-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2.1.1 Gompertz Equation with Constant Injection.nb
376 lines (359 loc) · 16.4 KB
/
2.1.1 Gompertz Equation with Constant Injection.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 16595, 366]
NotebookOptionsPosition[ 15490, 339]
NotebookOutlinePosition[ 15882, 355]
CellTagsIndexPosition[ 15839, 352]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["2.1.1 | Gompertz Equation with Constant Infusion", "Subsubsection",
CellFrame->{{0, 0}, {2, 0}},
CellChangeTimes->{{3.8611289266777267`*^9,
3.861128954766075*^9}},ExpressionUUID->"04109917-d4d7-480b-863a-\
b96fbec0bf09"],
Cell[BoxData[
RowBox[{"Quit", "[", "]"}]], "Input",
CellChangeTimes->{{3.858529163577305*^9, 3.85852916684606*^9}, {
3.8611290008335114`*^9, 3.861129001499242*^9}},
CellLabel->"In[42]:=",ExpressionUUID->"347b6e7a-aaa7-4120-98d5-c3a096c47c0a"],
Cell[TextData[StyleBox["Variable Selection",
FontWeight->"Bold"]], "Text",
CellFrame->{{0, 0}, {2, 0}},
CellChangeTimes->{{3.857409273523834*^9,
3.857409277572801*^9}},ExpressionUUID->"7cda5c7a-aa94-41ae-a1dd-\
05fdae52b569"],
Cell[BoxData[
RowBox[{
RowBox[{"q0", "=", "5"}], ";",
RowBox[{"p0", "=", "3"}], ";",
RowBox[{"k", "=", "7"}], ";",
RowBox[{"\[Alpha]", "=", "2"}], ";",
RowBox[{"u", "=", "3"}], ";"}]], "Input",
CellFrame->{{0, 0}, {2, 0}},
CellChangeTimes->{{3.8574092866909657`*^9, 3.8574093125855093`*^9}, {
3.858520647299994*^9, 3.8585206839245653`*^9}, {3.8585219276204767`*^9,
3.858522019358966*^9}, {3.8585220658703127`*^9, 3.8585220712217607`*^9}, {
3.858522151901984*^9, 3.858522153489543*^9}, {3.858522239025248*^9,
3.858522239220192*^9}, {3.8585230580807962`*^9, 3.858523058217347*^9},
3.858526798953367*^9, {3.85852684662901*^9, 3.858526848501893*^9}, {
3.858528637967114*^9, 3.858528639220413*^9}, 3.8585291709785*^9, {
3.858616415436105*^9, 3.858616416049261*^9}, 3.859567215179215*^9, {
3.860090669083633*^9, 3.8600906706293507`*^9}, {3.860093184990251*^9,
