-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprocess_qsos.m
250 lines (192 loc) · 9.15 KB
/
process_qsos.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
% process_qsos: run DLA detection algorithm on specified objects
% load redshifts/DLA flags from training release
prior_catalog = ...
load(sprintf('%s/catalog', processed_directory(training_release)));
if (ischar(prior_ind))
prior_ind = eval(prior_ind);
end
prior.z_qsos = prior_catalog.z_qsos(prior_ind);
prior.dla_ind = prior_catalog.dla_inds(dla_catalog_name);
prior.dla_ind = prior.dla_ind(prior_ind);
% filter out DLAs from prior catalog corresponding to region of spectrum below
% Ly∞ QSO rest
prior.z_dlas = prior_catalog.z_dlas(dla_catalog_name);
prior.z_dlas = prior.z_dlas(prior_ind);
for i = find(prior.dla_ind)'
if (observed_wavelengths(lya_wavelength, prior.z_dlas{i}) < ...
observed_wavelengths(lyman_limit, prior.z_qsos(i)))
prior.dla_ind(i) = false;
end
end
prior = rmfield(prior, 'z_dlas');
% load QSO model from training release
variables_to_load = {'rest_wavelengths', 'mu', 'M', 'log_omega', ...
'log_c_0', 'log_tau_0', 'log_beta'};
load(sprintf('%s/learned_qso_model_%s', ...
processed_directory(training_release), ...
training_set_name), ...
variables_to_load{:});
% load DLA samples from training release
variables_to_load = {'offset_samples', 'log_nhi_samples', 'nhi_samples'};
load(sprintf('%s/dla_samples', processed_directory(training_release)), ...
variables_to_load{:});
% load redshifts from catalog to process
catalog = load(sprintf('%s/catalog', processed_directory(release)));
% load preprocessed QSOs
variables_to_load = {'all_wavelengths', 'all_flux', 'all_noise_variance', ...
'all_pixel_mask'};
load(sprintf('%s/preloaded_qsos', processed_directory(release)), ...
variables_to_load{:});
% enable processing specific QSOs via setting to_test_ind
if (ischar(test_ind))
test_ind = eval(test_ind);
end
all_wavelengths = all_wavelengths(test_ind);
all_flux = all_flux(test_ind);
all_noise_variance = all_noise_variance(test_ind);
all_pixel_mask = all_pixel_mask(test_ind);
z_qsos = catalog.z_qsos(test_ind);
num_quasars = numel(z_qsos);
% preprocess model interpolants
mu_interpolator = ...
griddedInterpolant(rest_wavelengths, mu, 'linear');
M_interpolator = ...
griddedInterpolant({rest_wavelengths, 1:k}, M, 'linear');
log_omega_interpolator = ...
griddedInterpolant(rest_wavelengths, log_omega, 'linear');
% initialize results
min_z_dlas = nan(num_quasars, 1);
max_z_dlas = nan(num_quasars, 1);
log_priors_no_dla = nan(num_quasars, 1);
log_priors_dla = nan(num_quasars, 1);
log_likelihoods_no_dla = nan(num_quasars, 1);
sample_log_likelihoods_dla = nan(num_quasars, num_dla_samples);
log_likelihoods_dla = nan(num_quasars, 1);
log_posteriors_no_dla = nan(num_quasars, 1);
log_posteriors_dla = nan(num_quasars, 1);
c_0 = exp(log_c_0);
tau_0 = exp(log_tau_0);
beta = exp(log_beta);
for quasar_ind = 1:num_quasars
tic;
z_qso = z_qsos(quasar_ind);
fprintf('processing quasar %i/%i (z_QSO = %0.4f) ...', ...
quasar_ind, num_quasars, z_qso);
this_wavelengths = all_wavelengths{quasar_ind};
this_flux = all_flux{quasar_ind};
this_noise_variance = all_noise_variance{quasar_ind};
this_pixel_mask = all_pixel_mask{quasar_ind};
% convert to QSO rest frame
this_rest_wavelengths = emitted_wavelengths(this_wavelengths, z_qso);
unmasked_ind = (this_rest_wavelengths >= min_lambda) & ...
(this_rest_wavelengths <= max_lambda);
% keep complete copy of equally spaced wavelengths for absorption
% computation
this_unmasked_wavelengths = this_wavelengths(unmasked_ind);
ind = unmasked_ind & (~this_pixel_mask);
this_wavelengths = this_wavelengths(ind);
this_rest_wavelengths = this_rest_wavelengths(ind);
this_flux = this_flux(ind);
this_noise_variance = this_noise_variance(ind);
this_lya_zs = ...
