-
Notifications
You must be signed in to change notification settings - Fork 306
/
deeplab_model.py
329 lines (264 loc) · 14.4 KB
/
deeplab_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""DeepLab v3 models based on slim library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.slim.nets import resnet_v2
from tensorflow.contrib import layers as layers_lib
from tensorflow.contrib.framework.python.ops import arg_scope
from tensorflow.contrib.layers.python.layers import layers
from utils import preprocessing
_BATCH_NORM_DECAY = 0.9997
_WEIGHT_DECAY = 5e-4
def atrous_spatial_pyramid_pooling(inputs, output_stride, batch_norm_decay, is_training, depth=256):
"""Atrous Spatial Pyramid Pooling.
Args:
inputs: A tensor of size [batch, height, width, channels].
output_stride: The ResNet unit's stride. Determines the rates for atrous convolution.
the rates are (6, 12, 18) when the stride is 16, and doubled when 8.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
is_training: A boolean denoting whether the input is for training.
depth: The depth of the ResNet unit output.
Returns:
The atrous spatial pyramid pooling output.
"""
with tf.variable_scope("aspp"):
if output_stride not in [8, 16]:
raise ValueError('output_stride must be either 8 or 16.')
atrous_rates = [6, 12, 18]
if output_stride == 8:
atrous_rates = [2*rate for rate in atrous_rates]
with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
with arg_scope([layers.batch_norm], is_training=is_training):
inputs_size = tf.shape(inputs)[1:3]
# (a) one 1x1 convolution and three 3x3 convolutions with rates = (6, 12, 18) when output stride = 16.
# the rates are doubled when output stride = 8.
conv_1x1 = layers_lib.conv2d(inputs, depth, [1, 1], stride=1, scope="conv_1x1")
conv_3x3_1 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[0], scope='conv_3x3_1')
conv_3x3_2 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[1], scope='conv_3x3_2')
conv_3x3_3 = layers_lib.conv2d(inputs, depth, [3, 3], stride=1, rate=atrous_rates[2], scope='conv_3x3_3')
# (b) the image-level features
with tf.variable_scope("image_level_features"):
# global average pooling
image_level_features = tf.reduce_mean(inputs, [1, 2], name='global_average_pooling', keepdims=True)
# 1x1 convolution with 256 filters( and batch normalization)
image_level_features = layers_lib.conv2d(image_level_features, depth, [1, 1], stride=1, scope='conv_1x1')
# bilinearly upsample features
image_level_features = tf.image.resize_bilinear(image_level_features, inputs_size, name='upsample')
net = tf.concat([conv_1x1, conv_3x3_1, conv_3x3_2, conv_3x3_3, image_level_features], axis=3, name='concat')
net = layers_lib.conv2d(net, depth, [1, 1], stride=1, scope='conv_1x1_concat')
return net
def deeplab_v3_plus_generator(num_classes,
output_stride,
base_architecture,
pre_trained_model,
batch_norm_decay,
data_format='channels_last'):
"""Generator for DeepLab v3 plus models.
Args:
num_classes: The number of possible classes for image classification.
output_stride: The ResNet unit's stride. Determines the rates for atrous convolution.
the rates are (6, 12, 18) when the stride is 16, and doubled when 8.
base_architecture: The architecture of base Resnet building block.
pre_trained_model: The path to the directory that contains pre-trained models.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
data_format: The input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
Only 'channels_last' is supported currently.
Returns:
The model function that takes in `inputs` and `is_training` and
returns the output tensor of the DeepLab v3 model.