3.860093187459738*^9}, {3.861129020221097*^9, 3.861129027635646*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"78c30f1e-f896-4469-b6fa-393218fbb082"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"p1", "[", "t_", "]"}], "=", " ",
RowBox[{
RowBox[{"p0", "^",
RowBox[{"{",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Alpha]"}], "*", "t"}], "]"}], "}"}]}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[", "k", "]"}], "-",
RowBox[{"(",
RowBox[{"u", "/", "\[Alpha]"}], ")"}]}], ")"}], "*",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Alpha]"}], "*", "t"}], "]"}]}], ")"}]}],
"]"}]}]}]], "Input",
CellLabel->"In[2]:=",ExpressionUUID->"9883f4c7-f6dc-4099-91fa-1faddebdbbb3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
SuperscriptBox["3",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ", "t"}]]], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ", "t"}]]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], "+",
RowBox[{"Log", "[", "7", "]"}]}], ")"}]}]]}], "}"}]], "Output",
CellChangeTimes->{3.8611290136013536`*^9},
CellLabel->"Out[2]=",ExpressionUUID->"ffd66c0d-d312-4be5-abd2-273d6f7448de"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"p1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "15"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "10"}], "}"}]}], ",",
RowBox[{
"PlotLabel", "\[Rule]",
"\"\<Gompertz Equation with Constant Chemo Infusion\>\""}],
StyleBox[",",
FontWeight->"Bold"],
RowBox[{
StyleBox["AxesLabel",
FontWeight->"Bold"],
StyleBox[" ",
FontWeight->"Bold"],
StyleBox["\[Rule]",
FontWeight->"Bold"], " ", "Automatic"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8585221124884663`*^9, 3.858522131532423*^9}, {
3.8585268242850924`*^9, 3.858526828100444*^9}, {3.8603562250031557`*^9,
3.860356226684112*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"aa0cc7e8-3488-496f-a3c3-1fb024a361c7"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwt13k4Fl8bB3D7vu8e+74TSZY4dyoVIpVCCxVC1qKy/CSpSGRLlqiQlAgV
oSIkScgSUQiVUHYZ2/Oe0fvXXJ9r5sz53uecmTkjc8xnjwsdDQ1NFy0NDXmc
73tXJx+dZLJfTcSRSmWGjkyRwM3dp9BrLz7CqZcZQLDlmEh3OHK7anDVuowZ
zux+2EXfnYAOuQ2pvvNlBt4/wglEVxZaWbSpH/nFBP0vrHxmu0rQi+/Byd3T
