGOzs7NhdkbyA+rEMWLvj33F2BJu0ruRmBpkUV0gzT9PQSyA1bxCzW/nStbW5uUntdttmibDQkxo+LxY52ZhevMizcs2T+tdvADlp0rvnw2TRPcst0+051y9br9etFs7zYXt72z7D/t9CoUDtdjtWlmvZptHEjRkwI5MCUGqTbl3NZpNarVasrm6WgSxLPufSwt1sJ2M3TBsuT7oxOXEib8yA+85zbW5uzjJ96cPv5RwlSeskrZrXuOvy4fFmZt9oNOwaDILA0pkVllKpRGEYdt3c6Lo98wajk2IP8lmmmYxdAPgSTZIwiKLIagILCwsxjX1ra6unmAFLXM/z6N69ezECMpNJ89W1Wq3YRpo8PsKLgNua93iKJMhJkyfwxgE3+TuZPdLNVZamzaRlUORJsUtj5Jzb7wbDu9ExS3jkeU5q4byxirVB+XzSUQZsZWTV5Vp4PO9lcFL6md26pJ89T8ygWCzatMW0+Mk5Y4m5LNfX12l/f58AULvdpnK5TMvLy4kbzZix9ZJNxGNbLpftc1EUWaunWwC2G9LO/0oKBvM9jiGwgNrd3bVzAYA9ZoVTQdmy78aD8iozSZBluBv85LqeODcRD8KtW7dihGMmxEFhfi7LhcEWhfvMwcGBPQdEMptqtWonm5TASaa0DGr1owkntfUi5SS5PljDlxoETyLpj0/K3+92nG4a404SIK4m1iuD7jXvPi8ds55ztfDj42OrLLjxB7YgJANkf3I3IZf0G95T4TJAnssy/tVsNmPWimuhuZlEbpA8jRYy5iWtCnmoHCdjdBPSWTSWggOIZ3SxRSAVrrybH7nsvAqWK8BczwAHmuXZQfIYnG5K4SD4g3QFlctlm8UlaTRxwuDatWsdbotms9kxCXqRuO6zSRtNpO9dlpHF/HrdwDZMZLlIJHOIoihm/bRarZjl1I2J8aJJ8s0nxVqSNnClLaCkhZPX9ZNVTq8wxtDCwoJ1j4RhSAsLC4mb0bq5RpKEapJPPsuy6mXvyEU1Uvl7mdLLv+cMrG519NoGV4uvVCoXssb7mTdJ/e/GM3o5CmMQcGNGURTR4uKiFcg0ScIgiqKY1sPBFncQ8/riGGl+RPm9MSY1ap82sbOyhvpBv4wsz+Lr5n9M0hbTGFPaEeBJlgG7oyR60fCyAmj90CEP+NgGTsms1WpkjKFSqZRYp2uBStq68SeZRizpJwWgHH8539mSZS01SdO/CCOUfWJt1E2rTrIC3bmUd23I/srjPtJy+fPu6u113qT1393PMagjQrLqSyrXtVY53f488D5ZMQNO02PpW61Wbf6zXEx5ovRpSJskeTQdd7AuOuFc9MvI8vpp+2GsSZp6WrA7SbPlILTEMDU8fj7J1dILgiCgYrEY60uxWKQgCBKfZ9pKC4yzVFw/r+t2PD09tZaWi6T5vrCwYDNvkg5rG9S8lHEH9/gKafHwvJXnQHVzrcrye1lzvbgM88ybvOtm2Mi77l0eJWOsI7UMALwK4KsA3gWwl/LM3wHwFQBfBnCcVSb7lo+OjmhhYSHm6+TDtNinVy6XYz5LvrrtYCbK3kov/axpPla3LHfXa5r2mCT5k6wW+Z3MOeYF4fqC+QiDpCCi1LqS+pO1u9FtNzMB+b10BbnPb21tWcbFAdK86apyPGSmjcz1dn3VnPa4vr5u/elJ88Mday7H/Z59szLlMIk+PA7c1r29vZiQlPEnWaaMgbFWvbu7mzi36/W61Qa5DE4r5lM1ZTBWarMyG8i1AGV/S6WS1c7lfEzayczPc71ch2yHLE/GP5hmaYfCJc1D9yBKLiNp7bMgk2f++L4fO5guDEPr+uHNjcYY8n2/68F7g4oDuPNMxjCT4jLsquK6xyJmAMAH8AcA/gaAKQC/A2DTeeYZAL8NoHj++cmscjntjTt/+/ZtwnkGA2cOeZ5HP/MzP2PTIp9//nlLGCYoANra2uo6AHz+h8s8e/XNMnM7PDyk+/fvU7FYJM/zuh6QlRYcZeYvg73ubkTP82h2dpZqtRodHh6S7/s0NzcXS7lz4xmtVssuUN/3aWdnJ/NY3rR28wJKC5i69KlUKrS8vGwzQwDQzMxM5usb5VhUKhWbycOukbR0w2azGevbjRs3yPd9mp6eJgB048YN8jyPZmZmOjTehYUFWlhYoJWVFQrDkG7evEm+79PS0hIdHR1ZX79LH26j7/tULBbJGEOLi4tW6BUKBXtcA4/X0tISlUolmpubs30ql8u0vb1tP8/NzREQP0VWChKm4dLSkqXtyckJ7e/v2zJu3brVNZNIav77+/ux/vJ8ZIZULpetkra4uEgzMzO2PUtLS7Yv8/Pz1pfN63Zvb8/SWO7fODk5ie3pSDrynOnseWcvmGEf/gsvvGDnNW8Wk4rjwsKCVYAajYYVVkxLFgAyFsC7q5N2rhP1/m7vJEi6c5bW8vIyLSws2CytO3fu2PXKc31paYk8z7PrdSyyiQC8COCL4vM+gH3nmUMAH+2l4mvXrhHRI9+YNOtqtZrdU8DaEDOIubk58jzP7rB1F62cUG5GjdQsZXYAWw/yc5Jrgv2/Uktw88zTrBHX79psNqlWq9kc72Yzfk4J35evgfS8s41HcmcjB3PZXcI+/pOTEyqXy3Yyd4uTpLV7e3ubcJ75wYFo3/ftgnJ911nnrqSZ7iyw3Xx/rlv+XpbHbpUwDO1BdcVi0aYT834Vpo/sdxiGlra7u7sEnGW2ra2t2QPNWBAmzRe5gcn3fSqXy5a5rays2N3vLMD4WdageU4EQUC+79t8/3a7HQsUMmNmcDlybwALJ6l9u3M5a3yYKXJ9/L8xxu7O5e9837d7erjNAOwaZWVB7mHgtsjvktabS2dupzGGWq1Wx/eFQqGjbxyrKRaL1iXHiSO8DnndsLvLnaNyLSXFe/JCto3/ZyuSv+e56L6IqFwuW6VgLPYZAHgdwD8Wn38awD9ynvn8uUD4dQC/AeDVlLLuAHgHwDuspfKEl6lgrPnIv9/+9rdjZjlbC7wzWQ5QHh8i+1qlzzVtOz0DOMs9lnB3UKf5cFm7k64c7jvXJ08wlO4BLo/TR7nv3C9+hsvmHagckJevDXXbxeUktZt/56Y5skvBpacsg8dGttXdTelmsTAjYmYrGeLx8aN3WsixcV0a9+7do9PTU9rY2LDaqtt3uTuXvzfm0YmpADre7eDOl2azadvMAWe50ZHrZsEk+8NlyHZLl5f8HkAsuMrluK9pdPvjzuVu48NWTLFYjDF1bhd/5oPe3P6wFu6ON1vvSa4nqYUn0VlaCLz2+Swtfl6eSiD7Jl0rrLix4GAa8bo5OTmJxXBkVqG7JrrFe9Ig25Y0xtxOY0zmK0ql8kRjLAz+OYD/FUAIYB3AHwJY7lYuHx/Lk0+m3Pm+T77v08OHD2NnhjDR5Gvj2u02TU1NxYiWFVSTPkmZcZRlGeTZgZomiIIg6DiKWi5SbofU5FzLgE1m99whzuaQrhzWtHlSZZ3BlNRuySA5OCxNe5l62atlIOvj/8MwpGq1ajU73/fpzp07FIah1crc817YOmD3GDO0paUle3gha8y8yHk/hKRtUntljEUKQLbC+IyeT37yk3Yuy42O7q7gKIqoWq3aNsh5zbGgg4ODWNyFXQXMhPg7OVZcrhzjXiwD7iMfxicZPACrmbfbbesO43tBENjNWzs7OzFtllN0pZUuBVfSsRNyXsh1yuXLvvGZUe5+AbagmdYsWLheTq9my00eKc/+e35WxjmkcpQ30UOuHe4bW9ws4Hzft3SUcy8t9oMxdxPdBfBfiM+/CuA/6Fbu9PS0NdH55S/379+3k21xcdFOIPanXr9+nQDQ9PQ0PfHEE9ZvKM15d0LxwLjbuuUuRB6IrHzirBfVcF2u790146X/1/d920+ZiZIUM6hWqzQzM9MRlGW/ZBAEdPv27ZjfmH2lMmaR5Dpz283MamdnhwqFgj0OmCd10jEM3XzSrj9WCmyumxd9rVajxcVFmp2dtXTjmEnSEQXucefPP/98zKLha21tjW7fvm3jCBwzSGqve4JkUv65dKdIFyTHcdxdwezi5FiG2z65EUpaxXxGUhRFsVgHx0DYv9wtN77b+LDLiwWn3IUsLQPf9+3heq+88gp5nmdjBvw9cOZu43bxHGIa8m8ajQbt7+9bxsvBZw72Hhwc0NHRkQ0K85sRW62WjRlwjILjOKVSyWYlMq15/ORuY75WV1dpeXmZlpaWqFKpxHZcB0FAt27dopWVFXufFY6k3c1uoojcbc4WEsd0eP5xzKDValket7e3l7l2RikMAgBfP9f4OYDcdJ55FcA/Of+/fG4ZPJFRrmUGMkMHgA3MsVbgnj/O19TUVKL/2o0ZpG3rlulmaXncSQJBuk267XKUvj7PSz4qg+vkZ+W58UmZJu4rIBnyDUrlcplWV1ctQ5FZF1lBdZnl8cILL8SyRl5++WW7GOQBbbLfadkqLl2TBLbURplGMtMMSD4KgIjs+TFJ82RnZyc2hxYWFizzzsqukWBLQTJtZmZp9HQz1iSjl+9vcNvMAj/pAMEkt4tkpmmpk8fHx7H55HmeZUJcZ6VSscJLtpXrYEudLUa37SwAuD2uoGMmL+tk2khBLJUnuVFS0lLSxc2849hW1isz3cw7trJZM5cauiyj2257eWCmFILuGMv1zhate18qGKzwjkwYnNWN1wB8DWdZRQfn330KwK3z/w2Af4iz1NLfA/BTWWWyZeAuNgCZQZs86V5JKW1EZP3TsrxBHzch0U+gWvYh7+sXpa+V+5CUBsqT2t1YJIOy/Bxrwq4Gy26OrEBaN3qmWVDc315fdi/9sexW4fa2Wi37XF6/bx5XY1aSQpriwAx2f38/xqy4vS4jYSEi+95LpotUeuSBhDJTxxWkvu/TK6+8ElOkpFvSPdiP1y6Xy/W46bRcDrtNOe7Sbrdjb/Dj9kjB5h4XznGDpPhDL2uZ5w73Z3NzM6aoJSki3XbbA93fQSIVF34388rKis0u5Pr4sxtXGakwGMbFMQM5mWXqFy+GrBM9s+Auag78SWbAZn2ezSBJk0wuNnfy8wKQrgzWqrLS1LLeZSDRLWjuulGmp6dtaqN8zSBrjVEU2dMbZVpsq9WiqampVNq4dMraZOTmVbt7AvIcpSH7L10jHJPxfd9qgJ7nxSyEJAElLaNes6/k/W4uRdZEpUXBWXHAo7essVXJR5KzwGS6VatVy1zT3ucgx4FPuOVxaDab1o3IAlTOBddadQ8SZFfN4eGhzZOXCQuVSoXm5uYoCAKbPsmp0cwwZQIEM0zpMkw68qNfBStNQMh1xjSS64wzoOTvgTM3kwQzbODRngCui+MxfBgeWzXsgpudnbXvF4miiA4PDztOWRXpxn9NkyQMpqamOg6Wytrk1A/cRSsPwJMaVZ4t9VJT9zwvtsnFvV566SWbhsp9c1MGpcZdr9dpa2srpkmy9pgkaHhTkuuOcjVt6QZIuuSuRtZGWMuT6YWuZSCZqKsBcz/SNr3xYlheXrb+azewKDcaRVFEW1tblo6NRqNjtzqnhzIzlUE64CxX/q233rJuJ94jwpuOuE280a1cLsd8ztJdwH2Vr5QkepQB4m5wkxvC+Ht2DRweHtLi4mLs3vT0tBVaxhjbZm6nq8FvbW3R8vJyzJ3BdbtaPM95njcbGxux9cVZTu7mRGmJFAoFunHjRuwIeA7CMsPmtN5arUa7u7sxIcxj/eSTT9o+JK2lmZmZ2DrkOJW0gvmtZXKcXQEvx2NhYSH2Ih92L7E1xm7lUqlk3ztSqVQ64jTyRUEuv2BBKhUB1yXHrtwk95FM833iiSc66Abgey4/HcQ1MmHA+wwkIfm9A3ISZrlSkpCkqUstc2lpqWNCZLkFiOIvp2+1Wh0LUzJ5zg6RkzzJp82TiwNwN27csAuUrQjenCR/x5/L5bLVDnnjDWvavHGvmzCQTEsyGGMMzczMxGIGzABcQcAa8FtvvRULJCa1lzUqyShk8I8DmWweswnPb7JKYiosCN3MM96oJBehMYZmZ2etRs4LL+nNb5yRJMvkdvBfKZDY1728vBxrI+/x4BRJuSnQZexyDsl7U1NTMRr6vk+zs7O2b65Qd5kqW1TVatUeMcFrRJ4nJYUeK2psXbH7loPZUgBwvr6bJXV0dNRxArG8rl+/3jFH5Ti6AhR45KZkC4nnK7dT7jzm8Wg0GnT79u1YQLdWq9nfumnf0oefxrD5vc5JMQO+x+5dmQzx8Y9/PFWRZObPMUw5hmwlAfjmMHjyyITB9evXY8ybF3kQBD294MIFazBy4UpfnDxHnSj+gpAsy4CZ9/HxsU1/7cb4koJCGxsb7hkjRET2hR8yKCUzSjzPozt37sSyTXiS8k5X7jP7sLsxCPfi7AXgUd48cJY1ItP73MwtTrdlq0n6vzk1VQo2SbO9vT0qFAo2RsB9khtuuE8uY3CZBwuWMAxt9pU8vlsKInYTNptNmzUDnFkUMhbCbgveECTdLOxik6+D5FRK3tV8eHhos0fq9XpiRovL+GWqJICYYAFgrQR+Wxhbm+x6ZHfZBz7wgRjNOHC7srJC8/PzVlnhsmQGGV8uw1pdXbWKFveb/fMypiPHgTOGeCc2rwnpi3cvZtbud/x3a2vLvob0M5/5TMwFxzRmlw8rHZyIwkrH5uamHV9+nzPzIlaMfN+nhYUFK3S4/Ww9M09x3U4yBsH3ZELH7OwsLS8v27bIvhpj6M6dO3bceV03Gg3LkzBpbiK2DNinyW8cYs1E5spnBYOkJcCTWy5caRannaqZJyDHwoAnsmR81Wq1Iz+cvwfOTH8uT2oasmy+XJdC2uLkiyfrJz7xidgeAGYcaVqZzNRptVpd3V4uY5btfvDggWVCwFkKJ7fL933rDuA+cG613Jwl947IjVoy88QVXu53xhh67rnnEpmIvORu4KWlJfv58PAwtn9CCgp5RVFkF7e7MQ84S61MOm9I0i/vleZCWV9ft0e4uAz79PQ09hpHbrNM1QQeuSal8sTaNDNvtiKAMxeMjCEBiO13cS3GJGuWXWK8KdC9bt26lUhvtgRkPEeuF17j8lWXXOfJyYkdH+l2kecZyaNp+FWXbiYbp7vLPU5BEHRkA3KbJT2Y9/C8nZubs+tE0idrPogzsyZHGHAgkpk28GhXJQd03VcyJmVtuL5MFiIcf5DZIxx/kMIliiIqlUqxLBQ3FY3BgSaX0QOgD3/4w4mDx9q2MWfb6Tc2NiwTlEzVZRJhGNozdiRjY22bvwuCwC78RqNhLRzXzZDGGPm7pFRCec3MzNDq6mrH8R9sGXie11H+U089lVgfM3hebNVqlYrForUC5eYsIoq1KY3JfuELX4jRSN6bnZ21AUzgTDDfu3fPBnL5bKOVlRUbJD84OIi54pL89XNzc7EUQzd91R0/3iPCY8X7ZrpdU1NTHe4vZgquS47nI58NxPSXDFAmDDC9j4/jmzABWOHMGWz8m2q1Squrq3Tjxg1bZlKK9fHxcUf/mfaucsIBc2NMYl9dRgicBZzlJlBpSQdBYM/zYU+DOwfdtqW5slhwcdluWUDc6uJEBzcLi3lY0vpyv0uyFvhMNLYYJkoYVCoVO/GmpqZsJgLRo/fh8uSWAbYoimhvb89OUt/3Y77MMAzpxo0b1ucm3wDGWoDrimKTWSIp3ZIHxQ2s8g7opAks89bTtEJX8wuCwG6ckhMijVHfv3/fls1paO5kSltgfC9JeLgLZ3Z21rbVzZqp1Wod/eCJy3XwGTx8bpKr3ZfLZbvYpDsvi2Fyxorb17m5OSoWizEm7PZ7bm6OfN+nVqtFy8vLsdNIPc+zsYiZmRnrxkpyvyUJi7QriRklXczsl5aWYs+7c42FKrsUOLnh5Zdf7hjbarVKS0tLVC6XbSonUTw1Wa69bnP1hRdeiMUV5OmffMKpdBXxxjFupxsDSZuX5XI5lunEGzWTNqwyPVhTn52djblbZR2SLkxD9lBw8gfTOooieyChLIP3ZnACCvONJNfZ+vp6xys0K5UKzc7OxujLgoTbZIyh6enpWN0TJQyYufGJgrzo5IYT/svaOJ9b42oPbFE0m82YxhJFUUz78n3fBneZ6XLwOM19xG4sN/Wu26LmQBYLGK6DF4F7QmXade3atdwMhk9UZReBu0knTVglbejjTJokV8zCwkJHnn63AKFc3DMzM3bs6vW69bsfHBzE2iGFMzOnpPJk37oFrsMwjL0+kIOnLnNzmZJ0U7nuLnm99dZbHYHqLFrkec5tk3T9yb4fHx93pA8n9Ueupd3d3dg7l9ky4I1r8nfT09MdAtU9ZkKe/ildOKurq/bY7X7o4CpQbM1x5lyr1Yo9Mz093bE7261TxtpkuQBs/AuADTgDZwqptPI5NrG3t2ePJZFngkkewjg+Prb1sFIhtX2XZt3mzkQJAz43hzem7OzsdGR9yFMzeQA5P12au8xc+FyjJCLyBioeQPkOYPb/SsjAMvsSXYEg2yuZrfyfs33cxbCwsGC1B3myqHyGNZck10hagE3297nnnkt0m7jlsOYiNSVjjA32GWPshJdtc1P4uF9J9UgNS5rO29vbsUwmziySx0XnYZgcvHYXu9QK5bEg3Gc+emB/fz8WS5Dj59KfFRMWDml9dq+lpaVUCyxLmAKdBx3myRQLwzDmh5eppjJAzvSSApN/s7y8bJUbOQ/kOUcyGCvp5KZTy3a5u5Gzrunp6cS5zC5jmczAdGL35+bmZmxznBxfuXeABdzq6mqqdcTzh60B7ru0DIgenSXmjnEQBKlzhq0atq7YE8F7Ms7p//2JEgYym0gSjQfAPTlRSnip2bPEThMC7sUBOXmqJx/17GoarIXIgPLBwUEs+OWeS+Se/yLPXgFgM1n4XbNJk/uZZ56J9V2akR/96EcTtWCpwXSjxezsrD3niAOESUccsDBwrZfZ2dnY+SwsEFjT3t/ftwvq5OTEjqN7tAbThc1ieV4O04ufSVs4rNX7vk/379+3C5+tQc/zbAqgS+dGo2HP9OHy+Qx/fv8xu4ZchsRa4YsvvphKZxkXklcaA5djLMfz+eeftzTc3t6OzTMWLDdv3owpE7du3bJ58NJVypd7/lHaOuH/5YFpknnLE1D39/ftcycnJx1j5rotebc4xwvn5+djtHj11VdjnzkFWVri7hzmeKHca8MWMisWLp1nZmbo+PjYKgIsKI0xlr/IIDn3j8dhfX3dbgqUMQPpDpLvmfB9355NxX2Zn58nY4z1amxvb9tDOplua2trMbfVRAkDmU3kHh3A/sekbAnJHGZmZqwfUt7ns+Q9z6NPfvKTsUnIn12GurW1FdvZee/ePTtRgTPNQu7Ylad5SoYoT4YkenQuuYx5lEolu58ii3nwwkxi8HJycGaEfJNTq9Wyfm/5O7mHgzO20k6WfOKJJ2KapTwagY+qcJkKpyqyxsQuLD60TWrgs7OzdHp6ahcWHwbGi1i6atx63PkRBIF1Z7DW7s4NeV4N92V1dbVrJpV7PfXUUzH/vMs8k8aSNfS8Sot01RhjrDIkUyalIJMXjwn3id2waVbJhz/8YWo0GpYhz8/P2+QKFtacT88nmMp1wYckspB8+PBhV2uJNV3pEmY6vvLKKx004lig3PfBiRIc5JZWPDNzpgPzA/d48CRlY3l5uWOOsvXMXgm2OJkncDn1et3ykDAM7UGRXA4fNMju6iTaMF9iejz77LOx+zxGEyUMOGODGQAA+9rH7e3t2AYqOShJBEzy1crFLheky0A4UMQT2j2imgeTfc98JAKfdsoTk6jzTH8iimlSb731ltVSl5aWOjKQnnnmmURXRdYlJxYzC8lEpeCRh3LJIxDkUb3d6uL8cmnNcTqeK2DZYuN4gDwqQqY+7u3t0ebmphVi/D27daQbQ+585bGXLyFx3QDsPnQZpTwigNuaRWf39aw8Lzhrx+3/j//4j9v/r1+/boWE3HSWx9WzublJn/jEJ2x/5L2k+cJzNel7/l8yYY4Ryc2PwKNsMLlJk/c2SMVIZtcVi8VE94rcEyHnXLFYjH3/5ptv2qSOpHgWM3eZKMFtkPE99/RWOXarq6s0Ozvb4c5N2tzJDSYZJgAACwdJREFUsUxeG+7b/LhfUiHko1CY5/DfpEwkY87eFlcsFumJJ56IWdJp2U0AfjgMnmyICKPA3Nwc/dVf/dVI6mb4vo8f/vCHI23DZWNqagoPHz4cWf3GGIxqzl1VbG9v4/Of//yomzFRmJubw4MHDzKfK5fL+Na3vjV2fIKIzKDLHJkwOJdweZ6zzGN6ehrf/e53B90O+L6PH/zgB4n3gyBIvZdVbhiGI2W8w4Iy9Gx4nocf/ehHAJReWbhM+uQVAnL8xhHDEAbeoAvsB77v4+WXX4Yxnf2Tk4QFQdJz/YKIujL7H/zgB1hcXOyrXFcQeN5YkPvCGBfGNjs7i/n5eft5bm4OQRAAAJ544gn7/SDni4u0sn3ft/8Pkl7lcrnn38i2jCOICMYYzM3NJd7vdfyS+ut5HnzfTxQECwsLucoYJaanpwEAH/jAB4ZXyahiBhA+TGNMx9bsYV1pgZtuV9JO2qyLXw950fa+733vuxS6jPPVyxlLfMng/+Nw5U3BnYSLD/yb5OvjH/941/sTFTM4D6LiO9/5TrdnBqpVZZl+/bqE0hCGIX70ox9dyN84Pz+Pv/zLvxxYm8YdMzMz+Ou//utRN2OiUCgU8L3vfS/xXtIauwy3zShcZ+PmruunPWEY4vvf//5kxgy4c2kYd9+dYrwwDgs+ac5mzfNBYdAKzajxOCZ55MFExQzYf561QFQQKHrBqAUBkDxnLyIIarVa7mcnSRAAUEFwiRiZMOAFkxSoGUTAzxgDz/O6Bn+ffvrpC9Xx1FNPJX4/MzMDILlv8/PzqYGymzdv5up7oVAAAGxsbNjvBhWcHkTgrJfxm52dzXwmb5uCIMDs7GzH80nt4THKei4JSb+VuHnzZtf7XE+lUrHfbW9vp9b/x3/8x6llpH1OaiPPG4k7d+5k9keiUqmgWq3Gvssb1Ow2R7n9so1hGHbcB2Dr5zXuIikgDADr6+soFoux79L4Q9YY9oOk8eWEBxf379/vaOve3h6iKBp4uyxGGUDOs+FGXnk2ofV6XvxFrmKxGNt0417y0LxhXN3OTuGrn4B53quXXbv9XHl362Zdg54Tg2qXvOSmKPeMqGHSdm5urud12O/FGzzdfmXV7x6JknYoIV+8Qztvu1waD4vmMzMzfa9HPp7lPDHia0PhyeOQTTSMxQUg1zHBfOU9cdK9CoVCrkPG+r1WV1c7TjUcl+syBe9Vv97//vdnPuP7Pt2+fTv1cLerePHa5jOxhlXPIJWeNGFwWUKTL3k+k3ti7cRlE42kYoVCobjimKgAskKhUCjGByMTBlNTU6OqWqFQDBnD3PWtGA5GJgwm8cweheJxx7PPPgsAHSm+qvyNPzRmoFAohg7dPDoY8KbCidqBfP5u0JHUrVAoFFcZExVAVkGgUCgU4wPNJlIoFAqFCoM0yKMeFApFd2j20NWHBpAVCsWFMA4nxT5uGFnMwBjzqjHmq8aYd40xe12e+0/OX1D9wuCaqFAoxhkqCCYDmcLAGOMD+CyAnwSwCeC2MWYz4bkFAP81gN8cdCMVCoVCMVzksQx+AsC7RPR1InoI4JcAfDDhuf8OwD8AMNg31isUCoVi6MgjDFYB/KH4/I3z7yyMMdcBPE1E/1u3gowxd4wx7xhj3um5pQqFQqEYGpLfrNADjDEegH8I4CNZzxLRmwDePP+dOhoVCoViTJDHMvgjAPKVYPXz7xgLAJ4F8C+MMf8GwN8C8AUNIisUCsXVQWZqqTEmAPA1AC/jTAj8FoD/lIi+nPL8vwDw94ioqytILQOFQqHoDyNJLSWiHwDYBfBFAP8awC8T0ZeNMZ8yxtwadIMUCoVCcfnQTWcKhUJxxTBRB9UpFAqFYnygwkChUCgUKgwUCoVCocJAoVAoFFBhoFAoFAqoMFAoFAoFVBgoFAqFAioMFAqFQgEVBgqFQqGACgOFQqFQQIWBQqFQKKDCQKFQKBRQYaBQKBQKqDBQKBQKBVQYKBQKhQIqDBQKhUIBFQYKhUKhgAoDhUKhUECFgUKhUCigwkChUCgUUGGgUCgUCqgwUCgUCgVUGCgUCoUCKgwUCoVCARUGCoVCoYAKA4VCoVBAhYFCoVAooMJAoVAoFFBhoFAoFAqoMFAoFAoFcgoDY8yrxpivGmPeNcbsJdz/uDHmK8aY3zXG/KoxpjH4pioUCoViWMgUBsYYH8BnAfwkgE0At40xm85jvw3gBSL6cQD/DMDhoBuqUCgUiuEhj2XwEwDeJaKvE9FDAL8E4IPyASL6NSL6q/OPvwGgPthmKhQKhWKYyCMMVgH8ofj8jfPv0vAGgF9JumGMuWOMeccY807+JioUCoVi2AgGWZgx5j8D8AKA9yXdJ6I3Abx5/iwNsm6FQqFQ9I88wuCPADwtPtfPv4vBGPMKgAMA7yOi7w2meQqFQqG4DORxE/0WgGeMMevGmCkAPwXgC/IBY8zzAH4BwC0i+pPBN1OhUCgUw0SmMCCiHwDYBfBFAP8awC8T0ZeNMZ8yxtw6f+y/BzAP4J8aY/6VMeYLKcUpFAqFYgxhiEbjuteYgUKhUPQHIjKDLlN3ICsUCoVChYFCoVAoVBgoFAqFAioMFAqFQgEVBgqFQqGACgOFQqFQQIWBQqFQKKDCQKFQKBRQYaBQKBQKqDBQKBQKBVQYKBQKhQIqDBQKhUIBFQYKhUKhgAoDhUKhUECFgUKhUCigwkChUCgUUGGgUCgUCqgwUCgUCgVUGCgUCoUCKgwUCoVCARUGCoVCoYAKA4VCoVBAhYFCoVAooMJAoVAoFFBhoFAoFAqoMFAoFAoFVBgoFAqFAioMMmGMGXUTFAqFYuhQYZABIhp1ExQKxZBQLpdH3YSxgRkVszPGKJdVKBSKPkBEA3dZqGXwGEJdXwqFwkUuYWCMedUY81VjzLvGmL2E+wVjzP9yfv83jTHRoBuqGBzU9aVQKFxkCgNjjA/gswB+EsAmgNvGmE3nsTcAfIuIfgzA/wDgHwy6oQqFQqEYHvJYBj8B4F0i+joRPQTwSwA+6DzzQQD/5Pz/fwbgZaO+CIVCobgyCHI8swrgD8XnbwD4m2nPENEPjDHfAfAEgD+TDxlj7gC4AwDvXfHwzp15mL//F6D/dvHsfo7/B4Fe69S2aFu0LYNty6DxOLXF/P2/GHCLz8vN8h8bY14H8CoRffT8808D+JtEtCue+f3zZ75x/vkPzp/5s6Qyz59Rx7VCoVD0gVFlE/0RgKfF5/r5d4nPGGMCAEsA/nwQDVQoFArF8JFHGPwWgGeMMevGmCkAPwXgC84zXwDwn5///zqAU9KUFYVCobgyyIwZnMcAdgF8EYAP4B4RfdkY8ykA7xDRFwD8IoD/2RjzLoB/izOB0RXvfe978c4771ys9QqFQvGYwRjzpWGUmyeADCK6D+C+893Pif+/C+BDg22aQqFQKC4LugNZoVAoFCoMFAqFQqHCQKFQKBRQYaBQKBQK6BHWCoVCceWgR1grFAqFYihQYaBQKBQKFQYKhUKhyLnpbEjQmIFCoVCMCUYWQFYoFArF+EDdRAqFQqFQYaBQKBSKIcYMdB+BQqFQjBW8bq8WGKZl8MPzS6FQKBSjx6vdbg5NGBBRAOC7wypfoVAoFD1hu9tNjRkoFArF44HVbjdVGCgUCoVChYFCoVA8JnhPt5sqDBQKheLxwH/V7ebQdiBraqlCoVCMFbqmlupxFAqFQqFQN5FCoVAoVBgoFAqFAioMFAqFQgEVBgqFQqGACgOFQqFQQIWBQqFQKKDCQKFQKBQA/n9gXFefjh/oUAAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"source":["plt.boxplot(x_train)"]},{"cell_type":"code","source":["plt.bar(range(len(x_train)),y_train)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":282},"id":"1YbIAQqQsnlS","executionInfo":{"status":"ok","timestamp":1654722181942,"user_tz":-180,"elapsed":104539,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"fbb87670-8450-4b38-9cd1-f5e76522685c"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":42},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUrUlEQVR4nO3de8xcdZ3H8ffXlltUbIHakLbZ4tqsKe4uwhOo0Wxc2IVSjeUPNZCNNCxrkwUSzW7iljVZ4oVE3WRVsl7SCGtrVGBRQ8Nlaxcx7mbD5UGuBdk+3EIboJVy0Rhxwe/+Md/i8PBc5rnNnJl5v5LJc873nJn5/eZcPjPnnJknMhNJkt7Q6wZIkprBQJAkAQaCJKkYCJIkwECQJJXFvW7AbB133HG5evXqXjdDkvrGXXfd9YvMXDbZ9L4NhNWrVzM6OtrrZkhS34iIJ6aa7iEjSRJgIEiSioEgSQIMBElSMRAkSYCBIEkqHQVCRDweEfdHxD0RMVq1YyJiV0Tsqb9Lqx4RcUVEjEXEfRFxctvjbKr590TEprb6KfX4Y3XfmO+OSpKmNpNPCH+emSdl5kiNbwFuycw1wC01DnA2sKZum4GvQytAgMuA04BTgcsOhUjN87G2+62fdY8kSbMyl0NGG4FtNbwNOKetvj1bbgOWRMTxwFnArsw8mJnPAbuA9TXt6My8LVv/nGF722NJkrqk00BI4EcRcVdEbK7a8sx8qoafBpbX8Argybb77q3aVPW9E9RfJyI2R8RoRIweOHCgw6ZLkjrR6U9XvDcz90XEW4FdEfHz9omZmRGx4P96LTO3AlsBRkZG/FdvkjSPOvqEkJn76u9+4Ie0zgE8U4d7qL/7a/Z9wKq2u6+s2lT1lRPUJUldNG0gRMQbI+LNh4aBM4EHgB3AoSuFNgHX1/AO4Py62mgd8EIdWtoJnBkRS+tk8pnAzpr2YkSsq6uLzm97LElSl3RyyGg58MO6EnQx8N3M/I+IuBO4NiIuBJ4APlLz3wRsAMaAXwMXAGTmwYj4LHBnzfeZzDxYwxcB3wKOAm6umySpi6J1YU//GRkZSX/+WpI6FxF3tX114HX8prIkCTAQJEnFQJAkAQaCJKkYCJIkwECQJBUDQZIEGAiSpGIgSJIAA0GSVAwESRJgIEiSioEgSQIMBElSMRAkDY3VW27sdRMazUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEzCISIWBQRd0fEDTV+QkTcHhFjEXFNRBxe9SNqfKymr257jEur/nBEnNVWX1+1sYjYMn/dkyR1aiafED4OPNQ2/gXgS5n5duA54MKqXwg8V/Uv1XxExFrgXOBEYD3wtQqZRcBXgbOBtcB5Na8kqYs6CoSIWAm8H/hmjQdwOnBdzbINOKeGN9Y4Nf2Mmn8jcHVmvpSZjwFjwKl1G8vMRzPzt8DVNa8kqYs6/YTwZeCTwO9q/Fjg+cx8ucb3AitqeAXwJEBNf6Hmf7U+7j6T1V8nIjZHxGhEjB44cKDDpkuSOjFtIETEB4D9mXlXF9ozpczcmpkjmTmybNmyXjdHkgbK4g7meQ/wwYjYABwJHA18BVgSEYvrU8BKYF/Nvw9YBeyNiMXAW4Bn2+qHtN9nsrokqUum/YSQmZdm5srMXE3rpPCPM/OvgFuBD9Vsm4Dra3hHjVPTf5yZWfVz6yqkE4A1wB3AncCaumrp8HqOHfPSO0lTWr3lxl43QQ3SySeEyfwDcHVEfA64G7iy6lcC346IMeAgrR08mbk7Iq4FHgReBi7OzFcAIuISYCewCLgqM3fPoV2SpFmYUSBk5k+An9Two7SuEBo/z2+AD09y/8uByyeo3wTcNJO2SJLml99UliQBBoIkqRgIkiTAQJAkFQNBkgQYCJKkYiBIkgADQZJUDARJEmAgSJKKgdAA/sCYpCYwECRJgIEgSSoGgiQJMBAkScVAkCQBBoIkqRgIkiTAQJAkFQNBkgQYCJKkYiBIkgADQZJUDARJEmAgSJKKgSBJAgwESVIxENSX/KdC0vwzECRJgIEgSSoGgiQJMBAkSWXaQIiIIyPijoi4NyJ2R8Snq35CRNweEWMRcU1EHF71I2p8rKavbnusS6v+cESc1VZfX7WxiNgy/92UJE2nk08ILwGnZ+afAicB6yNiHfAF4EuZ+XbgOeDCmv9C4Lmqf6nmIyLWAucCJwLrga9FxKKIWAR8FTgbWAucV/NKkrpo2kDIll/V6GF1S+B04LqqbwPOqeGNNU5NPyMioupXZ+ZLmfkYMAacWrexzHw0M38LXF3zSpK6qKNzCPVO/h5gP7ALeAR4PjNfrln2AitqeAXwJEBNfwE4tr0+7j6T1SVJXdRRIGTmK5l5ErCS1jv6dyxoqyYREZsjYjQiRg8cONCLJkiaJb9M2HwzusooM58HbgXeDSyJiMU1aSWwr4b3AasAavpbgGfb6+PuM1l9ouffmpkjmTmybNmymTRdkjSNTq4yWhYRS2r4KOAvgYdoBcOHarZNwPU1vKPGqek/zsys+rl1FdIJwBrgDuBOYE1dtXQ4rRPPO+ajc5Kkzi2efhaOB7bV1UBvAK7NzBsi4kHg6oj4HHA3cGXNfyXw7YgYAw7S2sGTmbsj4lrgQeBl4OLMfAUgIi4BdgKLgKsyc/e89VCS1JFpAyEz7wPeNUH9UVrnE8bXfwN8eJLHuhy4fIL6TcBNHbRXkrRA/KayJAkwECRJxUCQJAEGgiSpGAiSJMBA0Bz57VNpcBgIkiTAQJAkFQNBkgQYCJKkYiBIkgADQZJUDARJEmAgSJKKgSBJAgwESVIxECQNHX9yZWIGgiQJMBAkScVAkCQBBoIkqRgIkiTAQJAkFQNBkgQYCJKkYiBIkgADQZJUDARJEmAgSI3h7+uo1wwESRJgIEiSioEgSQIMhAXlMWFJ/WTaQIiIVRFxa0Q8GBG7I+LjVT8mInZFxJ76u7TqERFXRMRYRNwXESe3Pdammn9PRGxqq58SEffXfa6IiFiIzkqSJtfJJ4SXgb/PzLXAOuDiiFgLbAFuycw1wC01DnA2sKZum4GvQytAgMuA04BTgcsOhUjN87G2+62fe9ckSTMxbSBk5lOZ+bMa/iXwELAC2Ahsq9m2AefU8EZge7bcBiyJiOOBs4BdmXkwM58DdgHra9rRmXlbZiawve2xJEldMqNzCBGxGngXcDuwPDOfqklPA8treAXwZNvd9lZtqvreCeoTPf/miBiNiNEDBw7MpOmSNCPzcQ6w384jdhwIEfEm4PvAJzLzxfZp9c4+57ltr5OZWzNzJDNHli1bttBPJ0lDpaNAiIjDaIXBdzLzB1V+pg73UH/3V30fsKrt7iurNlV95QR1SQ3Tb+94+0VTXtdOrjIK4Ergocz8l7ZJO4BDVwptAq5vq59fVxutA16oQ0s7gTMjYmmdTD4T2FnTXoyIdfVc57c9liSpSxZ3MM97gI8C90fEPVX7R+DzwLURcSHwBPCRmnYTsAEYA34NXACQmQcj4rPAnTXfZzLzYA1fBHwLOAq4uW6SpC6aNhAy87+Byb4XcMYE8ydw8SSPdRVw1QT1UeCd07VFkrRw/KayJAkwECRJxUDQazTlagc1l+vI4DIQJEmAgSBJKgaCpCl5iGh4GAiSJMBAkCQVA0GSBBgIkqRiIEiSAANhqHi1yMLy9VW/rwMGgiQJMBBe1e/JPlv91O9+aqvUjwwESRJgIEiSioHQAQ9VSBoGBoI0R014w9CENqj/GQiSJMBA6Kp+exfXb+2VNDcGgiQJMBDmhe+kB5PLVcPGQJA0Jwbn4DAQJDXOfIaMgdU5A0HqAXdS/WnQl5uBoFctxMo+6BuQNF+asK0YCA3RhJVB0nAzEKQB55sNdcpA0Ou4A5GGk4GgxjCIpN4yEHpk9ZYb3QFKA6ift2sDQdKC6Ocd47CaNhAi4qqI2B8RD7TVjomIXRGxp/4urXpExBURMRYR90XEyW332VTz74mITW31UyLi/rrPFRER893JmXJFljrjtjJYOvmE8C1g/bjaFuCWzFwD3FLjAGcDa+q2Gfg6tAIEuAw4DTgVuOxQiNQ8H2u73/jnkmZtNjssd3JaSE1ev6YNhMz8KXBwXHkjsK2GtwHntNW3Z8ttwJKIOB44C9iVmQcz8zlgF7C+ph2dmbdlZgLb2x5LQ6DJG8dsDWKfNBxmew5heWY+VcNPA8treAXwZNt8e6s2VX3vBPUJRcTmiBiNiNEDBw7MsulS7xgWarI5n1Sud/Y5D23p5Lm2ZuZIZo4sW7asG0+pHmrCznO+2tCEvmjhDMrynW0gPFOHe6i/+6u+D1jVNt/Kqk1VXzlBvW/N94rRrytav7a713zd5mYQX79u9mm2gbADOHSl0Cbg+rb6+XW10TrghTq0tBM4MyKW1snkM4GdNe3FiFhXVxed3/ZYC6ZJK02T2iJpuC2eboaI+B7wPuC4iNhL62qhzwPXRsSFwBPAR2r2m4ANwBjwa+ACgMw8GBGfBe6s+T6TmYdOVF9E60qmo4Cb6yZJA6fpbwA7ucrovMw8PjMPy8yVmXllZj6bmWdk5prM/ItDO/e6uujizPzDzPzjzBxte5yrMvPtdfu3tvpoZr6z7nNJnZPoiaYvLM2fbi7rfluvmt5ez+ssHL+p3KdcmZttGJZPex+Hob/DwECQesgdaWd8nbrDQMCVTZLAQGi0fgmqfmlnk/kaNtuwLB8DQV0z1UY1LBvcsHG59hcDQfPCDV+aX73YpgwEdcydvtQyqNuCgTCABnVl7dSw91/9r1frsIEwj/p5R9TPbT9kEPrQTf14Tqep7RoUBsIsuFI2l8tGmj0DYRq92ME0fafW9Papd1w3+puB0CULvaGs3nJj32yM/dJOadgYCA0yqDvKboShpLkzEMZx56XJ9MOy64c2qrkMhCFzaIfhjmPwuEw1VwaCFswg76Dms2+D/DoNom4u+26/gTMQNK/muuI2defY1HbN1qD1Z7Ymex0mqg/Da2YgSOq5Xu5sm/QmptehYyBMotcLZia60dZ+ej0GxUzevS70c3ZTE9owrAyEGXJlHSzjl6fLV8PMQFgA7lT6S78ur35tt5rLQJijft4om3TstFua0OZetaEJfZ9KU84jLFQ7mv76g4GgLuuHjUILaz4O0zVlPZptO5rS/vEMhD7Q1JVHU3O5dcewvM7d6KeB0Oc6ebc1LBuMmst1sD8MbSD4m0XqB8O+HvVz//ux7UMbCNJ4nWzA/biRD6rJfvLdZTR7Qx0IrjjDw0+Emq1hWrZDHQgz0e2VohffUp3MTJ9zkL7KPxXbNjf90MZhYyCoZ9whzFwvL3Pst+XVb+1tAgNhDrq5wg3a9c4zNZ+fUgblNZkvg/Ja9VNbm8pAGGBuIIOvqcu4ae1qyregm85A6EP9tIIthGH7r2+zvZKm2+ehZvK4CzVvr55nUDQmECJifUQ8HBFjEbGl1+0Zdr0+HObG2V3D8Ho3rY9Naw80JBAiYhHwVeBsYC1wXkSs7W2r5kcTF/ogGpTj4FMZhH4MQh8GWSMCATgVGMvMRzPzt8DVwMYet0lTGIQNu6lX3gzCa6v+FJnZ6zYQER8C1mfm39T4R4HTMvOScfNtBjbX6B8BD8/yKY8DfjHL+/Yr+zz4hq2/YJ9n6g8yc9lkExfP8kF7IjO3Alvn+jgRMZqZI/PQpL5hnwffsPUX7PN8a8oho33AqrbxlVWTJHVJUwLhTmBNRJwQEYcD5wI7etwmSRoqjThklJkvR8QlwE5gEXBVZu5ewKec82GnPmSfB9+w9Rfs87xqxEllSVLvNeWQkSSpxwwESRIwZIHQ7z+PERFXRcT+iHigrXZMROyKiD31d2nVIyKuqL7eFxEnt91nU82/JyI2tdVPiYj76z5XRER0t4evFxGrIuLWiHgwInZHxMerPrD9jogjI+KOiLi3+vzpqp8QEbdXO6+pCzCIiCNqfKymr257rEur/nBEnNVWb9y2EBGLIuLuiLihxge9v4/XendPRIxWrbfrdWYOxY3WyepHgLcBhwP3Amt73a4Z9uHPgJOBB9pqXwS21PAW4As1vAG4GQhgHXB71Y8BHq2/S2t4aU27o+aNuu/ZDejz8cDJNfxm4H9p/bzJwPa72vGmGj4MuL3ady1wbtW/AfxtDV8EfKOGzwWuqeG1tZ4fAZxQ6/+ipm4LwN8B3wVuqPFB7+/jwHHjaj1dr4fpE0Lf/zxGZv4UODiuvBHYVsPbgHPa6tuz5TZgSUQcD5wF7MrMg5n5HLALWF/Tjs7M27K1Nm1ve6yeycynMvNnNfxL4CFgBQPc72r7r2r0sLolcDpwXdXH9/nQa3EdcEa9G9wIXJ2ZL2XmY8AYre2gcdtCRKwE3g98s8aDAe7vFHq6Xg9TIKwAnmwb31u1frc8M5+q4aeB5TU8WX+nqu+doN4YdWjgXbTeMQ90v+vwyT3Aflob+SPA85n5cs3S3s5X+1bTXwCOZeavRS99Gfgk8LsaP5bB7i+0Qv5HEXFXtH6WB3q8XjfiewiaH5mZETGQ1xFHxJuA7wOfyMwX2w+HDmK/M/MV4KSIWAL8EHhHj5u0YCLiA8D+zLwrIt7X6/Z00Xszc19EvBXYFRE/b5/Yi/V6mD4hDOrPYzxTHw+pv/urPll/p6qvnKDecxFxGK0w+E5m/qDKA99vgMx8HrgVeDetwwSH3sS1t/PVvtX0twDPMvPXolfeA3wwIh6ndTjndOArDG5/AcjMffV3P63QP5Ver9e9PrHSrRutT0OP0jrZdOjE0om9btcs+rGa155U/mdeexLqizX8fl57EuqO/P1JqMdonYBaWsPH5MQnoTY0oL9B6/jnl8fVB7bfwDJgSQ0fBfwX8AHg33ntSdaLavhiXnuS9doaPpHXnmR9lNYJ1sZuC8D7+P1J5YHtL/BG4M1tw/8DrO/1et3zFaDLC2EDratUHgE+1ev2zKL93wOeAv6P1jHBC2kdO70F2AP8Z9vKELT+6dAjwP3ASNvj/DWtE25jwAVt9RHggbrPv1LfZO9xn99L61jrfcA9ddswyP0G/gS4u/r8APBPVX9bbeRjtbM8oupH1vhYTX9b22N9qvr1MG1XmTR1W+C1gTCw/a2+3Vu33Yfa1Ov12p+ukCQBw3UOQZI0BQNBkgQYCJKkYiBIkgADQZJUDARJEmAgSJLK/wPn5MXKe1CapQAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["#The histogram of the price_usd(The out put)\n","df_train['price_usd'].hist(bins=30,figsize=(6,6))\n","plt.show()"],"metadata":{"id":"CjONiWI5KnYT","colab":{"base_uri":"https://localhost:8080/","height":374},"executionInfo":{"status":"ok","timestamp":1654722181942,"user_tz":-180,"elapsed":11,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"a1219b74-6299-4e5f-fe76-a3a94688b8c4"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYQAAAFlCAYAAADrpZ/0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVC0lEQVR4nO3df6zddX3H8ed7Lb9EpS24G9I2a42NBmSbcAMYjLmhG5TWWP5Qw0Kksm5NJjrdSFyZyZqpJOjGENjENNBZDBMQXdoIjnXYE7cslB+ClB+yXqBKbwpVW6oXo+669/447+JpvW3vPef2nnvveT6Sm/v9fr6f7/d83rfn9nW/38/3nBOZiSRJv9XtAUiSpgYDQZIEGAiSpGIgSJIAA0GSVAwESRIAs7s9gHaddtppuWjRorb2ffXVVzn55JMndkBTnDXPfL1WL1jzeD366KM/ysw3HbZDZh7xC9gA7AGebGmbB2wBdtT3udUewE3AIPAEcHbLPquq/w5gVUv7OcD22ucmII42pszknHPOyXZt3bq17X2nK2ue+Xqt3kxrHi/gkTzC/6tjuWT0JWDZIW1rgQcycwnwQK0DXAIsqa81wC0AETEPWAecB5wLrIuIubXPLcCftux36GNJkibBUQMhM78N7D2keSWwsZY3Ape2tN9eYfQgMCciTgcuBrZk5t7M3EfzrGJZbXtjZj5Y6XV7y7EkSZOo3TmEvszcXcsvAX21PB94saXfrmo7UvuuUdpHFRFraJ550NfXR6PRaGvww8PDbe87XVnzzNdr9YI1T7SOJ5UzMyNiUt4QKTPXA+sB+vv7c2BgoK3jNBoN2t13urLmma/X6gVrnmjt3nb6cl3uob7vqfYhYGFLvwXVdqT2BaO0S5ImWbuBsJnmXUPU900t7VdE0/nA/rq0dD9wUUTMrcnki4D7a9tPIuL8iAjgipZjSZIm0VEvGUXEV4AB4LSI2EXzbqHrgLsjYjXwfeAD1f0+YDnNW0h/BlwJkJl7I+LTwMPV71OZeWCi+sM072Q6CfhmfUmSJtlRAyEz/+gwm5aO0jeBqw5znA00X9NwaPsjwNuPNg5J0rHlW1dIkgADQZJUDARJEmAgSJKKgSBJAqbx2193YvvQfj609t6j9tt53YpJGI0kTQ2eIUiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEkAzO72AKayRWvvHVO/ndetOMYjkaRjzzMESRJgIEiSioEgSQIMBElSMRAkSYCBIEkqBoIkCTAQJEnFQJAkAQaCJKkYCJIkwECQJBUDQZIEGAiSpGIgSJIAA0GSVAwESRJgIEiSioEgSQIMBElSMRAkSYCBIEkqBoIkCTAQJEnFQJAkAR0GQkT8RUQ8FRFPRsRXIuLEiFgcEdsiYjAi7oqI46vvCbU+WNsXtRznmmp/NiIu7qwkSVI72g6EiJgP/DnQn5lvB2YBlwGfBW7IzLcA+4DVtctqYF+131D9iIgzar8zgWXAFyJiVrvjkiS1p9NLRrOBkyJiNvA6YDdwIXBPbd8IXFrLK2ud2r40IqLa78zMX2TmC8AgcG6H45IkjVPbgZCZQ8DfAz+gGQT7gUeBVzJzpLrtAubX8nzgxdp3pPqf2to+yj6SpEkyu90dI2Iuzb/uFwOvAF+lecnnmImINcAagL6+PhqNRlvH6TsJrj5r5Ogdx6jdcUym4eHhaTHOidRrNfdavWDNE63tQAD+AHghM38IEBFfBy4A5kTE7DoLWAAMVf8hYCGwqy4xnQL8uKX9gNZ9DpKZ64H1AP39/TkwMNDWwG++YxPXb++k9IPtvLy9cUymRqNBuz+v6arXau61esGaJ1oncwg/AM6PiNfVXMBS4GlgK/C+6rMK2FTLm2ud2v6tzMxqv6zuQloMLAEe6mBckqQ2tP1ncmZui4h7gO8AI8BjNP96vxe4MyI+U2231S63AV+OiEFgL807i8jMpyLibpphMgJclZm/andckqT2dHTdJDPXAesOaX6eUe4SysyfA+8/zHGuBa7tZCySpM74SmVJEmAgSJKKgSBJAgwESVIxECRJgIEgSSoGgiQJ6PB1CGpatPbeMfXbed2KYzwSSWqfZwiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEdBkJEzImIeyLiexHxTES8MyLmRcSWiNhR3+dW34iImyJiMCKeiIizW46zqvrviIhVnRYlSRq/Ts8QbgT+LTPfBvwe8AywFnggM5cAD9Q6wCXAkvpaA9wCEBHzgHXAecC5wLoDISJJmjxtB0JEnAK8G7gNIDN/mZmvACuBjdVtI3BpLa8Ebs+mB4E5EXE6cDGwJTP3ZuY+YAuwrN1xSZLa08kZwmLgh8A/R8RjEXFrRJwM9GXm7urzEtBXy/OBF1v231Vth2uXJE2i2R3uezbw0czcFhE38uvLQwBkZkZEdjLAVhGxhublJvr6+mg0Gm0dp+8kuPqskYka1pi1O96JMDw83NXH74Zeq7nX6gVrnmidBMIuYFdmbqv1e2gGwssRcXpm7q5LQntq+xCwsGX/BdU2BAwc0t4Y7QEzcz2wHqC/vz8HBgZG63ZUN9+xieu3d1J6e3ZePjDpj3lAo9Gg3Z/XdNVrNfdavWDNE63tS0aZ+RLwYkS8tZqWAk8Dm4EDdwqtAjbV8mbgirrb6Hxgf11auh+4KCLm1mTyRdUmSZpEnf6Z/FHgjog4HngeuJJmyNwdEauB7wMfqL73AcuBQeBn1ZfM3BsRnwYern6fysy9HY5LkjROHQVCZj4O9I+yaekofRO46jDH2QBs6GQskqTO+EplSRJgIEiSioEgSQIMBElSMRAkSYCBIEkqBoIkCTAQJEnFQJAkAQaCJKkYCJIkwECQJBUDQZIEGAiSpGIgSJIAA0GSVAwESRJgIEiSioEgSQIMBElSMRAkSYCBIEkqs7s9gF6yaO29Y+q387oVx3gkkvSbPEOQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAnw8xCmpLF+bgL42QmSJo5nCJIkwECQJBUDQZIEGAiSpGIgSJIAA0GSVAwESRJgIEiSioEgSQIMBElSMRAkSYCBIEkqBoIkCTAQJEnFQJAkAQaCJKkYCJIkYAICISJmRcRjEfGNWl8cEdsiYjAi7oqI46v9hFofrO2LWo5xTbU/GxEXdzomSdL4TcQZwseAZ1rWPwvckJlvAfYBq6t9NbCv2m+ofkTEGcBlwJnAMuALETFrAsYlSRqHjgIhIhYAK4Bbaz2AC4F7qstG4NJaXlnr1Pal1X8lcGdm/iIzXwAGgXM7GZckafxmd7j/54FPAG+o9VOBVzJzpNZ3AfNreT7wIkBmjkTE/uo/H3iw5Zit+xwkItYAawD6+vpoNBptDbrvJLj6rJGjd5wGxvozGB4ebvvnNV31Ws29Vi9Y80RrOxAi4j3Ansx8NCIGJm5Ih5eZ64H1AP39/Tkw0N7D3nzHJq7f3mkWTg07Lx8YU79Go0G7P6/pqtdq7rV6wZonWif/K14AvDcilgMnAm8EbgTmRMTsOktYAAxV/yFgIbArImYDpwA/bmk/oHUfSdIkaXsOITOvycwFmbmI5qTwtzLzcmAr8L7qtgrYVMuba53a/q3MzGq/rO5CWgwsAR5qd1ySpPYci+smfwXcGRGfAR4Dbqv224AvR8QgsJdmiJCZT0XE3cDTwAhwVWb+6hiMS5J0BBMSCJnZABq1/Dyj3CWUmT8H3n+Y/a8Frp2IsfSaRWvvHVO/Ly07+RiPRNJ05yuVJUmAgSBJKgaCJAkwECRJxUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEGgiSpGAiSJMBAkCQVA0GSBBgIkqRiIEiSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAkwECRJxUCQJAEwu9sD0OTYPrSfD62996j9dl63YhJGI2kq8gxBkgR0EAgRsTAitkbE0xHxVER8rNrnRcSWiNhR3+dWe0TETRExGBFPRMTZLcdaVf13RMSqzsuSJI1XJ2cII8DVmXkGcD5wVUScAawFHsjMJcADtQ5wCbCkvtYAt0AzQIB1wHnAucC6AyEiSZo8bQdCZu7OzO/U8k+BZ4D5wEpgY3XbCFxayyuB27PpQWBORJwOXAxsycy9mbkP2AIsa3dckqT2TMgcQkQsAt4BbAP6MnN3bXoJ6Kvl+cCLLbvtqrbDtUuSJlHHdxlFxOuBrwEfz8yfRMRr2zIzIyI7fYyWx1pD83ITfX19NBqNto7TdxJcfdbIRA1rWhhrze3+TKei4eHhGVXP0fRavWDNE62jQIiI42iGwR2Z+fVqfjkiTs/M3XVJaE+1DwELW3ZfUG1DwMAh7Y3RHi8z1wPrAfr7+3NgYGC0bkd18x2buH57b91xe/VZI2OrefurYzredLg9tdFo0O5zZDrqtXrBmidaJ3cZBXAb8Exm/kPLps3AgTuFVgGbWtqvqLuNzgf216Wl+4GLImJuTSZfVG2SpEnUyZ/JFwAfBLZHxOPV9tfAdcDdEbEa+D7wgdp2H7AcGAR+BlwJkJl7I+LTwMPV71OZubeDcUmS2tB2IGTmfwFxmM1LR+mfwFWHOdYGYEO7Y5Ekdc5XKkuSAANBklQMBEkSYCBIkoqBIEkCDARJUjEQJEmAgSBJKgaCJAnwM5XVpkVj+HxmmB5vgiepyTMESRJgIEiSioEgSQIMBElSMRAkSYCBIEkqBoIkCTAQJEnFQJAkAQaCJKkYCJIkwECQJBUDQZIEGAiSpGIgSJIAA0GSVAwESRJgIEiSioEgSQL8TGUdY372sjR9eIYgSQIMBElSMRAkSYBzCJoinGuQus8zBEkSYCBIkoqBIEkCDARJUnFSWdPKWCefAb607ORjOBJp5vEMQZIEGAiSpGIgSJIAA0GSVAwESRJgIEiSioEgSQIMBElSMRAkSYCvVNYMtn1oPx8awyubfUttqclAUM/zsxikJgNBGiODQzOdcwiSJMAzBKlrPOPQVOMZgiQJ8AxBmnDj+cyGiTyen/+gTk2ZM4SIWBYRz0bEYESs7fZ4JKnXTIkzhIiYBfwT8IfALuDhiNicmU93d2TSzDTRZzFjNdb5EM+KumNKBAJwLjCYmc8DRMSdwErAQJDGaKwvxOumbgXReB63lyfxp0ogzAdebFnfBZzXpbFImiaORQh2K7TG6lieFUVmHrODj3kQEe8DlmXmn9T6B4HzMvMjh/RbA6yp1bcCz7b5kKcBP2pz3+nKmme+XqsXrHm8ficz33S4jVPlDGEIWNiyvqDaDpKZ64H1nT5YRDySmf2dHmc6seaZr9fqBWueaFPlLqOHgSURsTgijgcuAzZ3eUyS1FOmxBlCZo5ExEeA+4FZwIbMfKrLw5KknjIlAgEgM+8D7pukh+v4stM0ZM0zX6/VC9Y8oabEpLIkqfumyhyCJKnLeioQpvvbY0TEhojYExFPtrTNi4gtEbGjvs+t9oiIm6rWJyLi7JZ9VlX/HRGxqqX9nIjYXvvcFBExuRX+pohYGBFbI+LpiHgqIj5W7TO27og4MSIeiojvVs1/W+2LI2JbjfOuugGDiDih1gdr+6KWY11T7c9GxMUt7VPudyEiZkXEYxHxjVqf6fXurOfd4xHxSLV193mdmT3xRXOy+jngzcDxwHeBM7o9rnHW8G7gbODJlrbPAWtreS3w2VpeDnwTCOB8YFu1zwOer+9za3lubXuo+kbte8kUqPl04OxafgPwP8AZM7nuGsfra/k4YFuN727gsmr/IvBntfxh4Iu1fBlwVy2fUc/zE4DF9fyfNVV/F4C/BP4F+Eatz/R6dwKnHdLW1ed1L50hvPb2GJn5S+DA22NMG5n5bWDvIc0rgY21vBG4tKX99mx6EJgTEacDFwNbMnNvZu4DtgDLatsbM/PBbD6bbm85Vtdk5u7M/E4t/xR4huYr22ds3TX24Vo9rr4SuBC4p9oPrfnAz+IeYGn9NbgSuDMzf5GZLwCDNH8PptzvQkQsAFYAt9Z6MIPrPYKuPq97KRBGe3uM+V0ay0Tqy8zdtfwS0FfLh6v3SO27RmmfMurSwDto/sU8o+uuyyePA3to/pI/B7ySmSPVpXWcr9VW2/cDpzL+n0U3fR74BPB/tX4qM7teaIb8v0fEo9F8Fwbo8vN6ytx2qs5lZkbEjLxtLCJeD3wN+Hhm/qT1cuhMrDszfwX8fkTMAf4VeFuXh3TMRMR7gD2Z+WhEDHR7PJPoXZk5FBG/DWyJiO+1buzG87qXzhDG9PYY09DLdXpIfd9T7Yer90jtC0Zp77qIOI5mGNyRmV+v5hlfN0BmvgJsBd5J8zLBgT/iWsf5Wm21/RTgx4z/Z9EtFwDvjYidNC/nXAjcyMytF4DMHKrve2iG/rl0+3nd7YmVyfqieTb0PM3JpgMTS2d2e1xt1LGIgyeV/46DJ6E+V8srOHgS6qH89STUCzQnoObW8rwcfRJq+RSoN2he//z8Ie0ztm7gTcCcWj4J+E/gPcBXOXiS9cO1fBUHT7LeXctncvAk6/M0J1in7O8CMMCvJ5VnbL3AycAbWpb/G1jW7ed1158Ak/yPsJzmXSrPAZ/s9njaGP9XgN3A/9K8Jria5rXTB4AdwH+0PBmC5ocOPQdsB/pbjvPHNCfcBoErW9r7gSdrn3+kXrjY5ZrfRfNa6xPA4/W1fCbXDfwu8FjV/CTwN9X+5volH6z/LE+o9hNrfbC2v7nlWJ+sup6l5S6Tqfq7wMGBMGPrrdq+W19PHRhTt5/XvlJZkgT01hyCJOkIDARJEmAgSJKKgSBJAgwESVIxECRJgIEgSSoGgiQJgP8HCX+uH76q4V4AAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["#apply the Ridge Alghorithm on the processing dataset(training and testing)\n","#the result was as below: MAE: 2382.2383101795485,R_squared score (training):0.669 ,R_squared score (test):0.674\n","#as we show the result is not good enough but we don't have overfitting\n","linridge=Ridge(alpha=20).fit(x_train,y_train)#create regressor object with alpha=20 and fit it on the training data\n","y_pred=linridge.predict(x_test) # test the output\n","print(\"MAE:\", mean_absolute_error(y_test, y_pred)) #calculate the mean_absolute_error\n","print('Ridge regression linear model coeff (w):\\n{}'.format (linridge.coef_)) #calculate the coefficient \n","print('Ridge regression linear model intetrcept (b):{}'.format (linridge.intercept_)) #calculate the interception\n","print('R_squared score (training):{:.3f}'.format(linridge.score(x_train,y_train))) #calculte the R_squared score (training)\n","print('R_squared score (test):\\n{:.3f}'.format(linridge.score(x_test,y_test))) #calculte the R_squared score (testing)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"AZNbI03P3XO-","executionInfo":{"status":"ok","timestamp":1654751573712,"user_tz":-180,"elapsed":333,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"5ec2a0b5-b4a3-4473-bb7e-af4729f721a5"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stdout","text":["MAE: 