"""
if data_format is None:
# data_format = (
# 'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
pass
if batch_norm_decay is None:
batch_norm_decay = _BATCH_NORM_DECAY
if base_architecture not in ['resnet_v2_50', 'resnet_v2_101']:
raise ValueError("'base_architrecture' must be either 'resnet_v2_50' or 'resnet_v2_101'.")
if base_architecture == 'resnet_v2_50':
base_model = resnet_v2.resnet_v2_50
else:
base_model = resnet_v2.resnet_v2_101
def model(inputs, is_training):
"""Constructs the ResNet model given the inputs."""
if data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2])
# tf.logging.info('net shape: {}'.format(inputs.shape))
# encoder
with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
logits, end_points = base_model(inputs,
num_classes=None,
is_training=is_training,
global_pool=False,
output_stride=output_stride)
if is_training:
exclude = [base_architecture + '/logits', 'global_step']
variables_to_restore = tf.contrib.slim.get_variables_to_restore(exclude=exclude)
tf.train.init_from_checkpoint(pre_trained_model,
{v.name.split(':')[0]: v for v in variables_to_restore})
inputs_size = tf.shape(inputs)[1:3]
net = end_points[base_architecture + '/block4']
encoder_output = atrous_spatial_pyramid_pooling(net, output_stride, batch_norm_decay, is_training)
with tf.variable_scope("decoder"):
with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
with arg_scope([layers.batch_norm], is_training=is_training):
with tf.variable_scope("low_level_features"):
low_level_features = end_points[base_architecture + '/block1/unit_3/bottleneck_v2/conv1']
low_level_features = layers_lib.conv2d(low_level_features, 48,
[1, 1], stride=1, scope='conv_1x1')
low_level_features_size = tf.shape(low_level_features)[1:3]
with tf.variable_scope("upsampling_logits"):
net = tf.image.resize_bilinear(encoder_output, low_level_features_size, name='upsample_1')
net = tf.concat([net, low_level_features], axis=3, name='concat')
net = layers_lib.conv2d(net, 256, [3, 3], stride=1, scope='conv_3x3_1')
net = layers_lib.conv2d(net, 256, [3, 3], stride=1, scope='conv_3x3_2')
net = layers_lib.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='conv_1x1')
logits = tf.image.resize_bilinear(net, inputs_size, name='upsample_2')
return logits
return model
def deeplabv3_plus_model_fn(features, labels, mode, params):
"""Model function for PASCAL VOC."""
if isinstance(features, dict):
features = features['feature']
images = tf.cast(
tf.map_fn(preprocessing.mean_image_addition, features),
tf.uint8)
network = deeplab_v3_plus_generator(params['num_classes'],
params['output_stride'],
params['base_architecture'],
params['pre_trained_model'],
params['batch_norm_decay'])
logits = network(features, mode == tf.estimator.ModeKeys.TRAIN)
pred_classes = tf.expand_dims(tf.argmax(logits, axis=3, output_type=tf.int32), axis=3)
pred_decoded_labels = tf.py_func(preprocessing.decode_labels,
[pred_classes, params['batch_size'], params['num_classes']],
tf.uint8)
predictions = {
'classes': pred_classes,
'probabilities': tf.nn.softmax(logits, name='softmax_tensor'),
'decoded_labels': pred_decoded_labels
}
if mode == tf.estimator.ModeKeys.PREDICT:
# Delete 'decoded_labels' from predictions because custom functions produce error when used with saved_model
predictions_without_decoded_labels = predictions.copy()
del predictions_without_decoded_labels['decoded_labels']
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
export_outputs={
'preds': tf.estimator.export.PredictOutput(
predictions_without_decoded_labels)
})
gt_decoded_labels = tf.py_func(preprocessing.decode_labels,
[labels, params['batch_size'], params['num_classes']], tf.uint8)
labels = tf.squeeze(labels, axis=3) # reduce the channel dimension.