jJAmKOx8mvEpih5oYfjTyQj7vPvtpnWeIXHjxDbPckZolPI1nYwpQx27fhrd
vsAIpeHxguNbXiA+Zh7tXCFGMJMf/TrVVYO4Cta5f7RhgJzdVnbF3rWoZtdz
q6eGDED7X0mbL2Mduu99YN9POQZ40Rn0dkLnDYJ5pTD9v/SgfYW9+HfMWzSo
QOFwvksP4qPqEb+2NCHts9eufqajhyCh+NW8nibE0yDdozFJB12mc+fc/D4g
SrgmU/VXOkhIf+n1M7MZEUOuEmnldBCheD9/OqQVjYeUebD70wHRtfHGZFcb
8r1ZECwzQwvPdVic7qu0o92vxoayB2nhTEy36pHgdpT0PkXKsY0Wpk0Dq99L
diAzWyG/kBJaGC2oGMt16USR0bJ8hgG08OWisenhmS50dIuaBzsDLaT1cXIK
bOtG2qbRI6XzNGBn0NfVmNyNomodrsf+ooHOP6Fe+oaf0Re2zQ+qWmig2b46
hf9CD2Is1qcKZdJAtdaWiXdcX1GI+IQyvykNhF7lrwhz+op2512f1dtIA5u+
D0VsLPmKrF6M/fefOg2Up0VQ7tn2Ieml4be+wjRQwli/LexWP5LKfWTx5isV
tXnJW4kJfkPhN6bsxLZTkXb6tSfzxt9QnHtYp/kGKoprmBVpc/2G1jk/TiqW
oyIruTdDkc+/ISl3kyYZWipq7HYJnD84iN5pffY492oV1W65n/MxawhZDw+E
HzNdRetiH//62zCEjE9OZuTprqLM7jJNyYkhxDpi5SuotIrOeTU89zAaRu8Z
nayOcqwizZu/mug7hpFIiXnv0+4VlDaqNreB8QeSO3eHMnJ2BbFs0DU8pPYD
pWrXBB73XEEB5zedD7f5gfw19t1edVpBuwV2sbZk/EB7PnwtTTBfQYwm3hJu
ej/RCdbREiWpFeQbX7Qt7cQIUufqn3z2YRn19T6/Wh0zgly5zVLp6paRheLr
lh9P8PkkwTD3imWkWPnRfj3NL1T5vaol4v4y6h2e9mpK+YXkJI7I/ApfRmb6
G5JX340ipQ2bpVRMlpF4f/mPY+q/UZNsk2NF3RKimfFLeWfzG83o1xWPvVxC
w0yq5uvO/kaK0sZhmmVLqEAzrWDl9W/Ucimg9eeDJWQSGuSfcuAPajjiyS0f
t4QcJYzomsMn0Ml3GZ7pjktoq/bME928CXTFbWWq2X4JKW/Ld0n/MIHm1brU
ePctoXOlMc66HJNo7oG0xOsdSwj6Vt7SHphE8ltCixt1ltBHjb7YW+OTyOhG
5N/jrEuobmPFT2vqJOp5m7voy7CESjcnAz3fFCqTe+l6lbqI0mytpt03TiHL
zvNz3+YW0bH/XtluDJ9CGQ27naWHFtF0U6Z4m/A08j751KeqahEJeDo+ZN4y
gyT+bhOtCltEqszZ9bsPzKCw/QxXP4YsIsj6MZh6cgZR7jaf+XNuEXl2e4mp
J82g0uAN1tv9FlHd1pBru7/PoNstPp/9ji0if4lU79Qrs4ghmvVggtkiuvr8
y9XB9FlEaxAUirYsojt7pe+rFc0in3OfvOfQImqKut//snsWPaU3tQ02WETy
8892D6rMofhWybvj6ouovblNR61pDtWcpLGzEVxEI+5C1v4Dcyi8fyIwjG8R
rTI4nHw5O4fG7nvRl3Hj/Ebfsq0l5pHbDZ9lA7ZFFH5/QsDfex5psb07coNK
IJ0wjr8veP6igheGR+LHCJSgbVZpZbuAWEcTn8g3EEir1367sdsCepbrpwL1
BGqK8GpXC15AlV9qNjrVEYipO2mM5e4C2v5rdqKgmkDBoUNiteMLqNY3ISm0
nEDO78NCNkYQyMqRxngsn0C0AUksijcJVLvjlIjFQwJlSuYlCeDjwTOyg4V5
BOr2a3k01UKgL18cRcPvEWiXiOTXfLFFZLT3Gcf+2wTSc6k0ln6yiCqCFGkf
JRKonavlHVf9Igpb6nc2SyCQ7/NB25XuRfT5lLHicByBHrKzefes4nn26byj
EksgqRK7zCTzJbTN8UFCbySBWKhzqyyDS0jmwWRSRyiBPqesq57iWUG895HD
