-
Notifications
You must be signed in to change notification settings - Fork 3
/
GolgiTendonOrgan.py
324 lines (223 loc) · 13.1 KB
/
GolgiTendonOrgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
'''
Neuromuscular simulator in Python.
Copyright (C) 2017 Renato Naville Watanabe
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Contact: renato.watanabe@usp.br
'''
import numpy as np
import math
def runge_kutta(derivativeFunction, t, x, timeStep, timeStepByTwo, timeStepBySix):
'''
Function to implement the fourth order Runge-Kutta Method to solve numerically a
differential equation.
- Inputs:
+ **derivativeFunction**: function that corresponds to the derivative of the differential equation.
+ **t**: current instant.
+ **x**: current state value.
+ **timeStep**: time step of the solution of the differential equation, in the same unit of t.
+ **timeStepByTwo**: timeStep divided by two, for computational efficiency.
+ **timeStepBySix**: timeStep divided by six, for computational efficiency.
This method is intended to solve the following differential equation:
\f{equation}{
\frac{dx(t)}{dt} = f(t, x(t))
\f}
First, four derivatives are computed:
\f{align}{
k_1 &= f(t,x(t))\\
k_2 &= f(t+\frac{\Delta t}{2}, x(t) + \frac{\Delta t}{2}.k_1)\\
k_3 &= f(t+\frac{\Delta t}{2}, x(t) + \frac{\Delta t}{2}.k_2)\\
k_4 &= f(t+\Delta t, x(t) + \Delta t.k_3)
\f}
where \f$\Delta t\f$ is the time step of the numerical solution of the
differential equation.
Then the value of \f$x(t+\Delta t)\f$ is computed with:
\f{equation}{
x(t+\Delta t) = x(t) + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3+k_4)
\f}
'''
k1 = derivativeFunction(t, x)
k2 = derivativeFunction(t + timeStepByTwo, x + timeStepByTwo * k1)
k3 = derivativeFunction(t + timeStepByTwo, x + timeStepByTwo * k2)
k4 = derivativeFunction(t + timeStep, x + timeStep * k3)
return x + timeStepBySix * (k1 + k2 + k2 + k3 + k3 + k4)
class GolgiTendonOrgan(object):
'''
Class that implements a muscle spindle model.
'''
def __init__(self, conf, muscle):
'''
Constructor
- Inputs:
+ **conf**: Configuration object with the simulation parameters.
+ **muscle**: string with the muscle to which the muscle spindle belongs.
'''
## Configuration object with the simulation parameters.
self.conf = conf
self.muscle = muscle
self.beta0Bag1 = float(conf.parameterSet('beta0Bag1', muscle, 0))
self.beta0Bag2 = float(conf.parameterSet('beta0Bag2', muscle, 0))
self.beta0Chain = float(conf.parameterSet('beta0Chain', muscle, 0))
self.beta1Bag1 = float(conf.parameterSet('beta1Bag1', muscle, 0))
self.beta2Bag2 = float(conf.parameterSet('beta2Bag2', muscle, 0))
self.beta2Chain = float(conf.parameterSet('beta2Chain', muscle, 0))
self.GAMMA1Bag1 = float(conf.parameterSet('GAMMA1Bag1', muscle, 0))
self.GAMMA2Bag2 = float(conf.parameterSet('GAMMA2Bag2', muscle, 0))
self.GAMMA2Chain = float(conf.parameterSet('GAMMA2Chain', muscle, 0))
self.freq_bag1_Hz = float(conf.parameterSet('freqBag1', muscle, 0))
self.freq_bag2_Hz = float(conf.parameterSet('freqBag2', muscle, 0))
self.freq_Chain_Hz = float(conf.parameterSet('freqChain', muscle, 0))
self.tauBag1_s = float(conf.parameterSet('tauBag1', muscle, 0))
self.tauBag2_s = float(conf.parameterSet('tauBag2', muscle, 0))
self.KsrBag1 = float(conf.parameterSet('KsrBag1', muscle, 0))
self.KsrBag2 = float(conf.parameterSet('KsrBag2', muscle, 0))
self.KsrChain = float(conf.parameterSet('KsrChain', muscle, 0))
self.MBag1 = float(conf.parameterSet('MBag1', muscle, 0))
