-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2.1 Gompertz Equation.nb
336 lines (321 loc) · 15.4 KB
/
2.1 Gompertz Equation.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 15612, 326]
NotebookOptionsPosition[ 14637, 302]
NotebookOutlinePosition[ 15029, 318]
CellTagsIndexPosition[ 14986, 315]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["2.1 | Gompertz Equation ", "Subsubsection",
CellFrame->{{0, 0}, {2, 0}},
CellChangeTimes->{{3.861128539228134*^9,
3.861128556529622*^9}},ExpressionUUID->"57524d4a-47c7-48e2-99c3-\
e73fa07c8fb2"],
Cell[BoxData[
RowBox[{"Quit", "[", "]"}]], "Input",
CellChangeTimes->{{3.858529163577305*^9, 3.85852916684606*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"b3e0ac87-f18a-4171-92e7-caeb0d66d1a4"],
Cell[TextData[StyleBox["Variable Selection",
FontWeight->"Bold"]], "Text",
CellFrame->{{0, 0}, {2, 0}},
CellChangeTimes->{{3.857409273523834*^9,
3.857409277572801*^9}},ExpressionUUID->"a264e98f-178d-4fc0-842c-\
66e96197122c"],
Cell[BoxData[
RowBox[{
RowBox[{"q0", "=", "5"}], ";",
RowBox[{"p0", "=", "3"}], ";",
RowBox[{"k", "=", "7"}], ";",
RowBox[{"\[Alpha]", "=", "2"}], ";",
RowBox[{"\[Beta]", "=", "2"}], ";",
RowBox[{"u", "=", "3"}], ";",
RowBox[{"d", "=", "0.6"}], ";"}]], "Input",
CellChangeTimes->{{3.8574092866909657`*^9, 3.8574093125855093`*^9}, {
3.858520647299994*^9, 3.8585206839245653`*^9}, {3.8585219276204767`*^9,
3.858522019358966*^9}, {3.8585220658703127`*^9, 3.8585220712217607`*^9}, {
3.858522151901984*^9, 3.858522153489543*^9}, {3.858522239025248*^9,
3.858522239220192*^9}, {3.8585230580807962`*^9, 3.858523058217347*^9},
3.858526798953367*^9, {3.85852684662901*^9, 3.858526848501893*^9}, {
3.858528637967114*^9, 3.858528639220413*^9}, 3.8585291709785*^9, {
3.858616415436105*^9, 3.858616416049261*^9}, 3.859567215179215*^9, {
3.860090669083633*^9, 3.8600906706293507`*^9}, {3.860093184990251*^9,
3.860093187459738*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"366b392b-ed6d-46a3-9d6f-9f2f396ab051"],