iCeB0trzuc8orCBm2uKedycJ5MCl5LhosIIevc4xLfTAOS9KrNIdX0FDjyIe
nncj0IA32yaBZyvoQmMVy1ZnAo1sHS7Ts19FDmyyzywPEejBeUfmSq9VFKcd
amp/kEAeFT37Ufgq2h/Kb+bmQKBxrY9z2/NXUayibHKMHYEmKa/W26+sIjgg
/WB2H4EWJm8+Dr5LRSZ/ii20rAhUrsZPpT6jooGxRXunXQQKco21imikoqwH
vaGJlgRa7o34fW2Ginx1M+ap5gQKG3ou2CJLA+pPPrFMbSdQRPO9vQP+NLDs
nGykZUqg6JzzLXSitHBjX0fW4kYCmeu68wnK0YLR+mcFJ7BZ6vbYKmnQQuY+
QfVPerj9kEKvxWZa2N903b9sA4FCZJt+JLnTgvhW5Zar6wnkfUdkVbGCFm6t
78/00yKQ+jq6zQZ1tKAfOWswq0mg0aqxixbNtJCfncF7DvtE/ytWX/yd6gyQ
9LioQSAnSRfBcjY6uG9e656nRiCbW8XqFgfpgL7CkUNFmUA86uk+h13oIMza
k+WVEoGaKyNKfHzo4HCzPd8+bPPeA/pJF+lg013VbRcVCWRKWd3yNZ8OHh92
/fpbnkC6KeYHfZbpoP/d3+wpGQIJJw1FJWbQg7dqnlq2OIFE1J5FLOTSg/4S
xc0Bm1Jz+fzhInqgpAZZ82FLTqoEKNXSQ6lnqUiEGIEULH2dKkfowWBhzN2H
QqD1DCt6Q+sZ4GpMWPlxEdxferP2DmMG0Gq+PSGPradzR73AjAEWH8uX/xAm
kKHTFtmz9gzAPTxL44m9+UUUJ/t5BhCuP2fynxCBrP2FhnUaGSAr6opNuQCB
drOP9N1sZwADrVWZi9h7sso/L39hADvNZL9d2PtbD7XUTzBAU/n5qCF+Ah1W
z65wEGSEISuVEEHsk8Na8eFOjBCjIBxwnZdAV/btNGmbZ4TYbL/gDi5c79Nm
Ch0tE4wBW2UediH/vr/a7EwgZvjB/T/sT21HiuKlmIBq48ajjC1v4y9rs4MJ
FjIeHg/nJPC+6DZTayoTrPowGJhz4DwF8kPUbCawt784Lo89yvGwSquQCZgX
X65S2QnE2/T03PUaJjihl2NUhu1k3jhqNcYEV6Y9VlSwV8zmmj9sYoacIKUe
KTYCxeUG5a+YMYOL4ilOGmx5JppIDRtmGBEKih9gJZDlG7bNMS7MoGwWG5mF
nbZF+ollLDNwTLaKq2Lrg8XN9/3MsKU+UHc7C4FOG9x1fBfOAk/9KBufMuH1
c4dr1uIaC5zoCryTiS3LHBLZfIMFWn3pjKOwWzv2F7fnscDlioecjtiavhz0
fc0s0Jm3n4YTeyT3bO40hRUiA7Lr/RgJVMX53TBAnhWqF3jVHbGT/fe0/NVg
hUPNSS8tsbeZaiwsAyuoKuodV8bO+jq4k/kEK9Q6PS34xkCgQwJWv8WesIKC
udCvg9jrgysvZL5ghZnuzgELbLZBZSGZelYo2hW3aoRd/pgeKX5mBf+g2Ifi
2EIW5XHrqKxAb8JW2U+P81+Q191mwQYduQGnPbG3TiwGeQ+xQUlwnmAmHYEC
dySpvh5ng9kiCfcE7MK7Gj3882yweX1h12VskX1OBuUs7ND5QoHRF3v8+Zu/
9JrsgJYK07ZgJ4bH+aeeY4eKNiJ4gpZADb0q8uMX2CE+qsP5O/aybm27STRu
nybu0ovt+nNOZziDHS7eEMt/i21oeXBKs5YdynqpZnexBwUVves4OcCUY2e8
HbawT5WEsDAHbOG52G2Nbdlg98FdmgO8Q5fXb8cuDYpW517PAeHfpxT1sK/2
T47a23GA6sMvfwWwdR5UnpjI4oAnneWSn2gIdGGTzVGKPicoHzU87IK940jm
9EZTTjhNGbE4gs0VNnbR1pIT9D86WR7AvlV7KTfOiRNiTtCE78R+bl4xxhTF
CfG0GpWa2JN2cmdmPnPCrS/bYJm6gMqCfJl5hznB0SB+4zx26K2XKZp/OAGU