2383.2786525538777\n","Ridge regression linear model coeff (w):\n","[ 3.56532611e+02 -1.23355385e+03 3.82550831e+02 -5.98077736e-03\n"," 4.08786646e+02 4.77979963e+02 9.79773727e+02 1.69170826e+03\n"," 3.31164614e+03 8.58351439e+03 -1.09841920e+03 3.14448178e+03\n"," -2.27015414e+02 1.00191977e+02 7.19662759e-01 1.66402322e+00]\n","Ridge regression linear model intetrcept (b):-815420.531195468\n","R_squared score (training):0.669\n","R_squared score (test):\n","0.674\n"]}]},{"cell_type":"code","source":["#apply the SVR Alghorithm on the processing dataset(training and testing)\n","#the result was as below:R-squared (training): 0.8607903143086737,R-squared(testing): 0.8531279810390635, 0.22841849713548348\n","#the result is good and we haven't overfitting(comparing between training score and testing score)\n","#Feature Scaling\n","sc_X = StandardScaler()\n","sc_y = StandardScaler()\n","X = sc_X.fit_transform(x_train)\n","X_test = sc_X.fit_transform(x_test)\n","y = sc_y.fit_transform(y_train.values.reshape(-1, 1))\n","y_test = sc_y.fit_transform(y_test.values.reshape(-1, 1))\n","\n","regressor = SVR(kernel='rbf')# Create support vector regressor,the kernel is radial basis function kernel (after many experiments it give the best result)\n","regressor.fit(X,y) # Fitting the Support Vector Regression Model to the dataset\n","y_pred = regressor.predict(X_test) # test the output\n","score = regressor.score(X,y) #calculte the R_squared score (training)\n","score1 = regressor.score(X_test,y_test) #calculte the R_squared score (testing)\n","print(\"R-squared(training):\", score) \n","print(\"R-squared(testing):\", score1) \n","print(\"MAE:\", mean_absolute_error(y_test, y_pred)) #calculate the mean_absolute_error"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Kv8hHu4p5P_I","executionInfo":{"status":"ok","timestamp":1654749820784,"user_tz":-180,"elapsed":376033,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"89b803a6-d360-4aae-8701-de058a96adc9"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n"," y = column_or_1d(y, warn=True)\n"]},{"output_type":"stream","name":"stdout","text":["R-squared(training): 0.8607903143086737\n","R-squared(testing): 0.8531279810390635\n","MAE: 0.22841849713548348\n"]}]},{"cell_type":"code","source":["# Fitting Random Forest Regression on the preprocessing dataset(training and testing)\n","#the result was as below: R-squared (training): 0.9905267166835499,R-squared(testing): 0.9403625055644906 ,MAE: 855.572779851486\n","#the accuracy is good but the mean_absolute_error is large\n","#import the regressor\n","\n"," \n","#create regressor object\n","regressorForest = RandomForestRegressor(n_estimators = 100, random_state = 0)\n"," \n","#fit the regressor with training data\n","regressorForest.fit(x_train, y_train) \n","Y1_pred = regressorForest.predict(x_test) # test the output\n","score2 = regressorForest.score(x_train,y_train) #calculte the R_squared score (training)\n","score3 = regressorForest.score(x_test,y_test) #calculte the R_squared score (testing)\n","print(\"R-squared(training):\", score2)\n","print(\"R-squared(testing):\", score3)\n","print(\"MAE:\", mean_absolute_error(y_test, Y1_pred)) #calculate the mean_absolute_error"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"pDmPx6_qArFU","executionInfo":{"status":"ok","timestamp":1654751621796,"user_tz":-180,"elapsed":32303,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"91522e4f-d520-4a0b-e470-46affee87d10"},"execution_count":23,"outputs":[{"output_type":"stream","name":"stdout","text":["R-squared(training): 0.9906512481583342\n","R-squared(testing): 0.9415293207081287\n","MAE: 851.158093506763\n"]}]},{"cell_type":"code","source":["#apply the polynomial regression Alghorithm on the preprocessing dataset(training and testing)\n","#the result was as below:R-squared: 0.7673290176225483,MAE: 2007.2998815537233\n","# the MAE is too big \n","from sklearn.preprocessing import PolynomialFeatures\n","from sklearn.linear_model import LinearRegression\n","from sklearn.preprocessing import StandardScaler\n","\n","lin = LinearRegression() #create regressor object\n"," \n","lin.fit(x_train,y_train) #fit the regressor with training data\n","poly = PolynomialFeatures(degree = 4)\n","\n","X_poly = poly.fit_transform(x_train) \n","poly.fit(X_poly, y_train) # Fitting Polynomial Regression to the dataset\n","\n","X_poly_test = poly.fit_transform(x_test)\n","lin2 = LinearRegression()\n","lin2.fit(X_poly, y_train)\n","Y_pred = lin2.predict(X_poly_test) # test the output \n","scoreL = lin2.score(X_poly,y_train)\n","score_test = lin2.score(X_poly_test,y_test)\n","print(\"R-squared(training):\", scoreL)\n","print(\"R-squared(training):\", score_test)\n","print(\"MAE:\", mean_absolute_error(y_test, Y_pred))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"L2Ml5n1lBtBm","executionInfo":{"status":"ok","timestamp":1654751832115,"user_tz":-180,"elapsed":189547,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"4bb7b0e6-bfad-42f1-a7df-20a378f21d01"},"execution_count":24,"outputs":[{"output_type":"stream","name":"stdout","text":["R-squared(training): 0.7673290176225483\n","R-squared(training): 0.6027721645181783\n","MAE: 2007.2998815537233\n"]}]},{"cell_type":"code","source":["#apply DecisionTreeRegression Alghorithm on the preprocessing dataset(training and testing)\n","#the result was as below:R-squared(training): 0.9991781181456588,R-squared(testing) : 0.9096009938577675 ,MAE: 691.648458370899\n","#the MAE is too big \n","\n","regressor_t = DecisionTreeRegressor() #create regressor object\n","regressor_t.fit(x_train, y_train) #fit the regressor with training data\n","y_pred_t = regressor_t.predict(x_test) # test the output \n","score_t = regressor_t.score(x_train,y_train) #calculte the R_squared score (training)\n","score_test1 = regressor_t.score(x_test,y_test) #calculte