Cell[BoxData[
RowBox[{
RowBox[{"p", "[", "t_", "]"}], ":=", " ",
RowBox[{"p0", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"k", "/", "p0"}], "]"}], "*",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Alpha]"}], "*", "t"}], "]"}]}], ")"}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.857409172743218*^9, 3.857409223460396*^9}, {
3.857487841854648*^9, 3.857487842742963*^9}, {3.857855479503639*^9,
3.857855484816787*^9}, {3.857855533939046*^9, 3.857855545190542*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"4450aae8-afd7-4e40-915f-0b35c96acbd0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"p", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "15"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "10"}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Graph of Gompertz Equation\>\""}],
",",
RowBox[{"AxesLabel", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
CellChangeTimes->{{3.861128628085279*^9, 3.861128685675486*^9}, {
3.8611287724767017`*^9, 3.861128793901908*^9}, {3.861128831745471*^9,
3.861128892770739*^9}},
CellLabel->"In[41]:=",ExpressionUUID->"4c16468d-52f6-480a-98cf-d475bdcaf8c4"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwl13k8VF8UAHBb9nUwM+Yxxp41VCrJOyREtkpRiRaEspQtKrKULVHKkuQn
SbSRZE2hUiShsmQJSbJm33/36a/5fD+fOe/ee869970jddRjtyMLExNTFzMT
E/E73fm+WjY6QVe9tLuBiYkTmtOoZ/VaTuM5hbWLHes4AUQ/HaW2hOCyCXTR
B/ac4GuZ84215Rqe27qrYE0FJwiNUK7NfcvA/Qs+zr4+xwVdZeYek9/y8dDF
J0K3JrjBUHawY/xbJb6j6Lq86Ac+yLQ0t8lzr8JL8J1/TKf5gPl8fqPnmmrc
OKzq5UFpfij7EvBuVPMNHvLBvYItgB80LvPkDV95h09oGLF5KgiA+KBK2O/t
dfjD8uRaxW2CMPdt042xb40412MJM94gISjS5HS4r9iEt+//tY4pQQh8r7Qo
HQ5swrPWd1z5li0Ef/XPvqqlN+P1AuF26o1CMPio5E+W4xe89XkyV4QMCb6H
btO3m/iGFzr697x+RYJX67aPvufvwJPOnzbR+CkMF6KES4IdOvADnGlCQdPC
oPOzN2xTfgee5ve94AmHCBSnhNHuWXfi2UbPXxYrikD+mrc7glO78MGrotan
T4pA4ylZc0z0Bz4cOhUfOiQCVdvvZ37O6MXLlJQmC7+Jgnrsk98zNb345K0u
x5Q+UUhreaFGH+3FNwdNv3IaFwX/UzVFrlv78FYdzWsl3GRQS/xdx9rch0/s
SDS00iFDyqDy1MY1/fjuLs9vlrfIwLlxg/Yh5X48QDD9dH0WGXyCdIJCrPrx
D7ks0Vr5ZLAUMeP6dLsfL6/ST3tbQ4Y1uu4SJ7R+4RURz/V+T5LBM/7pjhTn
AZz/d46b5U4KdLYXRb26MoDPz31JDtlDAVP515/6nw3gCxcPLqbbUUC+9LPt
eqbfuEhdUX2GFwXa+/6eqkv6je8KvV5WnkQBw80bby6/H8SbEypOufRSQLyr
uP+oyjB+uWgxzM6NCkwTXknvrYbx4PJmTO4MFfrYlUzU/YZxgUpd7o4AKjxS
S3m09HoYN1BRt6ZHUUH3QoB30v4R/G9/3pnf96lgL7GVpT5kFI/e7Uot6qaC
gcbEsw3Zo/hyopNU/C8qrN2R63jr4ygu0q9EOTRCBf/CK8c38I7hm7mDlWsW
qACdS++Y94/hdLLH3QVRMfis2hmbOjSGe7eu/dFnJAbVm0p+WayM4R5/PfkH
zMSgUO8msJLG8eTUbfc794hBirX5X5dN4/hTgRi/LHsxOHr+pfWmkHG83YJG
uusrBn/r0sQbKX/xsY5XdccyxEDkpH0Ox/YJ3H9i5WTKuBgocdx9a7l/Aq/t
jaEkT4sBZPT3JLtN4EVf9tFiFsTgZMspTCVhAqfcr4m2WEODaoNzMZY/J3Cm
Kqg1p9LAWyLZPfnyJN4i43tnuw4Nooq+R/XcmsT1e75QrgMN0vcw7is/ncRv
+yYcbTGgQV3k/a7ylkncnKJWY2BGA9np55Y9ilO44wWK9n07GjTVN2oq103h
uzSEXO6do8GAC9nCu3sKX84wljkUTINltgNu5ZNTuJbSAjN3GA2Utv64ayEx
jccc5j5nGk2DkPujIt7u0/jXCGq4czINNIN5Z8oEZ/Djzx+GiBTQ4JqGYam5
9Sye0eniX9FLg3XttkbbTszijTzVhRb9aH5hp5qUA2fxuIXFtW0DNGBvSfjD
+d8snswj294xTIPAC71Y1dAs7sqe/um/GRocrw0+tylsDtf9Hu0jz40Bs08C
p3ziHJ6vMZ1mz4tBGj07QSRnDk9Tay6+zo9Bi9enh+Of5vDdngpjQyQMzKj0
jlxsHn+8ZvbqcQwDLcfSbYxn87jgU4d2L2UMmvg/ved/O4978v2UsFfFwLOo
x3qpZR4v2s40Z7QOgxwebve25Xm8e9fAHd71GEjm26QlmCzgsV63yo5qY8C5
MrXM2bOAd4+a7DYxxqA1Sf3VuOASXsU0Km5wBIOUplwBX7kl/Ei8fX7zUQwO
8CvYz29Zwt++VHA4chxD95PEMsuxJXzKt0LJwxmDbnduHZHnS/jeNTsu2p3C
YMCg74WW7TJ+3+Yw5Yo/Bg+C7DlKTy3jDl7fz/aexcC1pG0fHrKM704TDtUK
xGBo3ecpo9xlPLP2fE7jeQzGaC/X2y4t459JlWp9IRjMjiU+CfxvBX/GW9h+
OgaDYmXhlZXnK7hvKhxMvIJBgFOsediHFXzkrc1iUSwGi+1hwzETK7hSq3/F
RBwGwb1Fop+kmcBD+CWP8Q0Mwurv7en2ZoI8B1Ky120MojODPrGIMQOdNUlv
MhcDkw0uJFEZZjCuG0l58xDlq3q3tYIqM/yIahlOeITie+XaTfWYoaFJOUH1
CQbnpOv6E1yYYVEzz9UoHwP3dOqyfAkzxK2rtZEqwkBFnUVvSzUzfNzwPawZ
ebDiT6hpPTM83Oc/GV6MgXPXSy7PHma4FGn9pLcEAwe6o2gxNwuovwzljC7H
wCo1T8X0IAvoxu78FFOJgaDKLQ87RxaYaPshIV+FQX1pWL6HBwv0HE0fLUc2
ad+/OSGUBV66rVP+XY2BPm15e0cuC1TqsTmrvcNgQ5LJQY9FFtBUXpn1rcWA
ktAbef02K3TXeNEoTRhQlZ+HzWaxAiNG4k0QMq3yUpDdU1YQkbp17hcyfUzR