self.MBag2 = float(conf.parameterSet('MBag2', muscle, 0))
self.MChain = float(conf.parameterSet('MChain', muscle, 0))
self.L0SrBag1 = float(conf.parameterSet('L0SrBag1', muscle, 0))
self.L0SrBag2 = float(conf.parameterSet('L0SrBag2', muscle, 0))
self.L0SrChain = float(conf.parameterSet('L0SrChain', muscle, 0))
self.L0PrBag1 = float(conf.parameterSet('L0PrBag1', muscle, 0))
self.L0PrBag2 = float(conf.parameterSet('L0PrBag2', muscle, 0))
self.L0PrChain = float(conf.parameterSet('L0PrChain', muscle, 0))
self.LNSrBag1 = float(conf.parameterSet('LNSrBag1', muscle, 0))
self.LNSrBag2 = float(conf.parameterSet('LNSrBag2', muscle, 0))
self.LNSrChain = float(conf.parameterSet('LNSrChain', muscle, 0))
self.LNPrBag2 = float(conf.parameterSet('LNPrBag2', muscle, 0))
self.LNPrChain = float(conf.parameterSet('LNPrChain', muscle, 0))
self.RBag1 = float(conf.parameterSet('RBag1', muscle, 0))
self.RBag2 = float(conf.parameterSet('RBag2', muscle, 0))
self.RChain = float(conf.parameterSet('RChain', muscle, 0))
self.KPrBag1 = float(conf.parameterSet('KPrBag1', muscle, 0))
self.KPrBag2 = float(conf.parameterSet('KPrBag2', muscle, 0))
self.KPrChain = float(conf.parameterSet('KPrChain', muscle, 0))
self.GPrimaryBag1 = float(conf.parameterSet('GPrimaryBag1', muscle, 0))
self.GPrimaryBag2 = float(conf.parameterSet('GPrimaryBag2', muscle, 0))
self.GPrimaryChain = float(conf.parameterSet('GPrimaryChain', muscle, 0))
self.SOcclusionFactor = float(conf.parameterSet('SOcclusionFactor', muscle, 0))
self.betaBag1 = 0
self.betaBag2 = 0
self.betaChain = 0
self.GAMMABag1 = 0
self.GAMMABag2 = 0
self.GAMMAChain = 0
self.primaryPotentialBag1 = 0
self.primaryPotentialBag2 = 0
self.primaryPotentialChain = 0
self.secondaryPotentialBag1 = 0
self.secondaryPotentialBag2 = 0
self.secondaryPotentialChain = 0
## Vector with the activation of each fusimotor fiber. The first
# element is the frequency of Bag1, the second of Bag2 and the
# third of the Chain.
self.fusimotorActivation = np.zeros((3), dtype=np.float64)
## Vector with the tensions and tensions derivatives of each
# fusimotor fiber. The first two elements correspond to the Bag1,
# the third and fourth to Bag2 and the last ones to the Chain.
self.fiberTension = np.zeros((6), dtype=np.float64)
self.IaFR_Hz = 0.0
self.IIFR_Hz = 0.0
print 'Muscle spindle from muscle ' + self.muscle + ' built.'
def atualizeMuscleSpindle(self, t, fascicleLength, fascicleVelocity,
fascicleAcceleration, gammaMNDynamicFR, gammaMNStaticFR):
'''
Atualize the dynamical and nondynamical (delay) parts of the motor unit.
- Inputs:
+ **t**: current instant, in ms.
'''
self.computeFusimotorActivation(t, gammaMNDynamicFR, gammaMNStaticFR)
self.betaBag1 = self.beta0Bag1 + self.beta1Bag1 * self.fusimotorActivation[0]
self.betaBag2 = self.beta0Bag2 + self.beta2Bag2 * self.fusimotorActivation[1]
self.betaChain = self.beta0Chain + self.beta2Chain * self.fusimotorActivation[2]
self.GAMMABag1 = self.GAMMA1Bag1 * self.fusimotorActivation[0]
self.GAMMABag2 = self.GAMMA2Bag2 * self.fusimotorActivation[1]
self.GAMMAChain = self.GAMMA2Chain * self.fusimotorActivation[2]
self.computeFiberTension(t, fascicleLength, fascicleVelocity, fascicleAcceleration)
self.IaFR_Hz = self.computeIa(t)
#self.IIFR = self.computeII(t)
def computeC(self, fascicleVelocity, dT, Ksr):
if (fascicleVelocity - dT/Ksr) > 0:
C = 1.0
else:
C = 0.42
return C
def computeFusimotorActivation(self, t, gammaMNDynamicFR, gammaMNStaticFR):
'''
'''