OU0msTkGDlS603HBR8rq2WFspRPXaAZUuaD13aP0D9hHAuauNgVzwZ6wovAs
bIWbpuKjl7igkW3oYAb2+PPrBcxxXEBYcJqmYActq7Sa5nBBYl69biz2jYtH
BMubuEDlplVREHZT/Nvb9yS4QbCobtgW27Aw9WloFTesGPMGC2Bv7Wpe+dPA
DQ6ZTQQPthUNw3bHNm64tFobxol9fI/3Z/SdGxIvid5nwjYLljkfxsgDdiuW
e4nVBeQrNZ+9WY0H5PNaRAew557ENRBaPOCZk8r/FTtoh9rvYl0eEDobKtCD
fcnPSU/WhAceUm3VOrDTahsb6Gx44EnVqfwG7LoTt3/XnuGBwInrP0uwdy4b
8IUE80Dy7isWRdjNcR16umE8EMJx51kB9udy1rCcKB6gF11Oz8P+w+7Pd+kW
D4wGtj/OxBYp2rHRrIYH6L7zjkRjey5MhTVw8oJzefFmD2xDP1ehH3y88Hq2
TtENm2W0J59ehBcCZtbzumLf6639ZCLLC6Yf/swdxe57dUP9mR4vcAceW7HH
tr5k0H3XkRc+baAnzLElVwu8qpx5YY9NmcZO7PEzsvRf3fH9gpddt2NHurFr
ivjzwpVU9p9bsKstvl6MjeSFm6WrYsbYOnwXtIKLeUHFLdt6HTZN9FxdSikv
GCnrNmiS9dN7OJRW8sKPjQ+2amCfnNtzaeoNL9S/Etmpip3TLd97oocXTDRX
Q+WxhW43XN5HzweFPM+TRbEJNZ4+DVs+2LjfxIAJez6DcmG9Ax9w04vJMmLP
civIGzjywUeDYk4GcjxnDDy2uvOBuejEOC32YOXxeYf/+CBcYr5xZWUBNVqU
cUXe4wPP6gTqHPbbl6+LYx7ygTd1kYd0nVbTvsTHfGATUCY/i/2K/1taZjkf
BDcJ7p3GLullU3r2gQ9UXzU0/sFOO3kEDc7xQbeGocwI9s2vboM/F/mAw8zc
9id2kvXpS7+pfOC4eCD6B3bs+sj3C6z88P6w3cowdvhS8QFuSX6QaXZe+IZ9
MprRd5MZPu8Tb/YFe1P+ozvJyfwQGlYk34bdK51/e1s6P2RpF6V+xA5KfpA5
e5sfysZnuEmXXci9tecBP/wsN6Jpxdaxu5PC9YIfTr4KnviArcKYFHf5Gz+k
pVkwNWI3BCVc3/CDHzi89GPfYbtOxsUOj/KDnKqxMOmc3phrprP8QKsfod6A
LV1yJXKVSQA2l9Ycr8cWcgwOO6MuAK23h+lqsZ91BJ5X0BaAC59V02uw95mf
C+3YIAA5A8d0SSdsCAjRQQKQGXPb/TU2J4fPuT82ApC6xNVfhc1QfszX9awA
MCjPzLzAnuIzd9pfIwBXGDSfl2F3e8q2erwVAOUOU2fS1Xivfb5JABJeqPGS
jgvKl8r7JAB1IX5epdjrBjn6iVEBcDieqPUM27u45XAGvyAoPT/TXYK9nz3v
Q7GIIHjTf40jbeISZlwvIQh62xZ2kuYU1ZaYUBKEvdFmr4qxH4UlfIFNgrBt
A+/jIuxRa9uDw86C8Kj9++NC7LYHGu8X3AWh6UnzKdIV9ExGnD64v0UbPdJR
ZaUUvUBBCMmRqSrAVpYS6bkSg9sXV3Y9wj7xp8dOrVQQ7vanyOVjD19z2n+K
WQiultwWzyPzj6rLruMQgmdfRGfuY//dTvz+zSMEo3Tz70iz0SdccqcIwdO8
1nOk1wXWPnXSEIIHSfM9udj/uSjyW+8Vgt7z24ruYTPVTvdx2AnBudiz10jH
SVc9bDwkBNmUVbd7a/N/wNTMVQhmrzPKkW60ifIzDhSCwoSRtBxy/k3GW9Ru
C4HzT/vUbOw76c/Tf2ULgSUEBZFWISJO3M8TAkb/oYOkNz2VoMqWCMHblzFS
pI+rWmtS3ghBl4/WwyzsIqGSayxjOM+CSNNd7J0TZ3d+1xMGhuuHTe5gi2tL
XmbZJAxgEqZA+s+puhq1zcKgFjzIQTppnmfTKQthmBE8/uU2dt/KA02qozBQ
fLeEkj7F8YVfNEoY9LoXmzKxt1qF794UKww9jz6UkRaOU45xTBSG6bufski/
