-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen_bev_img.py
128 lines (101 loc) · 5.21 KB
/
gen_bev_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import json
import numpy as np
import time
import cv2
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms
import matplotlib.colors as mcolors
import networkx as nx
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from sklearn.neighbors import KDTree
from sklearn.cluster import DBSCAN
from scipy.spatial import Delaunay, Voronoi
from scipy import interpolate
from utils.graph_utils import *
from utils.gnss_utils import *
from utils.bev_utils import *
import glob
from tqdm import tqdm
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--origin-path', type=str, default='/data/timothyha/carla/transfuser/clear_weather_data')
parser.add_argument('--dest-path', type=str, default='/data/timothyha/carla/transfuser/bev_data3')
parser.add_argument('--start-idx', type=int, default=0)
parser.add_argument('--end-idx', type=int, default=300)
args = parser.parse_args()
a = glob.glob(args.origin_path + '/*')
a = [p for p in a if os.path.isdir(p)]
a = sorted(a)
b = []
for p in a:
town_data_list = sorted(glob.glob(p+'/*'))
b += [f for f in town_data_list if os.path.isdir(f)]
coord_converters = [PC_CoordConverter(cam_yaw=yaw) for yaw in [-60,0,60]]
for kk, data_dir in enumerate(tqdm(b)):
if kk < args.start_idx or kk > args.end_idx:
continue
traj_dataset_route_dir = data_dir
map_name = data_dir.split('/')[-2].split('_')[0].lower()
dir_name = './routes/Road_graph/' + map_name
G = nx.read_gpickle(dir_name+"/map-graph.gpickle")
G2 = nx.read_gpickle(dir_name+"/map-graph2.gpickle")
seg_G = nx.read_gpickle(dir_name+"/map-seg-graph.gpickle")
pos_kdtree_keys = np.stack(list(dict(G.nodes('pos')).keys()))
pos_kdtree = KDTree(np.stack(list(dict(G.nodes('pos')).values())))
pos_kdtree_keys2 = np.stack(list(dict(G2.nodes('pos')).keys()))
pos_kdtree2 = KDTree(np.stack(list(dict(G2.nodes('pos')).values())))
if not os.path.isdir(args.dest_path):
os.mkdir(args.dest_path)
town_data_path = args.dest_path + '/' + data_dir.split('/')[-2]
if not os.path.isdir(town_data_path):
os.mkdir(town_data_path)
bev_data_path = town_data_path + '/' + data_dir.split('/')[-1]
if not os.path.isdir(bev_data_path):
os.mkdir(bev_data_path)
os.mkdir(bev_data_path + '/bev_lidar_3')
os.mkdir(bev_data_path + '/bev_plot_3')
# load trajectory data
all_num_seq = len(os.listdir(traj_dataset_route_dir + "/rgb_front/"))
route_x_command, route_y_command = [], []
route_x, route_y = [], []
route_theta, route_speed = [], []
for seq in range(all_num_seq):
# position
with open(traj_dataset_route_dir + f"/measurements/{str(seq).zfill(4)}.json", "r") as read_file:
data = json.load(read_file)
route_x_command.append(data['x_command'])
route_y_command.append(data['y_command'])
route_x.append(data['x'])
route_y.append(data['y'])
route_theta.append(data['theta'])
route_speed.append(data['speed'])
# x and y are inverted
route_pos = np.stack([np.array(route_y), np.array(route_x)], axis=1)
global_plan_pos = np.stack([np.array(route_y_command), np.array(route_x_command)], axis=1)
_, idx = np.unique(global_plan_pos, axis=0, return_index=True)
global_plan_pos = global_plan_pos[np.sort(idx)]
global_plan_pos_with_starting = np.concatenate([route_pos[0].reshape(1, 2), global_plan_pos])
# get Dijkstra shortest path
traj, traj_node_id, progress, _ = get_global_traj(global_plan_pos_with_starting, G, seg_G,
pos_kdtree_keys, pos_kdtree)
# extract road graph feature
road_graph_feature = []
for seq in range(all_num_seq):
cur_pos, cur_theta, cur_speed = route_pos[seq], route_theta[seq], route_speed[seq] # x, y are inverted
cur_theta = 0 if np.isnan(cur_theta) else cur_theta
rgbs = [np.asarray(Image.open(traj_dataset_route_dir+'/rgb_left/{:04d}.png'.format(seq))),
np.asarray(Image.open(traj_dataset_route_dir+'/rgb_front/{:04d}.png'.format(seq))),
np.asarray(Image.open(traj_dataset_route_dir+'/rgb_right/{:04d}.png'.format(seq)))]
rgb_ = np.stack(rgbs).transpose([0,3,1,2])
pc = np.load(traj_dataset_route_dir+'/lidar/{:04d}.npy'.format(seq), allow_pickle=True)
img1 = get_bev_img(pc, rgb_, coord_converters, color_type=None)
cv2.imwrite(bev_data_path + '/bev_lidar_3/{:04d}_bev_lidar.png'.format(seq), cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
img2 = get_bev_img(pc, rgb_, coord_converters, plot_method='plot_pixel', color_type=None)
cv2.imwrite(bev_data_path + '/bev_plot_3/{:04d}_bev_plot.png'.format(seq), cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))