-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
159 lines (126 loc) · 4.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
from scipy.io import wavfile
from matplotlib import pyplot as plt
def visualize_waveform(x, sr, type):
time = np.linspace(0, len(x)/sr, len(x))
plt.cla()
plt.plot(time, x)
plt.ylabel('Amplitude')
plt.xlabel('Time(s)')
plt.savefig('./img/' + type+'.png', bbox_inches = 'tight')
def Get_White_Noise(length):
rng = np.random.default_rng(seed=42)
noise = rng.random(length)
return noise
def AutoCorrelation(u, lpc_order=10):
n = u.shape[-1]
r = np.zeros((lpc_order+1))
for m in range(lpc_order+1):
for l in range(n):
if l - m < 0:
r[m] += 0 #since outside of the data is zero
else:
r[m] += u[l]*u[l-m]
r[m] /= n
return r
def Levinson_Durbin(r, lpc_order=10):
n = r.shape[-1]
a = np.zeros((lpc_order+1, n))
kappa = np.zeros(lpc_order+1)
delta = np.zeros(lpc_order+1)
p = np.zeros(lpc_order+1)
a[:, 0] = 1.0 #Since a_(m-1, 0) = 1
p[0] = np.copy(r[0]) #Since P_0 = r(0)
for m in range(1, lpc_order+1):
#range(0, m-1)
for l in range(m):
delta[m-1] += r[l-m]*a[m-1, l]
kappa[m] = delta[m-1] / np.maximum(1e-6, p[m-1])
#a_(m, l) = a_(m-1, l) + k_m a*_(m-1, m-l) for range(1, m)
for l in range(1, m+1):
a[m, l] = a[m-1, l] + kappa[m]*(-a[m-1, m-l])
p[m] = p[m-1] * (1 - kappa[m]**2) #P_m = P_m-1(1-kamma**2)
return kappa
#Using AutoCorrelation and Levinson-Durbin
def Lacttice_Predictor_A(lpc_order, u, kappa=[]):
n = u.shape[-1]
f = np.zeros((lpc_order+1, n))
b = np.zeros((lpc_order+1, n))
f[0] = u
b[0] = u
for m in range(1, lpc_order+1):
for l in range(n):
if l > 1:
f[m][l] = f[m-1][l] - kappa[m]*b[m-1][l-1]
b[m][l] = b[m-1][l-1] + kappa[m]*f[m-1][l]
else:
f[m][l] = f[m-1][l]
b[m][l] = kappa[m]*f[m-1][l]
return f, b, kappa
#Using Partial Correlation
def Lacttice_Predictor_B(lpc_order, u):
n = u.shape[-1]
f = np.zeros((lpc_order+1, n))
b = np.zeros((lpc_order+1, n))
f[0] = u
b[0] = u
kappa = np.zeros(lpc_order+1)
for m in range(1, lpc_order+1):
numerator = 0
denominator_left = 0
denominator_right = 0
for l in range(n):
if l > 1:
numerator += b[m-1][l-1]*(-f[m-1][l])
denominator_left += b[m-1][l-1]**2
denominator_right += f[m-1][l]**2
else:
continue #since outside of the data is zero
numerator /= n
denominator_left /= n
denominator_right /= n
#kappa is negative of partial correlation
kappa[m] = -(numerator/np.sqrt(denominator_left*denominator_right))
for l in range(n):
if l > 1:
f[m][l] = f[m-1][l] - kappa[m]*b[m-1][l-1]
b[m][l] = b[m-1][l-1] + kappa[m]*f[m-1][l]
else:
f[m][l] = f[m-1][l]
b[m][l] = kappa[m]*f[m-1][l]
return f, b, kappa
#f10 to f0
def All_Pole_Lattice_Filter(lpc_order, kappa, f_m, b):
n = f_m.shape[-1]
f = np.zeros((lpc_order+1, n))
f[lpc_order] = f_m
for m in range(lpc_order):
for l in range(n):
if l > 1:
f[lpc_order-m-1][l] = f[lpc_order-m][l] + kappa[lpc_order-m]*b[lpc_order-m-1][l-1]
else:
f[lpc_order-m-1][l] = f[lpc_order-m][l] + 0
return f[0]
if __name__ == '__main__':
LPC_order = 10
method = 'Levinson' #Partial or Levinson
sr, u = wavfile.read('./wav/speech1.wav')
visualize_waveform(x=u, sr=sr, type='original')
n = u.shape[-1]
white_noise = Get_White_Noise(length=n)
if method == 'Partial':
f, b, kappa = Lacttice_Predictor_B(lpc_order=LPC_order, u=u)
else:
r = AutoCorrelation(u=u)
kappa = Levinson_Durbin(r=r,lpc_order=10)
f, b, kappa = Lacttice_Predictor_A(lpc_order=LPC_order, u=u, kappa=kappa)
#Give f10
f0_from_f10 = All_Pole_Lattice_Filter(lpc_order=LPC_order, kappa=kappa, f_m=f[10], b=b)
f0_from_f10 = np.asarray(f0_from_f10, dtype=np.int16)
visualize_waveform(x=f0_from_f10, sr=sr, type=method+'_from_f10')
wavfile.write('./wav/' + method+'_from_f10.wav', sr, f0_from_f10)
#Give white noise
f0_from_noise = All_Pole_Lattice_Filter(lpc_order=LPC_order, kappa=kappa, f_m=white_noise, b=b)
f0_from_noise = np.asarray(f0_from_noise, dtype=np.int16)
visualize_waveform(x=f0_from_noise, sr=sr, type=method+'_from_noise')
wavfile.write('./wav/' + method+'_from_noise.wav', sr, f0_from_noise)