-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathtrain.py
218 lines (175 loc) · 6.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import warnings
warnings.simplefilter("ignore", (UserWarning, FutureWarning))
from utils.hparams import HParam
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
from dataset import dataloader
from utils import metrics
from core.res_unet import ResUnet
from core.res_unet_plus import ResUnetPlusPlus
from utils.logger import MyWriter
import torch
import argparse
import os
def main(hp, num_epochs, resume, name):
checkpoint_dir = "{}/{}".format(hp.checkpoints, name)
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs("{}/{}".format(hp.log, name), exist_ok=True)
writer = MyWriter("{}/{}".format(hp.log, name))
# get model
if hp.RESNET_PLUS_PLUS:
model = ResUnetPlusPlus(3).cuda()
else:
model = ResUnet(3, 64).cuda()
# set up binary cross entropy and dice loss
criterion = metrics.BCEDiceLoss()
# optimizer
# optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum, nesterov=True)
# optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
optimizer = torch.optim.Adam(model.parameters(), lr=hp.lr)
# decay LR
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
# starting params
best_loss = 999
start_epoch = 0
# optionally resume from a checkpoint
if resume:
if os.path.isfile(resume):
print("=> loading checkpoint '{}'".format(resume))
checkpoint = torch.load(resume)
start_epoch = checkpoint["epoch"]
best_loss = checkpoint["best_loss"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(
"=> loaded checkpoint '{}' (epoch {})".format(
resume, checkpoint["epoch"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# get data
mass_dataset_train = dataloader.ImageDataset(
hp, transform=transforms.Compose([dataloader.ToTensorTarget()])
)
mass_dataset_val = dataloader.ImageDataset(
hp, False, transform=transforms.Compose([dataloader.ToTensorTarget()])
)
# creating loaders
train_dataloader = DataLoader(
mass_dataset_train, batch_size=hp.batch_size, num_workers=2, shuffle=True
)
val_dataloader = DataLoader(
mass_dataset_val, batch_size=1, num_workers=2, shuffle=False
)
step = 0
for epoch in range(start_epoch, num_epochs):
print("Epoch {}/{}".format(epoch, num_epochs - 1))
print("-" * 10)
# step the learning rate scheduler
lr_scheduler.step()
# run training and validation
# logging accuracy and loss
train_acc = metrics.MetricTracker()
train_loss = metrics.MetricTracker()
# iterate over data
loader = tqdm(train_dataloader, desc="training")
for idx, data in enumerate(loader):
# get the inputs and wrap in Variable
inputs = data["sat_img"].cuda()
labels = data["map_img"].cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward
# prob_map = model(inputs) # last activation was a sigmoid
# outputs = (prob_map > 0.3).float()
outputs = model(inputs)
# outputs = torch.nn.functional.sigmoid(outputs)
loss = criterion(outputs, labels)
# backward
loss.backward()
optimizer.step()
train_acc.update(metrics.dice_coeff(outputs, labels), outputs.size(0))
train_loss.update(loss.data.item(), outputs.size(0))
# tensorboard logging
if step % hp.logging_step == 0:
writer.log_training(train_loss.avg, train_acc.avg, step)
loader.set_description(
"Training Loss: {:.4f} Acc: {:.4f}".format(
train_loss.avg, train_acc.avg
)
)
# Validatiuon
if step % hp.validation_interval == 0:
valid_metrics = validation(
val_dataloader, model, criterion, writer, step
)
save_path = os.path.join(
checkpoint_dir, "%s_checkpoint_%04d.pt" % (name, step)
)
# store best loss and save a model checkpoint
best_loss = min(valid_metrics["valid_loss"], best_loss)
torch.save(
{
"step": step,
"epoch": epoch,
"arch": "ResUnet",
"state_dict": model.state_dict(),
"best_loss": best_loss,
"optimizer": optimizer.state_dict(),
},
save_path,
)
print("Saved checkpoint to: %s" % save_path)
step += 1
def validation(valid_loader, model, criterion, logger, step):
# logging accuracy and loss
valid_acc = metrics.MetricTracker()
valid_loss = metrics.MetricTracker()
# switch to evaluate mode
model.eval()
# Iterate over data.
for idx, data in enumerate(tqdm(valid_loader, desc="validation")):
# get the inputs and wrap in Variable
inputs = data["sat_img"].cuda()
labels = data["map_img"].cuda()
# forward
# prob_map = model(inputs) # last activation was a sigmoid
# outputs = (prob_map > 0.3).float()
outputs = model(inputs)
# outputs = torch.nn.functional.sigmoid(outputs)
loss = criterion(outputs, labels)
valid_acc.update(metrics.dice_coeff(outputs, labels), outputs.size(0))
valid_loss.update(loss.data.item(), outputs.size(0))
if idx == 0:
logger.log_images(inputs.cpu(), labels.cpu(), outputs.cpu(), step)
logger.log_validation(valid_loss.avg, valid_acc.avg, step)
print("Validation Loss: {:.4f} Acc: {:.4f}".format(valid_loss.avg, valid_acc.avg))
model.train()
return {"valid_loss": valid_loss.avg, "valid_acc": valid_acc.avg}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Road and Building Extraction")
parser.add_argument(
"-c", "--config", type=str, required=True, help="yaml file for configuration"
)
parser.add_argument(
"--epochs",
default=75,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument(
"--resume",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
parser.add_argument("--name", default="default", type=str, help="Experiment name")
args = parser.parse_args()
hp = HParam(args.config)
with open(args.config, "r") as f:
hp_str = "".join(f.readlines())
main(hp, num_epochs=args.epochs, resume=args.resume, name=args.name)