-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
79 lines (67 loc) · 3.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import os
import warnings
warnings.filterwarnings("ignore")
from models.rkccsnet import *
from models.csnet import *
from loss import *
import torch.optim as optim
from data_processor import *
from trainer import *
def main():
global args
args = parser.parse_args()
setup_seed(1)
# Create save directory
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
torch.backends.cudnn.benchmark = True
if args.model == 'rkccsnet':
model = RKCCSNet(sensing_rate=args.sensing_rate)
elif args.model == 'csnet':
model = CSNet(sensing_rate=args.sensing_rate)
model = model.cuda()
criterion = loss_fn
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [60, 90, 120, 150, 180], gamma=0.25, last_epoch=-1)
train_loader, valid_loader = data_loader(args)
print('\nModel: %s\n'
'Sensing Rate: %.2f\n'
'Epoch: %d\n'
'Initial LR: %f\n'
% (args.model, args.sensing_rate, args.epochs, args.lr))
print('Start training')
for epoch in range(args.epochs):
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
loss = train(train_loader, model, criterion, optimizer, epoch)
scheduler.step()
psnr, ssim = valid(valid_loader, model, criterion)
print("\nTotal Loss: %f" % loss)
print("PSNR: %f" % psnr)
print("SSIM: %f" % ssim)
torch.save(model.state_dict(), os.path.join(args.save_dir, args.model+'.pth'))
print('Trained finished.')
print('Model saved in %s' % (os.path.join(args.save_dir, args.model+'.pth')))
if __name__ == '__main__':
torch.cuda.set_device(1)
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='rkccsnet',
choices=['csnet', 'rkccsnet'],
help='choose model to train')
parser.add_argument('--sensing-rate', type=float, default=0.50000,
choices=[0.50000, 0.25000, 0.12500, 0.06250, 0.03125],
help='set sensing rate')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--block-size', default=32, type=int,
metavar='N', help='block size (default: 32)')
parser.add_argument('--image-size', default=96, type=int,
metavar='N', help='image size used for training (default: 96)')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--save-dir', dest='save_dir',
help='The directory used to save the trained models',
default='save_temp', type=str)
main()