diff --git a/website/dataVisualization/homePage/views.py b/website/dataVisualization/homePage/views.py index 08f5441..c9cb176 100644 --- a/website/dataVisualization/homePage/views.py +++ b/website/dataVisualization/homePage/views.py @@ -292,7 +292,7 @@ def includeConcentationToDataFrame(df): def averaging_from_old_file(path, fileName): df = pd.read_csv("media/" + path, header=0, usecols=[1, 2, 5, 6, 7, 22, 19, 21, 25], names=["oldDate", "Time", "Temperature", "Humidity", "CO2", "CO", "fig210_sens", "fig280_sens", - "e2vo3_sens"], delimiter=",") + "e2vo3_sens"], delimiter=",")[0,1,2,3,4,7,5,6,8] df['Date'] = pd.to_datetime(df['oldDate'] + ' ' + df['Time']) @@ -344,7 +344,7 @@ def averaging_from_new_file(path, fileName): df = pd.read_csv("media/" + path, header=0, usecols=[1, 2, 5, 6, 7, 8, 9, 10, 25, 22, 24, 28], names=["oldDate", "Time", "Temperature", "Humidity", "CO2", "PM1.0", "PM2.5", "PM10", "CO", "fig210_sens", "fig280_sens", - "e2vo3_sens"], delimiter=",") + "e2vo3_sens"], delimiter=",")[0,1,2,3,4,5,6,7,10,8,9,11] df['Date'] = pd.to_datetime(df['oldDate'] + ' ' + df['Time']) @@ -403,7 +403,7 @@ def averaging(path, fileName, fileType): # def hourAveraging(path,fileName): # # # Hourly Averaging -# df = pd.read_csv("media/"+path,header=0,usecols=[1,2,5,6,7,19,21,25],names=["oldDate", "Time", "Temperature","Humidity","CO2","fig210_sens","fig280_sens","e2vo3_sens"],delimiter=",") +# df = pd.read_csv("media/"+path,header=0,usecols=[1,2,5,6,7,19,21,25],names=["oldDate", "Time", "Temperature","Humidity","CO2","fig210_sens","fig280_sens","e2vo3_sens"],delimiter=",")[0,1,2,3,4,7,5,6,8] # df['Date'] = pd.to_datetime(df['oldDate'] + ' ' + df['Time']) # times = pd.DatetimeIndex(df.Date) @@ -415,7 +415,7 @@ def averaging(path, fileName, fileType): # # Daily Averaging -# df = pd.read_csv('test.txt',header=0,usecols=[1,2,5,6,7,19,21,25],names=["oldDate", "Time", "Temperature","Humidity","CO2","fig210_sens","fig280_sens","e2vo3_sens"],delimiter=",") +# df = pd.read_csv('test.txt',header=0,usecols=[1,2,5,6,7,19,21,25],names=["oldDate", "Time", "Temperature","Humidity","CO2","fig210_sens","fig280_sens","e2vo3_sens"],delimiter=",")[0,1,2,3,4,7,5,6,8] # df['Date'] = pd.to_datetime(df['oldDate'] + ' ' + df['Time']) # times = pd.DatetimeIndex(df.Date) # grouped = df.groupby([times.date])['Temperature','Humidity',"CO2","fig210_sens","fig280_sens","e2vo3_sens"].mean().reset_index() @@ -525,7 +525,7 @@ def writeFromOldFile(writer,locationOfDocument1,filename): 'CO_ppm', 'voc1_ppm', 'voc2_ppm', 'O3_ppb']) df = pd.read_csv("media/" + locationOfDocument1, header=0, usecols=[1, 2, 5, 6, 7, 22, 19, 21, 25], names=["oldDate", "Time", "Temperature", "Humidity", "CO2", "CO", "fig210_sens", "fig280_sens", - "e2vo3_sens"], delimiter=",") + "e2vo3_sens"], delimiter=",")[0,1,2,3,4,7,5,6,8] df['Date'] = pd.to_datetime(df['oldDate'] + ' ' + df['Time']) VOC1_ppm_min = df.fig210_sens.min(axis=0) VOC2_ppm_min = df.fig280_sens.min(axis=0) @@ -566,7 +566,7 @@ def writeFromNewFile(writer,locationOfDocument1,filename): df = pd.read_csv("media/" + locationOfDocument1, header=0, usecols=[1, 2, 5, 6, 7, 8, 9, 10, 25, 22, 24, 28], names=["oldDate", "Time", "Temperature", "Humidity", "CO2", "PM1.0", "PM2.5", "PM10", "CO", "fig210_sens", "fig280_sens", - "e2vo3_sens"], delimiter=",") + "e2vo3_sens"], delimiter=",")[0,1,2,3,4,5,6,7,10,8,9,11] df['Date'] = pd.to_datetime(df['oldDate'] + ' ' + df['Time']) VOC1_ppm_min = df.fig210_sens.min(axis=0)