the R_squared score (testing)\n","print(\"R-squared (training):\", score_t)\n","print(\"R-squared(testing) :\", score_test1) \n","print(\"MAE:\", mean_absolute_error(y_test, y_pred_t)) #calculate the mean_absolute_error"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"WVlrqdwr0nhG","executionInfo":{"status":"ok","timestamp":1654752023768,"user_tz":-180,"elapsed":832,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"85a83359-b707-4399-85e7-97cba14f1727"},"execution_count":27,"outputs":[{"output_type":"stream","name":"stdout","text":["R-squared (training): 0.9991781181456588\n","R-squared(testing) : 0.9096009938577675\n","MAE: 699.3292383708991\n"]}]},{"cell_type":"code","source":["#we get the important features (we show them above with figures but we get them by DecisionTree Alghorithm)\n","regressor_t.feature_importances_"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"1lhVITwZ1INo","executionInfo":{"status":"ok","timestamp":1654752126754,"user_tz":-180,"elapsed":332,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"e2624404-7b48-414a-a339-d7c347d98c75"},"execution_count":30,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([4.80676908e-05, 9.79752252e-03, 3.57265774e-03, 4.44604010e-02,\n"," 6.22419720e-01, 6.56828072e-03, 5.33224845e-03, 2.09435714e-01,\n"," 1.04481153e-03, 2.38239656e-04, 1.34006782e-03, 2.00415173e-02,\n"," 3.56383001e-03, 2.49988222e-02, 1.89009389e-02, 2.82371607e-02])"]},"metadata":{},"execution_count":30}]},{"cell_type":"code","source":["# represent the feature_importances by bar through the figure we notice the importance of each feature\n","num=len(x_train.columns)\n","plt.bar(range(num),regressor_t.feature_importances_,align='center')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":197},"id":"Wf6yqZndwC7i","executionInfo":{"status":"ok","timestamp":1654752142115,"user_tz":-180,"elapsed":463,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"94fed99d-80c4-4637-d729-f389d25af387"},"execution_count":32,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAP20lEQVR4nO3df6zdd13H8eeL1qr8CEh2QWyLt2KHqcjPy0CJyI/NdI60JKB0EbIFsNFQmELATsxiZmIKGJSEBqljDhWocyJeXbEsgBqNw96N8aOrg1rGeiu4y5hgJDIa3v5xvl3OLrc9596e23P22fOR3PR8vudzznn1/njd7/n+uqkqJEnteNi4A0iSRstil6TGWOyS1BiLXZIaY7FLUmPWjuuFzzvvvJqenh7Xy0vSg9Itt9zytaqaOtOcsRX79PQ0c3Nz43p5SXpQSvLlQXPcFCNJjbHYJakxFrskNcZil6TGWOyS1BiLXZIaY7FLUmMsdklqjMUuSY0Z25mnOremd994Vo+/c88lI0oiabW5xi5JjbHYJakxFrskNWaoYk+yNckdSY4m2X2aOb+U5PYkh5N8cLQxJUnDGrjzNMkaYC9wETAPHEoyW1W3983ZDFwJPK+q7k3yuNUKLEk6s2HW2C8AjlbVsaq6D9gPbF8051eAvVV1L0BV3T3amJKkYQ1T7OuB433j+W5Zv/OB85P8S5Kbk2xd6omS7Ewyl2RuYWFhZYklSWc0qp2na4HNwAuAS4E/TvKYxZOqal9VzVTVzNTUGf+ykyRphYYp9hPAxr7xhm5Zv3lgtqq+U1VfAr5Ar+glSefYMMV+CNicZFOSdcAOYHbRnI/QW1snyXn0Ns0cG2FOSdKQBhZ7VZ0EdgEHgSPA9VV1OMnVSbZ10w4C9yS5Hfgk8Oaqume1QkuSTm+oa8VU1QHgwKJlV/XdLuCN3YckaYw881SSGmOxS1JjLHZJaozFLkmNsdglqTEWuyQ1xmKXpMZY7JLUGItdkhpjsUtSYyx2SWqMxS5JjbHYJakxFrskNcZil6TGWOyS1BiLXZIaY7FLUmMsdklqjMUuSY2x2CWpMRa7JDXGYpekxljsktSYoYo9ydYkdyQ5mmT3EvdfnmQhyW3dx2tHH1WSNIy1gyYkWQPsBS4C5oFDSWar6vZFU/+iqnatQkZJ0jIMs8Z+AXC0qo5V1X3AfmD76saSJK3UMMW+HjjeN57vli32siSfTXJDko1LPVGSnUnmkswtLCysIK4kaZBR7Tz9W2C6qp4K3AS8f6lJVbWvqmaqamZqampELy1J6jdMsZ8A+tfAN3TL7ldV91TVt7vhNcCzRhNPkrRcwxT7IWBzkk1J1gE7gNn+CUme0DfcBhwZXURJ0nIMPCqmqk4m2QUcBNYA11bV4SRXA3NVNQu8Ick24CTwdeDyVcwsSTqDgcUOUFUHgAOLll3Vd/tK4MrRRpMkrYRnnkpSYyx2SWqMxS5JjbHYJakxFrskNcZil6TGWOyS1BiLXZIaY7FLUmMsdklqjMUuSY2x2CWpMRa7JDXGYpekxljsktQYi12SGmOxS1JjLHZJaozFLkmNsdglqTEWuyQ1xmKXpMZY7JLUGItdkhpjsUtSY4Yq9iRbk9yR5GiS3WeY97IklWRmdBElScsxsNiTrAH2AhcDW4BLk2xZYt6jgCuAT406pCRpeMOssV8AHK2qY1V1H7Af2L7EvN8F3gb83wjzSZKWaZhiXw8c7xvPd8vul+SZwMaquvFMT5RkZ5K5JHMLCwvLDitJGuysd54meRjwTuBNg+ZW1b6qmqmqmampqbN9aUnSEoYp9hPAxr7xhm7ZKY8CngL8Q5I7gecCs+5AlaTxGKbYDwGbk2xKsg7YAcyeurOqvlFV51XVdFVNAzcD26pqblUSS5LOaGCxV9VJYBdwEDgCXF9Vh5NcnWTbageUJC3P2mEmVdUB4MCiZVedZu4Lzj6WJGmlPPNUkhpjsUtSYyx2SWqMxS5JjbHYJakxFrskNcZil6TGWOyS1BiLXZIaY7FLUmMsdklqjMUuSY2x2CWpMRa7JDXGYpekxljsktQYi12SGmOxS1JjLHZJaozFLkmNsdglqTEWuyQ1xmKXpMZY7JLUmKGKPcnWJHckOZpk9xL3/2qSzyW5Lck/J9ky+qiSpGEMLPYka4C9wMXAFuDSJYr7g1X1U1X1dODtwDtHnlSSNJRh1tgvAI5W1bGqug/YD2zvn1BV3+wbPgKo0UWUJC3H2iHmrAeO943ngecsnpTkdcAbgXXAi5Z6oiQ7gZ0AT3ziE5ebVZI0hJHtPK2qvVX1JOA3gd8+zZx9VTVTVTNTU1OjemlJUp9hiv0EsLFvvKFbdjr7gZeeTShJ0soNU+yHgM1JNiVZB+wAZvsnJNncN7wE+OLoIkqSlmPgNvaqOplkF3AQWANcW1WHk1wNzFXVLLAryYXAd4B7gctWM7Qk6fSG2XlKVR0ADixadlXf7StGnEuStEKeeSpJjbHYJakxFrskNcZil6TGWOyS1BiLXZIaY7FLUmMsdklqjMUuSY2x2CWpMRa7JDXGYpekxljsktQYi12SGmOxS1JjLHZJaozFLkmNsdglqTEWuyQ1xmKXpMZY7JLUGItdkhpjsUtSYyx2SWrM2mEmJdkKvAtYA1xTVXsW3f9G4LXASWABeHVVfXnEWaWBpnffeFaPv3PPJSNKIo3PwDX2JGuAvcDFwBbg0iRbFk37NDBTVU8FbgDePuqgkqThDLMp5gLgaFUdq6r7gP3A9v4JVfXJqvpWN7wZ2DDamJKkYQ1T7OuB433j+W7Z6bwG+OhSdyTZmWQuydzCwsLwKSVJQxvpztMkrwRmgHcsdX9V7auqmaqamZqaGuVLS5I6w+w8PQFs7Btv6JY9QJILgbcCP1dV3x5NPEnScg2zxn4I2JxkU5J1wA5gtn9CkmcA7wW2VdXdo48pSRrWwGKvqpPALuAgcAS4vqoOJ7k6ybZu2juARwJ/meS2JLOneTpJ0iob6jj2qjoAHFi07Kq+2xeOOJckaYU881SSGmOxS1JjLHZJaozFLkmNsdglqTEWuyQ1xmKXpMZY7JLUGItdkhpjsUtSYyx2SWqMxS5JjbHYJakxFrskNcZil6TGWOyS1BiLXZIaY7FLUmMsdklqjMUuSY2x2CWpMRa7JDXGYpekxljsktSYoYo9ydYkdyQ5mmT3Evc/P8mtSU4mefnoY0qShjWw2JOsAfYCFwNbgEuTbFk07S7gcuCDow4oSVqetUPMuQA4WlXHAJLsB7YDt5+aUFV3dvd9dxUySpKWYZhNMeuB433j+W6ZJGkCndOdp0l2JplLMrewsHAuX1qSHjKGKfYTwMa+8YZu2bJV1b6qmqmqmampqZU8hSRpgGGK/RCwOcmmJOuAHcDs6saSJK3UwGKvqpPALuAgcAS4vqoOJ7k6yTaAJM9OMg/8IvDeJIdXM7Qk6fSGOSqGqjoAHFi07Kq+24fobaKRJI2ZZ55KUmMsdklqjMUuSY2x2CWpMRa7JDXGYpekxljsktQYi12SGmOxS1JjLHZJaozFLkmNsdglqTEWuyQ1ZqirO2o8pnffuOLH3rnnkhEmkfRg4hq7JDXGYpekxljsktQYi12SGuPOU0laprM5sAFW/+AGi13SxPLIsJVxU4wkNcY1dukhbtI3K2j5LHZJDwkPpc06boqRpMZY7JLUmKE2xSTZCrwLWANcU1V7Ft3//cCfAs8C7gFeUVV3jjbq6nkovUWT1L6BxZ5kDbAXuAiYBw4lma2q2/umvQa4t6p+PMkO4G3AK1YjsCbDKH8Z+otVGq1h1tgvAI5W1TGAJPuB7UB/sW8Hfqe7fQPw7iSpqhph1gcFS6odk3y0yKR+n03y5+yhJIO6N8nLga1V9dpu/CrgOVW1q2/O57s58934P7o5X1v0XDuBnd3wycAdo/qPLHIe8LWBs8ZjUrNNai6Y3GyTmgsmN9uk5oLJzbY4149W1dSZHnBOD3esqn3AvtV+nSRzVTWz2q+zEpOabVJzweRmm9RcMLnZJjUXTG62leQa5qiYE8DGvvGGbtmSc5KsBR5NbyeqJOkcG6bYDwGbk2xKsg7YAcwumjMLXNbdfjnwiYfi9nVJmgQDN8VU1ckku4CD9A53vLaqDie5GpirqlngfcCfJTkKfJ1e+Y/Tqm/uOQuTmm1Sc8HkZpvUXDC52SY1F0xutmXnGrjzVJL04OKZp5LUGItdkhrTVLEn2ZrkjiRHk+wed55TkmxM8skktyc5nOSKcWfql2RNkk8n+btxZ+mX5DFJbkjy70mOJPnpcWc6JclvdF/Lzyf5UJIfGFOOa5Pc3Z1LcmrZY5PclOSL3b8/NEHZ3tF9PT+b5K+TPGZSsvXd96YkleS8ScmV5PXd5+1wkrcPep5mir3v0gcXA1uAS5NsGW+q+50E3lRVW4DnAq+boGwAVwBHxh1iCe8C/r6qfgJ4GhOSMcl64A3ATFU9hd5BBeM6YOA6YOuiZbuBj1fVZuDj3XgcruN7s90EPKWqngp8AbjyXIfqXMf3ZiPJRuDngbvOdaDOdSzKleSF9M7uf1pV/STw+4OepJlip+/SB1V1H3Dq0gdjV1Vfqapbu9v/Q6+g1o83VU+SDcAlwDXjztIvyaOB59M74oqquq+q/nu8qR5gLfCD3XkbDwf+cxwhquqf6B2J1m878P7u9vuBl57TUJ2lslXVx6rqZDe8md55MefcaT5vAH8AvAUYy1Elp8n1a8Ceqvp2N+fuQc/TUrGvB473jeeZkPLsl2QaeAbwqfEmud8f0vtG/u64gyyyCVgA/qTbTHRNkkeMOxRAVZ2gt9Z0F/AV4BtV9bHxpnqAx1fVV7rbXwUeP84wZ/Bq4KPjDnFKku3Aiar6zLizLHI+8LNJPpXkH5M8e9ADWir2iZfkkcBfAb9eVd+cgDwvAe6uqlvGnWUJa4FnAu+pqmcA/8v4Nik8QLfNeju9Xz4/AjwiySvHm2pp3YmCE3dMc5K30ttE+YFxZwFI8nDgt4Crxp1lCWuBx9LbjPtm4PokOdMDWir2YS59MDZJvo9eqX+gqj487jyd5wHbktxJb9PVi5L8+Xgj3W8emK+qU+9sbqBX9JPgQuBLVbVQVd8BPgz8zJgz9fuvJE8A6P4d+Nb9XEpyOfAS4Jcn6Az1J9H7Rf2Z7udhA3Brkh8ea6qeeeDD1fNv9N5dn3HHbkvFPsylD8ai++36PuBIVb1z3HlOqaorq2pDVU3T+3x9oqomYs2zqr4KHE/y5G7Ri3ngpaLH6S7guUke3n1tX8yE7Njt9F/i4zLgb8aY5QG6P9rzFmBbVX1r3HlOqarPVdXjqmq6+3mYB57ZfR+O20eAFwIkOR9Yx4CrUDZT7N0OmVOXPjgCXF9Vh8eb6n7PA15Fb434tu7jF8Yd6kHg9cAHknwWeDrwe2POA0D3LuIG4Fbgc/R+jsZyOnqSDwH/Cjw5yXyS1wB7gIuSfJHeu4s9Z3qOc5zt3cCjgJu6n4M/mqBsY3eaXNcCP9YdArkfuGzQOx0vKSBJjWlmjV2S1GOxS1JjLHZJaozFLkmNsdglqTEWuyQ1xmKXpMb8P1mxTq+Z4eUaAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["#detrmine the important features in both training and testing dataset\n","important_features=df_train[['odometer_value','year_produced','transmission','manufacturer_name','body_type','engine_capacity','ownership','number_of_photos','number_of_maintenance','duration_listed']]\n","important_features_test=df_test[['odometer_value','year_produced','transmission','manufacturer_name','body_type','engine_capacity','ownership','number_of_photos','number_of_maintenance','duration_listed']]"],"metadata":{"id":"46o5iq6B0yKc","executionInfo":{"status":"ok","timestamp":1654752148509,"user_tz":-180,"elapsed":332,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}}},"execution_count":33,"outputs":[]},{"cell_type":"code","source":["#apply the Ridge Alghorithm on the important features in both training and testing dataset\n","#the result was as below: MAE:2534.8609548331365 ,R_squared score (training):0.618\n","#R_squared score (test):0.615\n","linridge=Ridge(alpha=20).fit(important_features,y_train)\n","y_pred=linridge.predict(important_features_test)\n","print(\"MAE:\", mean_absolute_error(y_test, y_pred))\n","print('Ridge regression linear model coeff (w):\\n{}'.format (linridge.coef_))\n","print('Ridge regression linear model intetrcept (b):{}'.format (linridge.intercept_))\n","print('R_squared score (training):{:.3f}'.format(linridge.score(important_features,y_train)))\n","print('R_squared score (test):\\n{:.3f}'.format(linridge.score(important_features_test,y_test)))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"2OngOcm7HD5X","executionInfo":{"status":"ok","timestamp":1654752152008,"user_tz":-180,"elapsed":370,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"baf6cbfd-086e-4d48-b87e-585ec2fba45d"},"execution_count":34,"outputs":[{"output_type":"stream","name":"stdout","text":["MAE: 2534.8609548331365\n","Ridge regression linear model coeff (w):\n","[-6.02582105e-03 4.63161861e+02 -1.24365766e+03 7.20823681e+01\n"," 2.68189239e+03 2.46390273e+03 -1.06928255e+03 1.11209874e+02\n"," 9.59522457e-01 1.23058482e+00]\n","Ridge regression linear model intetrcept (b):-924955.9321482552\n","R_squared score (training):0.618\n","R_squared score (test):\n","0.615\n"]}]},{"cell_type":"code","source":["#apply the SVR Alghorithm on the important features in both training and testing dataset\n","#the result was as below:R-squared (training): 0.8310304079174997 ,R-squared (testing): 0.8229072393474446, MAE: 0.8476458656748581\n","sc_X = StandardScaler()\n","sc_y = StandardScaler()\n","X = sc_X.fit_transform(important_features)\n","\n","y = sc_y.fit_transform(y_train.values.reshape(-1, 1))\n","X_test = sc_X.fit_transform(important_features_test)\n","y_test = sc_y.fit_transform(y_test.values.reshape(-1,1))\n","regressor = SVR(kernel='rbf')\n","regressor.fit(X,y)\n","y_pred = regressor.predict(important_features_test)\n","score = regressor.score(X,y)\n","score_test = regressor.score(X_test,y_test)\n","print(\"R-squared (training):\", score)\n","print(\"R-squared (testing):\", score_test)\n","print(\"MAE:\", mean_absolute_error(y_test, y_pred))"],"metadata":{"id":"RJ0QGuLoHFzN","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1654752582020,"user_tz":-180,"elapsed":360064,"user":{"displayName":"Rasha Albizreh","userId":"10513482198512435754"}},"outputId":"d98bf794-6a14-4204-ff36-fae2f6c246ec"},"execution_count":37,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n"," y = column_or_1d(y, warn=True)\n","/usr/local/lib/python3.7/dist-packages/sklearn/base.py:444: UserWarning: X has feature names, but SVR was fitted without feature names\n"," f\"X has feature names, but {self.__class__.__name__} was fitted without\"\n"]},{"output_type":"stream","name":"stdout","text":["R-squared (training): 0.8310304079174997\n","R-squared (testing): 0.8229072393474446\n","MAE: 0.8476458656748581\n"]}]},{"cell_type":"code","source":["#I try on the other Alghorithm but the results are worst than before selecting the important features only\n","#according to the experiments the best model was SVR it give us best accuracy without overfitting, and with minimum MAE"],"metadata":{"id":"Wdegdyh39RSr"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[""],"metadata":{"id":"zjiDG3n_-EnK"},"execution_count":null,"outputs":[]}],"metadata":{"colab":{"collapsed_sections":[],"name":"RashaAlbezreh.ipynb","provenance":[],"authorship_tag":"ABX9TyP20cSkGSwg9uXRVoz5yiPE"},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file