R6GKFWLz6mgFzRjI7fJ0KB1gBRV3bUv9rxisZ1vS6l3PBtP+054bWtF4t+o1
jLexgVOP+c9YZC3NdJVHhmxw+KLl5QFkbYft0n62bPBwqe9gchsGemWRfDxB
bLD2l3/geDsGFt7kPs0PbODVWqpwvhMDS56BzsQmFJ9+xqoWeXdGcevidzbI
8TF6Q+3CYF/DoU9vR9kg5G1zfB6yncrdkgOia6Cs7PGftm4M3PrWxYc4rAFq
WsEKXy8Gl/fu1G2cXgOv2Ao6V/rRegvqaSzM7HCZtkcC/4XBY+G9Mxo87NAd
pV12Hvlr4+Gn8ZLsYOkqLzWHLGvlLW1lzA6ZrN75AwMYVJrdYW9IZoc1JYm6
DwfRfB7J9q7cZYfnb75s7EEe5M2pWPeYHXo0izMpfzAQqivwv1rJDkF9H0aC
kR1MPgya/2EHebk2G7MhDJYMp+o/6nBAaYBoev0wBnFZAblLhhwgvOVq7iKy
LDtThKoVByhMZOorjWCw6w233hVHDrA5sokahpyynfFsVywHjDbZBWuOYrAZ
TBNruziAsVKvFTiGwZkt/9m/D+EEP+o9g6q/aP+k80+axnDCZ9uauB5kaY5z
EfU3OGFl39I15gkMGpr35TVlc8KdjXvLdJHVPHlZO+s5wefa0efPkQey/LL+
0rhA9fuhzzcnMajg+6ntI8sFo3eH6vKQb3rv/jSjyoXeG6URdcg79FVnF4EL
Npqd2s48hUFGR89ODmcu2O2u98UZ+ZCI+TD2jAusMzf8UpxG+yuw9GJaGRcc
kNuupIfM3bOWLPWWC56y2mjZIBc/YcXlW7nA+F5Kbjgy2bQ4Tn2FCwz6XKid
yA0XZTfsMOWGFe07TuEzGBiMzge493KD6WTfzNNZDM4aJyi9HuIGm85Pg6+R
H/+n2iY8zQ1ivV6FjcjUvQ5bijl5QMfQsHUCeajozQyrGg/slRnbt2EOg+sh
cd7J/jywPeLR+cfINe2KskMXeWDPulHZcuTFDVVNutE8oNK+OacW2enXlGbf
bR4QB7rlALL2roPjalU8sPndHSHGPAY9ovLu1Xy80Gb87GEkMsWjQoJC4QWu
nqb9N5F31dh8dGHwgn/EjZ8ZyIUB0SoC63mBHMOTU4oc1TU2aGvDC9s283X+
QdZ8UOo8msELvPJ1SkYLGFzUsTpC28wHFxzmFgeRjQ+n/d2kzwebFYf1ppD5
g/+EWu/igzYq36kV5NSq8Kw4Bz6w9W/2FV7EoMik5A97JB+c33LGXht5zEbG
d6KVDxoDgkpCkV8EeHII9aH4+yZBMcgXUsuT1Eb4QPAJh9oNZN7u/aUuLPww
FLXBJAtZwTmGqVuJH3awG4e+Qz7sMxVVF8gP83+E5dmX0H2TqC8+GM4Pi/pN
GXxLRP6vPuKI4webLeW8osgBi4oN+pn8ID77MVsG+UboYdHiOn6oz5xgB+S6
+Hd37kkIQIeZQ4gPsvbj5IILFQIgApuTmpENvtUvjdQIwOGt8U9bkc2Z2Izs
GwWgxmeirBP52G73VvynAFiVbc8fQDYMlAoKXiMIGV9FSYvInpLTd/WUBUHB
pbKcsYzB1LO4mrl1gtAVYiYjhxxgrDyct0EQVFLCLygih3s5aEnrCsLDQDuy
JnJK1YcaFitBcPtoUK+PXO18Z7jKVxAM17OdOYq8c3EL6VygIPC26Os6IdfH
NWttCEYuTmJyRW4t5grOjBSEiAcdrl7IIzzepPBUQRCf4moJQqY+Nd5kWCkI
shW68reQT86OB9fwCQHH7XDhOmRtLydyP0kImllkZD4hcw625bJShUDFeVqp
Eflee9VXXWkhKN8WK9OC3PnyhspzLSG49iK9pBfZInxLy3/2QjDyMytuDpm+
/OhUxXEh8PYPVVlEHvKVZu1wEQLz6LLXy8gRJ3jUqN5CcCLxcgvrCgavTDtC