logits_by_num_classes = tf.reshape(logits, [-1, params['num_classes']])
labels_flat = tf.reshape(labels, [-1, ])
valid_indices = tf.to_int32(labels_flat <= params['num_classes'] - 1)
valid_logits = tf.dynamic_partition(logits_by_num_classes, valid_indices, num_partitions=2)[1]
valid_labels = tf.dynamic_partition(labels_flat, valid_indices, num_partitions=2)[1]
preds_flat = tf.reshape(pred_classes, [-1, ])
valid_preds = tf.dynamic_partition(preds_flat, valid_indices, num_partitions=2)[1]
confusion_matrix = tf.confusion_matrix(valid_labels, valid_preds, num_classes=params['num_classes'])
predictions['valid_preds'] = valid_preds
predictions['valid_labels'] = valid_labels
predictions['confusion_matrix'] = confusion_matrix
cross_entropy = tf.losses.sparse_softmax_cross_entropy(
logits=valid_logits, labels=valid_labels)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
if not params['freeze_batch_norm']:
train_var_list = [v for v in tf.trainable_variables()]
else:
train_var_list = [v for v in tf.trainable_variables()
if 'beta' not in v.name and 'gamma' not in v.name]
# Add weight decay to the loss.
with tf.variable_scope("total_loss"):
loss = cross_entropy + params.get('weight_decay', _WEIGHT_DECAY) * tf.add_n(
[tf.nn.l2_loss(v) for v in train_var_list])
# loss = tf.losses.get_total_loss() # obtain the regularization losses as well
if mode == tf.estimator.ModeKeys.TRAIN:
tf.summary.image('images',
tf.concat(axis=2, values=[images, gt_decoded_labels, pred_decoded_labels]),
max_outputs=params['tensorboard_images_max_outputs']) # Concatenate row-wise.
global_step = tf.train.get_or_create_global_step()
if params['learning_rate_policy'] == 'piecewise':
# Scale the learning rate linearly with the batch size. When the batch size
# is 128, the learning rate should be 0.1.
initial_learning_rate = 0.1 * params['batch_size'] / 128
batches_per_epoch = params['num_train'] / params['batch_size']
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32), boundaries, values)
elif params['learning_rate_policy'] == 'poly':
learning_rate = tf.train.polynomial_decay(
params['initial_learning_rate'],
tf.cast(global_step, tf.int32) - params['initial_global_step'],
params['max_iter'], params['end_learning_rate'], power=params['power'])
else:
raise ValueError('Learning rate policy must be "piecewise" or "poly"')
# Create a tensor named learning_rate for logging purposes
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=params['momentum'])
# Batch norm requires update ops to be added as a dependency to the train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step, var_list=train_var_list)
else:
train_op = None
accuracy = tf.metrics.accuracy(
valid_labels, valid_preds)
mean_iou = tf.metrics.mean_iou(valid_labels, valid_preds, params['num_classes'])
metrics = {'px_accuracy': accuracy, 'mean_iou': mean_iou}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_px_accuracy')
tf.summary.scalar('train_px_accuracy', accuracy[1])
def compute_mean_iou(total_cm, name='mean_iou'):
"""Compute the mean intersection-over-union via the confusion matrix."""
sum_over_row = tf.to_float(tf.reduce_sum(total_cm, 0))
sum_over_col = tf.to_float(tf.reduce_sum(total_cm, 1))
cm_diag = tf.to_float(tf.diag_part(total_cm))
denominator = sum_over_row + sum_over_col - cm_diag
# The mean is only computed over classes that appear in the
# label or prediction tensor. If the denominator is 0, we need to
# ignore the class.
num_valid_entries = tf.reduce_sum(tf.cast(
tf.not_equal(denominator, 0), dtype=tf.float32))
# If the value of the denominator is 0, set it to 1 to avoid
# zero division.
denominator = tf.where(
tf.greater(denominator, 0),
denominator,
tf.ones_like(denominator))
iou = tf.div(cm_diag, denominator)
for i in range(params['num_classes']):
tf.identity(iou[i], name='train_iou_class{}'.format(i))
tf.summary.scalar('train_iou_class{}'.format(i), iou[i])
# If the number of valid entries is 0 (no classes) we return 0.
result = tf.where(
tf.greater(num_valid_entries, 0),
tf.reduce_sum(iou, name=name) / num_valid_entries,
0)
return result
train_mean_iou = compute_mean_iou(mean_iou[1])
tf.identity(train_mean_iou, name='train_mean_iou')
tf.summary.scalar('train_mean_iou', train_mean_iou)
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)