-
Notifications
You must be signed in to change notification settings - Fork 3
/
Interneuron.py
226 lines (161 loc) · 7.53 KB
/
Interneuron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
'''
Neuromuscular simulator in Python.
Copyright (C) 2017 Renato Naville Watanabe
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Contact: renato.watanabe@ufabc.edu.br
'''
from Compartment import Compartment
import numpy as np
from AxonDelay import AxonDelay
import math
from scipy.sparse import lil_matrix
import time
def runge_kutta(derivativeFunction, t, x, timeStep, timeStepByTwo, timeStepBySix):
'''
Function to implement the fourth order Runge-Kutta Method to solve numerically a
differential equation.
- Inputs:
+ **derivativeFunction**: function that corresponds to the derivative of the differential equation.
+ **t**: current instant.
+ **x**: current state value.
+ **timeStep**: time step of the solution of the differential equation, in the same unit of t.
+ **timeStepByTwo**: timeStep divided by two, for computational efficiency.
+ **timeStepBySix**: timeStep divided by six, for computational efficiency.
This method is intended to solve the following differential equation:
\f{equation}{
\frac{dx(t)}{dt} = f(t, x(t))
\f}
First, four derivatives are computed:
\f{align}{
k_1 &= f(t,x(t))\\
k_2 &= f(t+\frac{\Delta t}{2}, x(t) + \frac{\Delta t}{2}.k_1)\\
k_3 &= f(t+\frac{\Delta t}{2}, x(t) + \frac{\Delta t}{2}.k_2)\\
k_4 &= f(t+\Delta t, x(t) + \Delta t.k_3)
\f}
where \f$\Delta t\f$ is the time step of the numerical solution of the
differential equation.
Then the value of \f$x(t+\Delta t)\f$ is computed with:
\f{equation}{
x(t+\Delta t) = x(t) + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3+k_4)
\f}
'''
k1 = derivativeFunction(t, x)
k2 = derivativeFunction(t + timeStepByTwo, x + timeStepByTwo * k1)
k3 = derivativeFunction(t + timeStepByTwo, x + timeStepByTwo * k2)
k4 = derivativeFunction(t + timeStep, x + timeStep * k3)
return x + timeStepBySix * (k1 + k2 + k2 + k3 + k3 + k4)
class Interneuron(object):
'''
Class that implements a motor unit model. Encompasses a motoneuron
and a muscle unit.
'''
def __init__(self, conf, pool, index):
'''
Constructor
- Inputs:
+ **conf**: Configuration object with the simulation parameters.
+ **pool**: string with Interneuron pool to which the motor
unit belongs. It can
be *RC* (Renshaw cell), *IaIn* (Ia Interneuron), *IbIn* (Ib Interneuron) and
*gII*.
+ **index**: integer corresponding to the motor unit order in
the pool, according to the Henneman's principle (size principle).
'''
## Configuration object with the simulation parameters.
self.conf = conf
self.pool = pool
self.kind = ''
# Neural compartments
## The instant of the last spike of the Motor unit
## at the Soma compartment.
self.tSomaSpike = float("-inf")
compartmentsList = ['soma']
## Vector with the instants of spikes at the soma.
self.somaSpikeTrain = []
## Integer corresponding to the Interneuron order in the pool.
self.index = int(index)
## Vector of Compartment of the Motor Unit.
self.compartment = dict()
## Value of the membrane potential, in mV, that is considered a spike.
self.threshold_mV = conf.parameterSet('threshold', pool, index)
## Anatomical position of the neuron, in mm.
self.position_mm = conf.parameterSet('position', pool, index)
for i in xrange(len(compartmentsList)):
self.compartment[i] = Compartment(compartmentsList[i], self.conf, self.pool, self.index, self.kind)
## Number of compartments.
self.compNumber = len(self.compartment)
## Vector with membrane potential,in mV, of all compartments.
self.v_mV = np.zeros((self.compNumber), dtype = np.float64)
gLeak = np.zeros_like(self.v_mV, dtype = 'd')
capacitance_nF = np.zeros_like(self.v_mV, dtype = 'd')
EqPot = np.zeros_like(self.v_mV, dtype = 'd')
for i in xrange(len(self.compartment)):
capacitance_nF[i] = self.compartment[i].capacitance_nF
gLeak[i] = self.compartment[i].gLeak_muS
EqPot[i] = self.compartment[i].EqPot_mV
## Vector with the inverse of the capacitance of all compartments.
self.capacitanceInv = 1 / capacitance_nF
## Vector with current, in nA, of each compartment coming from other elements of the model. For example
## from ionic channels and synapses.
self.iIonic = np.full_like(self.v_mV, 0.0)
## Vector with the current, in nA, injected in each compartment.
self.iInjected = np.zeros_like(self.v_mV, dtype = 'd')
#self.iInjected = np.array([0, 10.0])
GL = -np.diag(gLeak)
## Matrix of the conductance of the motoneuron. Multiplied by the vector self.v_mV,
## results in the passive currents of each compartment.
self.G = np.float64(GL)
self.EqCurrent_nA = np.dot(-GL, EqPot)
## index of the soma compartment.
self.somaIndex = compartmentsList.index('soma')
## Refractory period, in ms, of the motoneuron.
self.RefPer_ms = float(conf.parameterSet(self.pool + 'SomaRefPer', pool, index))
## Vector with the instants of spikes at the terminal.
self.terminalSpikeTrain = []
## Build synapses
self.SynapsesOut = []
self.transmitSpikesThroughSynapses = []
self.indicesOfSynapsesOnTarget = []
def atualizeInterneuron(self, t, v_mV):
'''
Atualize the dynamical and nondynamical (delay) parts of the motor unit.
- Inputs:
+ **t**: current instant, in ms.
'''
self.atualizeCompartments(t, v_mV)
def atualizeCompartments(self, t, v_mV):
'''
Atualize all neural compartments.
- Inputs:
+ **t**: current instant, in ms.
'''
self.v_mV[:] = v_mV
if self.v_mV[self.somaIndex] > self.threshold_mV and t-self.tSomaSpike > self.RefPer_ms:
self.addSomaSpike(t)
def addSomaSpike(self, t):
'''
When the soma potential is above the threshold a spike is added to the soma.
- Inputs:
+ **t**: current instant, in ms.
'''
self.tSomaSpike = t
self.somaSpikeTrain.append([t, int(self.index)])
self.transmitSpikes(t)
for channel in self.compartment[self.somaIndex].Channels:
for channelState in channel.condState: channelState.changeState(t)
def transmitSpikes(self, t):
'''
- Inputs:
+ **t**: current instant, in ms.
'''
for i in xrange(len(self.indicesOfSynapsesOnTarget)):
self.transmitSpikesThroughSynapses[i].receiveSpike(t, self.indicesOfSynapsesOnTarget[i])