df = self.dfdt(t,gammaMNDynamicFR, gammaMNStaticFR)
self.fusimotorActivation[0] += self.conf.timeStep_ms / 1000.0 * df[0]
self.fusimotorActivation[1] += self.conf.timeStep_ms / 1000.0 * df[1]
self.fusimotorActivation[2] = gammaMNStaticFR**2/(gammaMNStaticFR**2 + self.freq_Chain_Hz**2)
def dfdt(self, t, gammaMNDynamicFR, gammaMNStaticFR):
'''
'''
df = np.zeros((2))
df[0] = ((gammaMNDynamicFR**2)/(gammaMNDynamicFR**2 + self.freq_bag1_Hz**2) - self.fusimotorActivation[0]) / self.tauBag1_s
df[1] = ((gammaMNStaticFR**2)/(gammaMNStaticFR**2 + self.freq_bag2_Hz**2) - self.fusimotorActivation[1]) / self.tauBag2_s
return df
def computeFiberTension(self, t, fascicleLength, fascicleVelocity, fascicleAcceleration):
'''
'''
dT = self.dTdt(t, fascicleLength, fascicleVelocity, fascicleAcceleration)
self.fiberTension += self.conf.timeStep_ms / 1000 * dT
def dTdt(self, t, fascicleLength, fascicleVelocity, fascicleAcceleration):
'''
'''
dT = np.zeros((6))
dT[0] = self.fiberTension[1]
dT[1] = self.KsrBag1 / self.MBag1 * (self.computeC(fascicleVelocity, self.fiberTension[1], self.KsrBag1) * self.betaBag1 * np.sign(fascicleVelocity - self.fiberTension[1]/self.KsrBag1)
* (math.fabs(fascicleVelocity - self.fiberTension[1]/self.KsrBag1)**0.3) *
(fascicleLength - self.L0SrBag1 - self.fiberTension[0]/self.KsrBag1 - self.RBag1)
+ self.KPrBag1 * (fascicleLength - self.L0SrBag1 - self.fiberTension[0]/self.KsrBag1 - self.L0PrBag1)
+ self.MBag1 * fascicleAcceleration + self.GAMMABag1 - self.fiberTension[0]
)
dT[2] = self.fiberTension[3]
dT[3] = self.KsrBag2 / self.MBag2 * (self.computeC(fascicleVelocity, self.fiberTension[3], self.KsrBag2) * self.betaBag2 * np.sign(fascicleVelocity - self.fiberTension[3]/self.KsrBag2)
* (math.fabs(fascicleVelocity - self.fiberTension[3]/self.KsrBag2)**0.3) *
(fascicleLength - self.L0SrBag2 - self.fiberTension[2]/self.KsrBag2 - self.RBag2)
+ self.KPrBag2 * (fascicleLength - self.L0SrBag2 - self.fiberTension[2]/self.KsrBag2 - self.L0PrBag2)
+ self.MBag2 * fascicleAcceleration + self.GAMMABag2 - self.fiberTension[2]
)
dT[4] = self.fiberTension[5]
dT[5] = self.KsrChain / self.MChain * (self.computeC(fascicleVelocity, self.fiberTension[5], self.KsrChain) * self.betaChain * np.sign(fascicleVelocity - self.fiberTension[5]/self.KsrChain)
* (math.fabs(fascicleVelocity - self.fiberTension[5]/self.KsrChain)**0.3) *
(fascicleLength - self.L0SrChain - self.fiberTension[4]/self.KsrChain - self.RChain)
+ self.KPrChain * (fascicleLength - self.L0SrChain - self.fiberTension[4]/self.KsrChain - self.L0PrChain)
+ self.MChain * fascicleAcceleration + self.GAMMAChain - self.fiberTension[4]
)
return dT
def computeIa(self, t):
'''
'''
self.computePrimaryActivity(t)
if (self.primaryPotentialBag1 >= (self.primaryPotentialBag2 + self.primaryPotentialChain)):
larger = self.primaryPotentialBag1
smaller = self.primaryPotentialBag2 + self.primaryPotentialChain
else:
smaller = self.primaryPotentialBag1
larger = self.primaryPotentialBag2 + self.primaryPotentialChain
return self.SOcclusionFactor * smaller + larger
def computeII(self, t):
'''
'''
def computePrimaryActivity(self, t):
'''
'''
self.primaryPotentialBag1 = self.GPrimaryBag1 * (self.fiberTension[0] / self.KsrBag1 -
self.LNSrBag1 + self.L0SrBag1
)
self.primaryPotentialBag2 = self.GPrimaryBag2 * (self.fiberTension[2] / self.KsrBag2 -
self.LNSrBag2 + self.L0SrBag2
)
self.primaryPotentialChain = self.GPrimaryChain * (self.fiberTension[4] / self.KsrChain -
self.LNSrChain + self.L0SrChain
)