-
Notifications
You must be signed in to change notification settings - Fork 3
/
jointAnklePositionTask.py
250 lines (212 loc) · 11.7 KB
/
jointAnklePositionTask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
'''
Neuromuscular simulator in Python.
Copyright (C) 2016 Renato Naville Watanabe
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Contact: renato.watanabe@usp.br
'''
import math
import numpy as np
class jointAnklePositionTask(object):
def __init__(self, conf, pool, MUnumber, MUtypeInumber, musculotendonLength, unit):
##
self.conf = conf
##
self.pool = pool
##
self.MUnumber = MUnumber
##
self.MUtypeInumber = MUtypeInumber
##
self.timeIndex = 0;
## Twitch-tetanus relationship (see atualizeForce function explanation)
self.twTet = np.zeros((self.MUnumber, 1), dtype = float)
## Amplitude of the muscle unit twitch, in N (see atualizeForce function explanation).
self.twitchAmp_N = np.zeros((self.MUnumber, 1), dtype = float)
for i in xrange(0, self.MUnumber):
self.twitchAmp_N[i] = unit[i].TwitchAmp_N
self.twTet[i] = unit[i].twTet
## This is used for normalization purposes. It is the maximum force that
## the muscle reach when the Hill model is not used.
self.maximumActivationForce = sum(self.twitchAmp_N * self.twTet)
## Muscle force along time, in N.
self.force = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.tendonForce_N = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.contractileForce_N = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.elasticForce_N = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.viscousForce_N = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.length_m = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.velocity_m_ms = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.tendonLength_m = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.pennationAngle_rad = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.activationTypeI = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.activationTypeII = np.zeros((int(np.rint(conf.simDuration_ms/conf.timeStep_ms)), 1), dtype = float)
##
self.optimalLength_m = float(self.conf.parameterSet('optimalMuscleLength_' + pool, pool, 0))
##
self.pennationAngleAtOptimalLengthSin = math.sin(float(self.conf.parameterSet('optimalPennationAngle_' + pool, pool, 0)))
## Maximum force of the Hill model, in N.
self.maximumForce_N = float(self.conf.parameterSet('Fmax_' + pool, pool, 0))
print self.maximumForce_N
##
self.elasticity = float(self.conf.parameterSet('muscleElasticity_' + pool, pool, 0))
##
self.strain = float(self.conf.parameterSet('muscleStrain_' + pool, pool, 0))
##
self.viscosity = float(self.conf.parameterSet('muscleViscosity_' + pool, pool, 0))
##
self.mass = float(self.conf.parameterSet('muscleMass_' + pool, pool, 0))
##
self.length_m[0] = float(self.conf.parameterSet('initialMuscleLength_' + pool, pool, 0))
##
self.tendonElasticity = float(self.conf.parameterSet('tendonElasticity_' + pool, pool, 0))
##
self.tendonLinearOnsetLength = float(self.conf.parameterSet('tendonLinearOnsetLength_' + pool, pool, 0))
##
self.tendonCurvatureConstant = float(self.conf.parameterSet('tendonCurvatureConstant_' + pool, pool, 0))
##
self.optimalTendonLength = float(self.conf.parameterSet('optimalTendonLength_' + pool, pool, 0))
##
self.lengthNorm = 0
##
self.velocityNorm = 0
##
self.tendonLengthNorm = 0
##
self.forceNorm = 0
##
self.tendonForceNorm = 0
##
self.b_TypeI = float(self.conf.parameterSet('bTypeI_' + pool, pool, 0))
##
self.b_TypeII = float(self.conf.parameterSet('bTypeII_' + pool, pool, 0))
##
self.p_TypeI = float(self.conf.parameterSet('pTypeI_' + pool, pool, 0))
##
self.p_TypeII = float(self.conf.parameterSet('pTypeII_' + pool, pool, 0))
##
self.w_TypeI = float(self.conf.parameterSet('wTypeI_' + pool, pool, 0))