YyOE4OEri2I+ZE3SxXWBeUJAa0+wZiAzRU9VJxWiPmr/+1hp5HpW1wOFpUKg
c8C6UhbZbWp3+PgbIah0eERVRM5skW13bhMCj4xfoRrI5Ds1l/aykiAfO+ag
hzynLNipak2CIu30SDvk6du0i+sPkMByOVbSHnlSQE52iz0J6Jcv5zkgj0xs
cTVwIQG3c/n7Y8g9pcemD5wnQWOgaZ0L8gfTF/wR90iwPINJ+yC/K3+ddyUH
jXecfN4XuXpd3d7rT0hg0P2o2Q/5pfCPlLRiEqS8/XI2ADm/nVvh+Uc0Pv94
ahByitthvGeKBFWDlmaRyIkdJ3p+zZOg/lW/TxRygsWZ8OEVEpyISbwVjRy7
PqJ2lksYBrucOq8ghyzk7RegC0PX1RD9a0R+otd46hgKw4vf96JSkHVyH6bf
vCkMTt+ZjR4gtzNy7+y4JQyc6YpCOcgBNx+kTd4RBjWlgFbCLy5mpe5+IIze
/1nHHxL1sUlP4i8TBnndu45PkBXXJMRd+iEMNoZFos+RawKuXd3Yj/pWoQPV
hJ3G4mL7BoUh98Nxr0KiPu1XYvQnheHn56q3L5AZ+ZcjltlFoKSLz76EqJd9
YLCvigj8EegzrkB+3nw2SE5DBIYUKroI7zXxv9C8UQRykrV9XiFf2+hzThMX
gTQrydTXyHy8Hv4jViKw/GumtQqZrfiop5OfCES9jqHWII+TTBz2VYqAywax
55+QW05KN7i+E4FaA/l1DcR+RN/aQXUi8L5r+T7huIBcyeyvIsD/nX7zM7J6
D2/X3KAInLY8dbwJ2T3vk91tYVEIY3tX+xV5H0/2xzyqKKS2/l7/DVnXMXjb
WwlRqA1ac4swn5iGxKiCKBy/reHUgvww+Np30BEF/u2ZY63IgxbWB/uOi8Le
YkrLd+TGB6q1sy6i8OD8uHoHcgkr+1Y+DxRfMBhBOPJFIU3rrChcsDLQ6kRe
K0ltu3xFFE4vN1zqQnYeabNRLhSFbGlZ5h7kvhiHfac5yLCNzfhEPzH/QRVp
dV4ydO1/mEl4xmhueFiQDH6KId2EuVmvhbvQyBAednnfL2L9Z6sKHFTJIM+Q
0BlAPu8oL2yxhwwP90aN/EZmr/rbyWtDhoLrt6UHifwxKnI+HCJD9tjGfYOr
9d+vb+hEhhuR86WEP1hFem07SwZvo78X/xD11x36pHyHDMusMbNDyOm3im79
vksG7MgZuWFiv82FOd/PJoNxzZgVYZ0CiRXpfDR+St4DwseULNRob8iQQnXa
O4L8lJwfw/mHDMEBLomjyDtH/Xb+1KIAy0Bv6ziyuAb9EqcOBdT6+ZYJj5yu
rlTWo4ClT7vUX+K8TQvqnDalgMzU8ROEO5ceqK3YU9A9aDJO+DTvd2GxSArY
qcpOTCAbmIdY6sRSIHR+TGgSmRK39or9dQq48nuoEy4T9mHPuk2BQ6ohJwmz
Y/xzmvkU2Fkn9oNwiiJ07mqnwGaHgrIp5JNu/TTPbgpUPxj9Shh/FLP/+k8K
7Pr1a4xwn3prQ+soBXgHhWSnkdU2n65yYqPCxyOHLxOuMszMDlalwuweJ/0Z
5KFjnGcKgqjgLWAaO0usN82gvCKMCjwv59IJj7YGc9RGUqEs8uwzwn8t5m79
uE6FSbORb4Rntg5W82dT4TCjmD6HzCJSR3ZpoMJVpo2ZhNksOI94f6GC+Cal
AsJrogxyg9qooHxkpoowJ1M5frOPCi0MrJcw/9CjE1WzVFATuC45jyxWfbVE
QkoM+K8nxhOmrdSyKcqLAZ1zyx3C4tqcFhuUxaDZqOghYfrT4F6TjWJQfd7q
HWHZVC9e/51i0P93Zp6wuveew41eYsD09eChBWRDWQrL5Uox+KoRy7WI/Puo
UfbWd2JQQ/pKIhzzn5/5WK0YmG/iFCfcRG9Jsf0iBnpkFTXCDmLJ61UGxICU
