-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_magg_net.py
238 lines (174 loc) · 6.17 KB
/
train_magg_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import time
from tqdm import tqdm
import os
import dill
import utils
import torch
from torch import nn, optim
from torch.nn import functional as F
import json
from copy import deepcopy
from train_prob_plad import DataGen
TMAGG_ARGS = [
('-mtdp', '--magg_tdata_path', None ,str),
('-mtm', '--magg_train_mode', 'all', str),
]
WS_TRAIN_LOG_INFO = [
('Train Loss', 'train_loss', 'nc'),
('Val Loss', 'val_loss', 'nc'),
]
def convert_info_to_data(domain, infos):
infd = domain.executor.make_infer_data(infos, domain.args)
return infd
def magg_load_itns(domain):
args = domain.args
iter_num = [
int(f.split('.')[0].split('_')[-1]) \
for f in os.listdir(args.magg_tdata_path) \
if 'magg_tdata' in f
]
iter_num.sort()
return iter_num
class dummy:
def __init__(self, data):
self.data = data
def magg_load_data(
domain, itn
):
args = domain.args
TPB = {}
VPB = {}
GD = []
path = f'{args.magg_tdata_path}/magg_tdata_{itn}.pt'
print(f"Loading {itn} from {path}")
R = torch.load(path)
for keys, infos in tqdm(list(zip(R['train']['keys'], R['train']['infos']))[:args.train_size]):
d = convert_info_to_data(domain, infos)
TPB[keys] = (None, d)
for keys, infos in tqdm(list(zip(R['val']['keys'], R['val']['infos']))[:args.eval_size]):
d = convert_info_to_data(domain, infos)
VPB[keys] = (None, d)
for infos in tqdm(R['gen_infos'][:args.ws_train_size]):
GD.append(convert_info_to_data(domain, infos))
TPBD = dummy(TPB)
VPBD = dummy(VPB)
utils.log_print(f"Sizes train/val/gen : {(len(TPBD.data),len(VPBD.data),len(GD))}", args)
return TPBD, VPBD, GD
def train_magg_net(domain):
args = domain.get_ft_args(TMAGG_ARGS)
target_data = domain.load_real_data()
magg_net = domain.load_magg_model(
args.load_gen_model_path
)
magg_itns = magg_load_itns(domain)
utils.log_print(f"Magg itns {magg_itns}", args)
if args.magg_train_mode == 'all':
utils.log_print(f"Combining all maggs", args)
TPB = {}
VPB = {}
gen_data = []
for itn in magg_itns:
itn_train_pbest, itn_val_pbest, itn_gen_data = magg_load_data(domain, itn)
TPB.update(itn_train_pbest.data)
VPB.update(itn_val_pbest.data)
gen_data += itn_gen_data
TPBD = dummy(TPB)
VPBD = dummy(VPB)
utils.log_print(f"Sizes train/val/gen : {(len(TPBD.data),len(VPBD.data),len(gen_data))}", args)
magg_net = run_train_ep(
domain, magg_net, TPBD, VPBD, gen_data, target_data,
)
elif 'last_k' in args.magg_train_mode:
k = int(args.magg_train_mode.split(':')[1])
itns = magg_itns[-k:]
utils.log_print(f"Train MAGG with Last K ({itns})", args)
TPB = {}
VPB = {}
gen_data = []
for itn in itns:
itn_train_pbest, itn_val_pbest, itn_gen_data = magg_load_data(domain, itn)
TPB.update(itn_train_pbest.data)
VPB.update(itn_val_pbest.data)
gen_data += itn_gen_data
TPBD = dummy(TPB)
VPBD = dummy(VPB)
utils.log_print(f"Sizes train/val/gen : {(len(TPBD.data),len(VPBD.data),len(gen_data))}", args)
magg_net = run_train_ep(
domain, magg_net, TPBD, VPBD, gen_data, target_data,
)
elif args.magg_train_mode == 'seq':
for itn in magg_itns:
train_pbest, val_pbest, gen_data = magg_load_data(domain, itn)
utils.log_print(f"Training MAGG on {itn}", args)
magg_net = run_train_ep(
domain, magg_net, train_pbest, val_pbest, gen_data, target_data,
)
utils.save_model(magg_net.state_dict(), f"{args.outpath}/{args.exp_name}/mean_agg_net.pt")
def run_train_ep(domain, magg_net, train_pbest, val_pbest, gen_data, target_data):
args = domain.args
path = f'{args.outpath}/{args.exp_name}/train_out'
epochs = args.epochs
train_gen = DataGen(
domain,
train_pbest,
target_data.get_train_vinput(),
gen_data
)
val_gen = DataGen(
domain,
val_pbest,
target_data.get_train_vinput(),
None
)
opt = optim.Adam(
magg_net.parameters(),
lr=args.lr
)
best_test_metric = 100.
patience = args.infer_patience
num_worse = 0
eval_count = 0
for epoch in range(epochs):
start = time.time()
train_losses = []
val_losses = []
magg_net.train()
for batch in train_gen.train_iter():
loss, _ = magg_net.model_train_batch(batch)
opt.zero_grad()
loss.backward()
opt.step()
train_losses.append(loss.item())
magg_net.eval()
with torch.no_grad():
for batch in val_gen.train_iter():
loss, _ = magg_net.model_train_batch(batch)
val_losses.append(loss.item())
eval_res = {
'train_loss': torch.tensor(train_losses).float().mean().item(),
'val_loss': torch.tensor(val_losses).float().mean().item(),
'nc': 1.0
}
results = utils.print_results(
WS_TRAIN_LOG_INFO,
eval_res,
args,
ret_early=True
)
METRIC = eval_res['val_loss']
if METRIC >= best_test_metric:
num_worse += 1
else:
num_worse = 0
best_test_metric = METRIC
utils.save_model(magg_net.state_dict(), f"{path}/magg_best_dict.pt")
if num_worse >= patience:
magg_net.load_state_dict(torch.load(f"{path}/magg_best_dict.pt"))
break
end = time.time()
utils.log_print(
f"Epoch {epoch}/{epochs} => Train / Val : {round(eval_res['train_loss'], 3)} / {round(eval_res['val_loss'], 3)} "
f"| {end-start}"
,args
)
return magg_net