4A9gys0QhpA3kYGkmcS4CJ0SYfBRdFQhnaYCfZa9wpBjeSwhA9vz5A+K74Aw
1BvZh5FGBdcOJH4XBt6tod6kh9d9bv08getp3G1BWlP/VK0rgwjk8LIzk641
y8kL0xCBnoDTl29hjx9nOf30vAh0+ZtmpZP1Zm59WRUhAnuUPG6Qnvgcxvw+
SgSOCpVEkp62JtK/JYqA84m7PqT/Go3WceWJANKYMyFNJ9Ak5N4qAhejNIfS
yOfNmuWof6cI8L3d0E2a8erW/PM9IvAkxu4DaRaalyh5WAS8sibKSHONF7jV
LoiA2qVDsaRF665XSMiIwmt1PBbYFOp7BhVFUfBhStUjLW7IYq2rJgo6LjYa
pCWLwobMN4iCVz2zGGn5W34c53aKgtLbiL+p5Hr133ukzU8UxLivPyVtJi9M
d6VGFIJvBhmT/nVse57RW1HI4xfdSPra3bNWk+9FIfNC/TrS7ZLdafadorD+
/i550k6iqevVR0SB3p6Vg3Qgl5jLR04KTNqL9qWQ+XZZsF/mo8Bd/ZvdpKuj
g4sNhSnwZ0WmnTQT65eVbGkKvK493EA6gT4j+cx6CsRTPZ6QfrQg2SBmT4Ez
2rXRpK03Wnu3HqaAww/aK6SnA84LXDpGAb1XFuGkDWb6nf6cpMBLb5pA0vW/
7xDVobh/5jFX0v2DsmquORQ4G/p4K2m+D4qxRRMUWOHbx0x6dWLdvcZZ7MkQ
etKjfEYvhgl8fexj6k3sGjvrUREGMRC/p71A+vTwWbMLImJQk577i3THUsOq
zWYxUN2BmklXS7YLepqJQREr0Uj60eav6pctxGCMUvmW9KUrUw4VtmKwt/vA
a9J6/JQyWQ8xMPtv6inpm6onfWYSxECKPSmDdMSugMucKWLQZvsujbSv7/kM
pQwxeFDKmEJ6R2ni+4P3xYA4lZhAemHzC6W6SjG494smkrSDPedA0rAYvF8U
8CctHvl4t56eOMiFPNlN+mFhQS1hKA4b9JutSOt35uu9ROJQcuq3Jel9snni
W3eKg4u+wU7S117cGbE5JA43BhlMSS9Nxod5hYtDzcBxXdKRwnEz666IQ2HF
a52ba++zWNfZaHH4cVpOm7RO9FXL4BvikOE4rUHaQ+GiSFSeOLhKv1Qi3WPv
X5TTLA5bC1fFSLuFnZJzaxeHO4eTKaTnc32T1brFQeu4tihpvlnPkJJv4mBj
4ydE2jzWZUf1rDhUDwjzki6v2T/QS5EAHSCYSKeoGfDwn5AAZqkvs8lk+5NH
eT18JWBx8OM06eiHUXyvAyXglvDHSdKhKj0CPtckYFV+bJy0s1Kw6PtiCWA0
jPpOus81myJbKQFRP98MkT6Q+14ssE4CbrxkGyRtriAuqdQlAfOWj/pIa8u9
lL24LAEsdBbdpB8e+y7XwygJEgt1n0jLZ3EqaHNLgszStk7SIjJHlPplJIEn
91Ab6VVJqprRdkmIk/3cRLqRsnnDTLwkHBKdqyH9TZVY1MuVhLflF6tJLxgW
VwdVSMJcpuor0ooHZSzphiQhOuRlOWnjk595zf5KwrnC+2Wk9wXHd0WxS8GZ
m7nPSIen0x7n1ZWCEMf+YtKp+eXKtjuk4HqFcBHpokq/PymHpMCg7mjh2nj0
fguUviQFQWrK+aQNxWvitD5JgWiJ5z3SZ+3blmiXpcD0Mns2aQcLv/WjPNJg
UNl5Zy2vO+HWLicNJoYNmaSTI/Hvr5409MsP3CKte5+1495OaZhtpaSTbnsT
z3r9kDSM1wWkkuaiz/I/Gi4NCSEXk0m3lsR7DSTj+xFCN0gnHLvg6pgvDeUX
6hPX6uXzc+yrkobE39cTSAvVONkd7pCGYRO/eNJpMmB+cEUajhz0v05a8oLU
JntFGaitrYkhLdBuTHSekYFCTZlo0qwKh0r3vJWBn7s3RJEWL67QceGThe2/
B6+Q1jQWfXz2sCw4RP+4vJaPU8jgW6EsLL0XX/OpPr5acxo5aKe9eon0ul/W
HOaWchCyS2HNEzPXbHemyMHcmZ4I0unxKufeDcrBeGP2mrdr1aft1JCHL+NB