7mdF+Cw/5viZjwbSfMYJhMXNTHkukWgwy26aSvhVdGCeNoUGltu2ZhJm5/q+
dJdBg7/8fc8IX2O9fdN3PQ2MFw42En44S6/BbGkwb8fFu4RsscnCvcGOBkOd
EyTCf32CRMKP0sBQtV6M8JaJLocRNxpEvd+tQPjtcPrcqwvo/4LpeoS7eqSV
nTJpkG7oeoYw6aN87NNRGuynZNcRXh5Vv/dhkgZf2XQbCQ+Stpb1zdGguvrN
N8KVNhaDVDb03WKa20P4TJ+f4UUqijNrnCHcvFCzbKWH+s7GR5LLxHrpTaIn
DTF4xuolS/ihXofKJVOUJ/paRcLhl8cPlFhj4B91WpOwljDthbQrBq5hgQaE
E5XcPCauYaC8y8+JcJiZzyW+JLQPGi65Evb0DLqtgPr402ti3AkbF16vPXgf
9R1Dfr6EZ/XKFKpLMdAIaAknfMCWrzuhDwNMujGDsHjEE0stLXHw+230lXDO
40dVc9rioFvI1Up485dcrXJcHD7MVbcT3iudLW6wUxw4ZNb+IBxTlj5gdUgc
RrIy/hBeGIsPPhUiDiVGPiuEIyhxE+qXxUHD9wvzyup9Fus0GS0OX1nU2Qhr
RkftCrwhDituzZyEXeVCqZHZ4tD2p12IcJut99PMeuTHY9KETwSfljnRJA5H
KhZlCU9ned5UbhGHkClWBcKkyZPn8n+IQzATmzJhk1hH41eT4tBbV6tJuLhy
X3c7TQIYb0L1CCcpbxEUdpYANrPvBwlbm36Me+kmAV6fbe1Wn+d2RMjVUwJo
XU2HCUfnRJJen5WA9YXlRwhfUGwT8YiRAF91F2fCxxUCxWrzJECUWf40YSkj
gRTfQgkIeOFxhnCn012adKkEXPAo9Ca8P6sWO1stAVpMW/1W5ysnTlf4JgEb
j0mdI6whUy4duigBrhMnwgmP6FvdVWOmw7W+8EuEc47+lGlbQwc3PP0yYdkM
PjkNATpomnyMJEyVOqzQJUUHQVuuWMLL9BXlrUZ0iN/Pf5PwB5rexol4OihS
vTIJN9CfyLMl0sG4e/89wl+lJaiiqXTIO6qTRfiH0ty8VhYddB8t3yc8q533
KqCEDuLTJ3IJyx+U2sXSS4dtgq15hFXsr24THqBDGV9a/mq9jy2pyQ7TIZ92
5BnhbW6tQoYzdIj0/VFAeG9g/LdIHkkoLK19QTjkFvMxoQ2ScCTMpJxw7N2O
Het1JSFBIfkl4eTc4rXWxpIgrvOjgvDTUq+RpEOSQNU5XLma7/YfZxnhktDJ
KfCOsLZ4Zdy6r5Iw5ub4iXCk8iXlzC5JOC62s4Fwi7bJW+pvSdibuvYzYT/b
xgXmRWTP9kbCB0y91g8KMkDdjvSVMMuepuBMUQYcePN11Q8ObKw/TGNAwI3E
b6v5cZk70STDgLtP+VsJ34xA7bsWA/pvNrcT/pm4Y4sGMGDaVraD8Ib7XM33
djJAfsy5k3Djm3iuq4cY0GNd102YnzXD+0gIAzxdRH8SHm0TG0+PYcCJjzL9
q/XLjz/VfRPF31D4Rfja0YtO9rkMVB/B34TPaM/1pD1ngITNzKr3krzsOysY
8P5J8+Dq+ax0sLFrZqB+1WeI8ExyS3NqJwMsJ7YMr+bHy9Lq+wADfkRNrzpF
CkwOLjGgocF2lDD9oqSOrbwUPPZpGCecKurs5q8tBV9ne/4SFst5nJJoLgWN
pd0Tq/nQnX5feFQKVCxrJwmLNG2b++IrBTTFzCnC8c7ha6eipKDs9snp1fUv
1u0XuSMFpn/kZghzyR0q3P1OCnqvesz+O6/Rk+1DUhCX7TdHWDyvRNORJA0p
ZQfnCcvN/PYc2SQNl54zFgirbRN74mcnDYc+f1h1Ax95y4/H0nATxhYJn+4k
VZkwyUDGqzdLhNV/W/Ca7JIBzS02y6v5n4ix3pkkA9dIb1Z9K17R/32PDJgk
