-
Notifications
You must be signed in to change notification settings - Fork 3
/
InterneuronPoolNoChannel.py
158 lines (121 loc) · 6.15 KB
/
InterneuronPoolNoChannel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
'''
Neuromuscular simulator in Python.
Copyright (C) 2018 Renato Naville Watanabe
Pablo Alejandro
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Contact: renato.watanabe@usp.br
'''
import numpy as np
from InterneuronNoChannel import InterneuronNoChannel
from scipy.sparse import lil_matrix
def runge_kutta(derivativeFunction,t, x, timeStep, timeStepByTwo, timeStepBySix):
k1 = derivativeFunction(t, x)
k2 = derivativeFunction(t + timeStepByTwo, x + timeStepByTwo * k1)
k3 = derivativeFunction(t + timeStepByTwo, x + timeStepByTwo * k2)
k4 = derivativeFunction(t + timeStep, x + timeStep * k3)
return x + timeStepBySix * (np.add(np.add(np.add(k1, k2, order = 'C'), np.add(k2, k3, order='C')), np.add(k3, k4, order='C'), order='C'))
class InterneuronPoolNoChannel(object):
'''
Class that implements a motor unit pool. Encompasses a set of motor
units that controls a single muscle.
'''
def __init__(self, conf, pool, group):
'''
Constructor
- Inputs:
+ **conf**: Configuration object with the simulation parameters.
+ **pool**: string with Interneuron pool to which the motor unit belongs.
'''
## Indicates that is Motor Unit pool.
self.kind = 'IN'
## Configuration object with the simulation parameters.
self.conf = conf
## String with Motor unit pool to which the motor unit belongs.
self.pool = pool + '_' + group
## Number of Neurons.
self.Nnumber = int(conf.parameterSet('Number_' + self.pool, pool, 0))
## List of Interneuron objects.
self.unit = dict()
for i in xrange(0, self.Nnumber):
self.unit[i] = InterneuronNoChannel(conf, self.pool, i)
## Vector with the instants of spikes in the soma compartment, in ms.
self.poolSomaSpikes = np.array([])
##
# This is used to get values from Interneuron.py and make computations
# in InterneuronPool.py
# TODO create it all here instead?
self.totalNumberOfCompartments = 0
for i in xrange(self.Nnumber):
self.totalNumberOfCompartments = self.totalNumberOfCompartments \
+ self.unit[i].compNumber
self.v_mV = np.zeros((self.totalNumberOfCompartments),
dtype = np.double)
self.G = lil_matrix((self.totalNumberOfCompartments,
self.totalNumberOfCompartments), dtype = float)
self.iInjected = np.zeros_like(self.v_mV, dtype = 'd')
self.capacitanceInv = np.zeros_like(self.v_mV, dtype = 'd')
self.iIonic = np.full_like(self.v_mV, 0.0)
self.EqCurrent_nA = np.zeros_like(self.v_mV, dtype = 'd')
# Retrieving data from Interneuron class
for i in xrange(self.Nnumber):
self.v_mV[i*self.unit[i].compNumber:i*self.unit[i].compNumber \
+self.unit[i].v_mV.shape[0]] = self.unit[i].v_mV
# With only one compartment, it is a diagonal matrix
self.G[i,i] = self.unit[i].G
self.capacitanceInv[i*self.unit[i].compNumber: \
i*self.unit[i].compNumber \
+self.unit[i].capacitanceInv.shape[0]] \
= self.unit[i].capacitanceInv
self.EqCurrent_nA[i*self.unit[i].compNumber: \
i*self.unit[i].compNumber \
+self.unit[i].EqCurrent_nA.shape[0]] \
= self.unit[i].EqCurrent_nA
print 'Interneuron Pool of ' + pool + ' ' + group + ' built'
def atualizeInterneuronPool(self, t):
'''
Update all parts of the Motor Unit pool. It consists
to update all motor units, the activation signal and
the muscle force.
- Inputs:
+ **t**: current instant, in ms.
'''
np.clip(runge_kutta(self.dVdt, t, self.v_mV, self.conf.timeStep_ms,
self.conf.timeStepByTwo_ms,
self.conf.timeStepBySix_ms),
-30.0, 120.0, self.v_mV)
for i in xrange(self.Nnumber):
self.unit[i].atualizeInterneuron(t, self.v_mV[i*self.unit[i].compNumber:(i+1)*self.unit[i].compNumber])
def dVdt(self, t, V):
#k = 0
for i in xrange(self.Nnumber):
for j in xrange(self.unit[i].compNumber):
self.iIonic.itemset(i*self.unit[0].compNumber+j,
self.unit[i].compartment[j].computeCurrent(t,
V.item(i*self.unit[0].compNumber+j)))
#k += 1
return (self.iIonic + self.G.dot(V) + self.iInjected
+ self.EqCurrent_nA) * self.capacitanceInv
'''
self.GPU.csrmv('N', self.m, self.n, self.nnz, 1.0, self.descr, self.csrVal, self.csrRowPtr, self.csrColInd, V, 0.0, self.dVdtValue)
return (self.iIonic + self.dVdtValue + self.iInjected
+ self.EqCurrent_nA) * self.capacitanceInv
'''
def listSpikes(self):
'''
List the spikes that occurred in the soma and in
the terminal of the different motor units.
'''
for i in xrange(0,self.Nnumber):
if i == 0: somaSpikeTrain = np.array(self.unit[i].somaSpikeTrain)
else: somaSpikeTrain = np.append(somaSpikeTrain, np.array(self.unit[i].somaSpikeTrain))
self.poolSomaSpikes = somaSpikeTrain
self.poolSomaSpikes = np.reshape(self.poolSomaSpikes, (-1, 2))