(this_wavelengths - lya_wavelength) / ...
lya_wavelength;
% DLA existence prior
less_ind = (prior.z_qsos < (z_qso + prior_z_qso_increase));
this_num_dlas = nnz(prior.dla_ind(less_ind));
this_num_quasars = nnz(less_ind);
this_p_dla = this_num_dlas / this_num_quasars;
log_priors_dla(quasar_ind) = ...
log( this_num_dlas) - log(this_num_quasars);
log_priors_no_dla(quasar_ind) = ...
log(this_num_quasars - this_num_dlas) - log(this_num_quasars);
fprintf_debug('\n');
fprintf_debug(' ... p( DLA | z_QSO) : %0.3f\n', this_p_dla);
fprintf_debug(' ... p(no DLA | z_QSO) : %0.3f\n', 1 - this_p_dla);
% interpolate model onto given wavelengths
this_mu = mu_interpolator( this_rest_wavelengths);
this_M = M_interpolator({this_rest_wavelengths, 1:k});
this_log_omega = log_omega_interpolator(this_rest_wavelengths);
this_omega2 = exp(2 * this_log_omega);
this_scaling_factor = 1 - exp(-tau_0 .* (1 + this_lya_zs).^beta) + c_0;
this_omega2 = this_omega2 .* this_scaling_factor.^2;
% baseline: probability of no DLA model
log_likelihoods_no_dla(quasar_ind) = ...
log_mvnpdf_low_rank(this_flux, this_mu, this_M, ...
this_omega2 + this_noise_variance);
log_posteriors_no_dla(quasar_ind) = ...
log_priors_no_dla(quasar_ind) + log_likelihoods_no_dla(quasar_ind);
fprintf_debug(' ... log p(D | z_QSO, no DLA) : %0.2f\n', ...
log_likelihoods_no_dla(quasar_ind));
min_z_dlas(quasar_ind) = min_z_dla(this_wavelengths, z_qso);
max_z_dlas(quasar_ind) = max_z_dla(this_wavelengths, z_qso);
sample_z_dlas = ...
min_z_dlas(quasar_ind) + ...
(max_z_dlas(quasar_ind) - min_z_dlas(quasar_ind)) * offset_samples;
% ensure enough pixels are on either side for convolving with
% instrument profile
padded_wavelengths = ...
[logspace(log10(min(this_unmasked_wavelengths)) - width * pixel_spacing, ...
log10(min(this_unmasked_wavelengths)) - pixel_spacing, ...
width)'; ...
this_unmasked_wavelengths; ...
logspace(log10(max(this_unmasked_wavelengths)) + pixel_spacing, ...
log10(max(this_unmasked_wavelengths)) + width * pixel_spacing, ...
width)' ...
];
% to retain only unmasked pixels from computed absorption profile
% this has to be done by using the unmasked_ind which has not yet
% been applied this_pixel_mask.
ind = (~this_pixel_mask(unmasked_ind));
% compute probabilities under DLA model for each of the sampled
% (normalized offset, log(N HI)) pairs
parfor i = 1:num_dla_samples
% absorption corresponding to this sample
absorption = voigt(padded_wavelengths, sample_z_dlas(i), ...
nhi_samples(i), num_lines);
absorption = absorption(ind);
dla_mu = this_mu .* absorption;
dla_M = this_M .* absorption;
dla_omega2 = this_omega2 .* absorption.^2;
sample_log_likelihoods_dla(quasar_ind, i) = ...
log_mvnpdf_low_rank(this_flux, dla_mu, dla_M, ...
dla_omega2 + this_noise_variance);
end
% compute sample probabilities and log likelihood of DLA model in
% numerically safe manner
max_log_likelihood = max(sample_log_likelihoods_dla(quasar_ind, :));
sample_probabilities = ...
exp(sample_log_likelihoods_dla(quasar_ind, :) - ...
max_log_likelihood);
log_likelihoods_dla(quasar_ind) = ...
max_log_likelihood + log(mean(sample_probabilities));
log_posteriors_dla(quasar_ind) = ...
log_priors_dla(quasar_ind) + log_likelihoods_dla(quasar_ind);
fprintf_debug(' ... log p(D | z_QSO, DLA) : %0.2f\n', ...
log_likelihoods_dla(quasar_ind));
fprintf_debug(' ... log p(DLA | D, z_QSO) : %0.2f\n', ...
log_posteriors_dla(quasar_ind));
fprintf(' took %0.3fs.\n', toc);
end
% compute model posteriors in numerically safe manner
max_log_posteriors = ...
max([log_posteriors_no_dla, log_posteriors_dla], [], 2);
model_posteriors = ...
exp([log_posteriors_no_dla, log_posteriors_dla] - max_log_posteriors);
model_posteriors = model_posteriors ./ sum(model_posteriors, 2);
p_no_dlas = model_posteriors(:, 1);
p_dlas = 1 - p_no_dlas;
% save results
variables_to_save = {'training_release', 'training_set_name', ...
'dla_catalog_name', 'prior_ind', 'release', ...
'test_set_name', 'test_ind', 'prior_z_qso_increase', ...
'max_z_cut', 'num_lines', 'min_z_dlas', 'max_z_dlas', ...
'log_priors_no_dla', 'log_priors_dla', ...
'log_likelihoods_no_dla', 'sample_log_likelihoods_dla', ...
'log_likelihoods_dla', 'log_posteriors_no_dla', ...
'log_posteriors_dla', 'model_posteriors', 'p_no_dlas', ...
'p_dlas'};
filename = sprintf('%s/processed_qsos_%s', ...
processed_directory(release), ...
test_set_name);
save(filename, variables_to_save{:}, '-v7.3');