-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
189 lines (149 loc) · 6.91 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import pickle
# Constants and Hyperparameters
INPUT_SIZE = 10
HIDDEN_SIZE_1 = 128
HIDDEN_SIZE_2 = 64
HIDDEN_SIZE_3 = 32
OUTPUT_SIZE = 10
EPOCHS = 10000
INITIAL_LEARNING_RATE = 0.001
MIN_LEARNING_RATE = 0.00001
LEARNING_RATE_DECAY = 0.99
DROPOUT_RATE = 0.2
GRADIENT_CLIP_THRESHOLD = 5.0
EARLY_STOPPING_PATIENCE = 500
MODEL_FILENAME = "trained_model.pkl"
# Activation Functions and Their Derivatives
def relu(x):
return np.maximum(0, x)
def relu_derivative(x):
return np.where(x > 0, 1, 0)
def elu(x):
return np.where(x > 0, x, np.exp(x) - 1)
def elu_derivative(x):
return np.where(x > 0, 1, elu(x) + 1)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
s = sigmoid(x)
return s * (1 - s)
def tanh_derivative(x):
return 1 - np.tanh(x) ** 2
def swish(x):
return x * sigmoid(x)
def swish_derivative(x):
s = sigmoid(x)
return s + swish(x) * (1 - s)
# Softmax and Cross-Entropy Loss
def softmax(output):
max_val = np.max(output)
exp_vals = np.exp(output - max_val)
return exp_vals / np.sum(exp_vals)
def cross_entropy_loss(predicted, actual):
return -np.sum(actual * np.log(predicted + 1e-15))
# Weight Initialization
def initialize_weights(input_size, output_size):
return np.random.uniform(-1, 1, input_size * output_size).reshape(input_size, output_size) / np.sqrt(input_size)
# Forward Pass
def forward_pass(input, weights_hidden1, weights_hidden2, weights_hidden3, weights_output,
biases_hidden1, biases_hidden2, biases_hidden3, biases_output):
hidden1_output = np.dot(input, weights_hidden1) + biases_hidden1
hidden1_output = swish(hidden1_output)
hidden2_output = np.dot(hidden1_output, weights_hidden2) + biases_hidden2
hidden2_output = relu(hidden2_output)
hidden3_output = np.dot(hidden2_output, weights_hidden3) + biases_hidden3
hidden3_output = elu(hidden3_output)
final_output = np.dot(hidden3_output, weights_output) + biases_output
final_output = softmax(final_output)
return hidden1_output, hidden2_output, hidden3_output, final_output
# Backpropagation
def backpropagate(input, hidden1_output, hidden2_output, hidden3_output, final_output, actual_output,
weights_hidden1, weights_hidden2, weights_hidden3, weights_output,
biases_hidden1, biases_hidden2, biases_hidden3, biases_output, learning_rate):
output_gradient = final_output - actual_output
# Update weights and biases for Output Layer
weights_output -= learning_rate * np.outer(hidden3_output, output_gradient)
biases_output -= learning_rate * output_gradient
# Hidden Layer 3 Gradients
hidden3_gradient = np.dot(weights_output, output_gradient) * elu_derivative(hidden3_output)
# Update weights and biases for Hidden Layer 3
weights_hidden3 -= learning_rate * np.outer(hidden2_output, hidden3_gradient)
biases_hidden3 -= learning_rate * hidden3_gradient
# Hidden Layer 2 Gradients
hidden2_gradient = np.dot(weights_hidden3, hidden3_gradient) * relu_derivative(hidden2_output)
# Update weights and biases for Hidden Layer 2
weights_hidden2 -= learning_rate * np.outer(hidden1_output, hidden2_gradient)
biases_hidden2 -= learning_rate * hidden2_gradient
# Hidden Layer 1 Gradients
hidden1_gradient = np.dot(weights_hidden2, hidden2_gradient) * swish_derivative(hidden1_output)
# Update weights and biases for Hidden Layer 1
weights_hidden1 -= learning_rate * np.outer(input, hidden1_gradient)
biases_hidden1 -= learning_rate * hidden1_gradient
# Training Process
def train(inputs, targets, num_samples):
weights_hidden1 = initialize_weights(INPUT_SIZE, HIDDEN_SIZE_1)
weights_hidden2 = initialize_weights(HIDDEN_SIZE_1, HIDDEN_SIZE_2)
weights_hidden3 = initialize_weights(HIDDEN_SIZE_2, HIDDEN_SIZE_3)
weights_output = initialize_weights(HIDDEN_SIZE_3, OUTPUT_SIZE)
biases_hidden1 = np.zeros(HIDDEN_SIZE_1)
biases_hidden2 = np.zeros(HIDDEN_SIZE_2)
biases_hidden3 = np.zeros(HIDDEN_SIZE_3)
biases_output = np.zeros(OUTPUT_SIZE)
learning_rate = INITIAL_LEARNING_RATE
best_loss = float('inf')
patience = 0
no_improvement_count = 0
for epoch in range(EPOCHS):
total_loss = 0
for i in range(num_samples):
hidden1_output, hidden2_output, hidden3_output, final_output = forward_pass(
inputs[i], weights_hidden1, weights_hidden2, weights_hidden3, weights_output,
biases_hidden1, biases_hidden2, biases_hidden3, biases_output
)
sample_loss = cross_entropy_loss(final_output, targets[i])
total_loss += sample_loss
backpropagate(
inputs[i], hidden1_output, hidden2_output, hidden3_output, final_output, targets[i],
weights_hidden1, weights_hidden2, weights_hidden3, weights_output,
biases_hidden1, biases_hidden2, biases_hidden3, biases_output, learning_rate
)
total_loss /= num_samples
if total_loss < best_loss:
no_improvement_count = 0
best_loss = total_loss
print(f"\033[32mEpoch {epoch + 1}: Loss improved to {total_loss:.6f}\033[0m")
else:
no_improvement_count += 1
print(f"\033[33mEpoch {epoch + 1}: No improvement, patience {no_improvement_count}/{EARLY_STOPPING_PATIENCE}\033[0m")
if no_improvement_count >= EARLY_STOPPING_PATIENCE:
print(f"\033[31mEarly stopping at epoch {epoch + 1}\033[0m")
break
learning_rate = max(learning_rate * LEARNING_RATE_DECAY, MIN_LEARNING_RATE)
print(f"\033[34mTraining complete. Best Loss: {best_loss:.6f}\033[0m")
print(f"\033[34mNo Improvement Count: {no_improvement_count}\033[0m")
# Save the trained model to file
with open(MODEL_FILENAME, "wb") as file:
pickle.dump({
'weights_hidden1': weights_hidden1,
'weights_hidden2': weights_hidden2,
'weights_hidden3': weights_hidden3,
'weights_output': weights_output,
'biases_hidden1': biases_hidden1,
'biases_hidden2': biases_hidden2,
'biases_hidden3': biases_hidden3,
'biases_output': biases_output
}, file)
print(f"\033[34mModel saved to '{MODEL_FILENAME}'\033[0m")
if __name__ == "__main__":
np.random.seed(42) # For reproducibility
# Example XOR input and output
inputs = np.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
])
targets = np.eye(OUTPUT_SIZE)
train(inputs, targets, len(inputs))