iqwQNlr3NmWnqizMc1iuOkSIuZZxQRY2Pg5a9cuJrQsz9bJw6FTGqsmCLwaP
0+TA3bxk1e4qmm2fHeXgHKVu1fuumH678UIOyozbVr1t5HizLZc83E7qW7Ve
5Mu4Z9by8PLBn1XvkKWa8WXIw96BsVVr7f7c82tIHvVtk6teGxzlX7lJAciJ
M6t+8PcHNhmhANrdc6tWctxSIdemAHujFlZdI/RZalhuLbqPF1ft+PJEWIHX
WjgZsbTqa0/SJhur1kLZxuVVV6Q3Hx8XVYQLz/65Tdb1cZyTIuzhW1n1ZPbK
zLoXitBj/s8qzl+YHFmUYC7wn4/J5XKlmCnBjdv/rLRWkiF/Rwnci/55XOm6
Vv6YEkzW/nOzsxFvs44y2LT+c1Hmwo+pCGXY2fvPkd4C8UlNyhAz+M8HDGRg
K10F5kf/ucTmy+IGDxXYPfnP2KnLxWqvVOD8zD8nlZ7d+JJHFXLm/lmU+2Se
2X5V2Lnwz21brzdl5apC6uI/p50qQftYFa4u/fP/+DgW1g==
"]]},
Annotation[#, "Charting`Private`Tag$19712#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["t", HoldForm], TraditionalForm], None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"Graph of Gompertz Equation\"", TraditionalForm],
PlotRange->{{0., 14.999999693877552`}, {0, 10}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.861128697885387*^9, 3.861128790970003*^9, {3.861128851656551*^9,
3.861128893561922*^9}},
CellLabel->"Out[41]=",ExpressionUUID->"2ae0ecb9-601a-41ab-9334-7174fd0688db"]
}, Open ]]
}, Open ]]
},
WindowSize->{1366, 660},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"edeaa626-e827-4362-b4cd-062a3d38bde2"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 205, 4, 55, "Subsubsection",ExpressionUUID->"57524d4a-47c7-48e2-99c3-e73fa07c8fb2"],
Cell[788, 28, 195, 3, 30, "Input",ExpressionUUID->"b3e0ac87-f18a-4171-92e7-caeb0d66d1a4"],
Cell[986, 33, 231, 5, 45, "Text",ExpressionUUID->"a264e98f-178d-4fc0-842c-66e96197122c"],
Cell[1220, 40, 1048, 19, 30, "Input",ExpressionUUID->"366b392b-ed6d-46a3-9d6f-9f2f396ab051"],
Cell[2271, 61, 668, 17, 30, "Input",ExpressionUUID->"4450aae8-afd7-4e40-915f-0b35c96acbd0"],
Cell[CellGroupData[{
Cell[2964, 82, 655, 15, 30, "Input",ExpressionUUID->"4c16468d-52f6-480a-98cf-d475bdcaf8c4"],
Cell[3622, 99, 10987, 199, 290, "Output",ExpressionUUID->"2ae0ecb9-601a-41ab-9334-7174fd0688db"]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)