aw7npX0vHSoP4qoOa341Y7T0t1keDpiZrlmIp2zUmaIAjr3aa/ZW1+n56KIA
C3cU1rw/xqLrRpkC/O0TW7PxH+cOe1ZFmH0rsObNUa/intgqgtg495q3yYvs
4sxSBEYbjjXr7fk4+HNcEaIfs65ZOezquZqNStD6nHnND6a/ic1GKsEFRaY1
q7oYVCn0KEE0LeOaG3g/yvxWUAZPfYY1u7xyi3jqpwydWfRrTnicOdtWqwwF
av9cdafDeUpQBfQ66dbcI+9RGOeqAqdv/vNsHvWvVpkKOHr8s/qJThoXOlVw
svjn4wr5rGm7VGGr7j+rKktJK95WhVaZf55STdQrmVSFYwL/3HFiO0fHJjXQ
ZP/n5zlL3+Yi1eAAwz9H+XPHp7SrgR2Vds0OW+XASFIdMpf+ucKuc1nXRx3u
LvyzmNeVcs1qdTg9/88plYEbXrFrwOzsPwuyeRbvOqAB3TP/3GOU2J6brwET
0/+c6VUxR6VqwPb/+39xyXol
"]]},
Annotation[#, "Charting`Private`Tag$3509#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["t", HoldForm], TraditionalForm], None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox[
"\"Gompertz Equation with Constant Chemo Infusion\"", TraditionalForm],
PlotRange->{{0., 14.999999693877552`}, {0, 10}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.86112901391514*^9},
CellLabel->"Out[3]=",ExpressionUUID->"a147bbea-6abe-46f0-b756-abb1102d1596"]
}, Open ]]
}, Open ]]
},
WindowSize->{808, 560},
WindowMargins->{{0, Automatic}, {Automatic, 32}},
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"8679d6f2-8d58-4bbe-a4cb-bb3d66b7da18"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 231, 4, 55, "Subsubsection",ExpressionUUID->"04109917-d4d7-480b-863a-b96fbec0bf09"],
Cell[814, 28, 247, 4, 30, "Input",ExpressionUUID->"347b6e7a-aaa7-4120-98d5-c3a096c47c0a"],
Cell[1064, 34, 231, 5, 45, "Text",ExpressionUUID->"7cda5c7a-aa94-41ae-a1dd-05fdae52b569"],
Cell[1298, 41, 1049, 18, 95, "Input",ExpressionUUID->"78c30f1e-f896-4469-b6fa-393218fbb082"],
Cell[CellGroupData[{
Cell[2372, 63, 687, 22, 30, "Input",ExpressionUUID->"9883f4c7-f6dc-4099-91fa-1faddebdbbb3"],
Cell[3062, 87, 660, 20, 47, "Output",ExpressionUUID->"ffd66c0d-d312-4be5-abd2-273d6f7448de"]
}, Open ]],
Cell[CellGroupData[{
Cell[3759, 112, 852, 24, 52, "Input",ExpressionUUID->"aa0cc7e8-3488-496f-a3c3-1fb024a361c7"],
Cell[4614, 138, 10848, 197, 267, "Output",ExpressionUUID->"a147bbea-6abe-46f0-b756-abb1102d1596"]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)