##
self.w_TypeII = float(self.conf.parameterSet('wTypeII_' + pool, pool, 0))
##
self.d_TypeI = float(self.conf.parameterSet('dTypeI_' + pool, pool, 0))
##
self.d_TypeII = float(self.conf.parameterSet('dTypeII_' + pool, pool, 0))
##
self.a0_TypeI = float(self.conf.parameterSet('a0TypeI_' + pool, pool, 0))
##
self.a0_TypeII = float(self.conf.parameterSet('a0TypeII_' + pool, pool, 0))
##
self.a1_TypeI = float(self.conf.parameterSet('a1TypeI_' + pool, pool, 0))
##
self.a1_TypeII = float(self.conf.parameterSet('a1TypeII_' + pool, pool, 0))
##
self.a2_TypeI = float(self.conf.parameterSet('a2TypeI_' + pool, pool, 0))
##
self.a2_TypeII = float(self.conf.parameterSet('a2TypeII_' + pool, pool, 0))
##
self.c0_TypeI = float(self.conf.parameterSet('c0TypeI_' + pool, pool, 0))
##
self.c0_TypeII = float(self.conf.parameterSet('c0TypeII_' + pool, pool, 0))
##
self.c1_TypeI = float(self.conf.parameterSet('c1TypeI_' + pool, pool, 0))
##
self.c1_TypeII = float(self.conf.parameterSet('c1TypeII_' + pool, pool, 0))
##
self.Vmax_TypeI = float(self.conf.parameterSet('VmaxTypeI_' + pool, pool, 0))
##
self.Vmax_TypeII = float(self.conf.parameterSet('VmaxTypeII_' + pool, pool, 0))
def atualizeForce(self, activation_Sat, musculoTendonLength):
'''
Compute the muscle force when no muscle dynamics (Hill model) is used. This
operation is vectorized. Each element of the vectors correspond to one motor
unit. For each motor unit, the force is computed by the following formula:
\f{equation}{
F_{MU} = a_{sat}A_{MU}R_{MU}
}
where \f$a_{sat}\f$ is the saturated activation signal, \f$A_{MU}\f$ is the
motor unit twitch amplitude, and \f$R_{MU}\f$ is the relation between
the twitch amplitude and the tetanus of the motor unit.
Then the muscle force is obtained from:
\f{equation}{
F = \limits\sum_{i=1}^N_{MU}F_{i}
}
where \f$N_{MU}\f$ is the number of motor units in the pool.
'''
self.atualizeActivation(activation_Sat)
self.lengthNorm = self.length_m[self.timeIndex] / self.optimalLength_m
self.velocityNorm = self.velocity_m_ms[self.timeIndex] / self.optimalLength_m
self.pennationAngle_rad[self.timeIndex] = self.computePennationAngle()
self.tendonLength_m[self.timeIndex] = musculoTendonLength - self.length_m[self.timeIndex] * math.cos(self.pennationAngle_rad[self.timeIndex])
self.tendonLengthNorm = self.tendonLength_m[self.timeIndex] / self.optimalTendonLength
self.atualizeMuscleForce()
self.atualizeTendonForce()
self.force[self.timeIndex] = self.forceNorm * self.maximumForce_N
self.tendonForce_N[self.timeIndex] = self.tendonForceNorm * self.maximumForce_N
self.atualizeLenghtsAndVelocity()
self.timeIndex += 1
def atualizeActivation(self, activation_Sat):
self.activationTypeI[self.timeIndex] = (np.sum(activation_Sat[0:self.MUtypeInumber:1] *
self.twitchAmp_N[0:self.MUtypeInumber:1] * self.twTet[0:self.MUtypeInumber:1]) /
self.maximumActivationForce)
self.activationTypeII[self.timeIndex] = (np.sum(activation_Sat[self.MUtypeInumber:-1:1] *
self.twitchAmp_N[self.MUtypeInumber:-1:1] * self.twTet[self.MUtypeInumber:-1:1]) /
self.maximumActivationForce)
def computePennationAngle(self):
return math.asin(self.pennationAngleAtOptimalLengthSin / self.lengthNorm)
def computeForceLengthTypeI(self):
return math.exp(-(math.fabs(self.lengthNorm ** self.b_TypeI - 1) / self.w_TypeI) ** self.p_TypeI)
def computeForceLengthTypeII(self):
return math.exp(-(math.fabs(self.lengthNorm ** self.b_TypeII - 1) / self.w_TypeII) ** self.p_TypeII)
def computeForceVelocityTypeI(self):
if self.velocityNorm > 0.1:
fv = (self.d_TypeI - (self.a0_TypeI+self.a1_TypeI * self.lengthNorm + self.a2_TypeI * self.lengthNorm ** 2)) / (self.d_TypeI + self.velocityNorm)
else:
fv = (self.Vmax_TypeI - self.velocityNorm) / (self.Vmax_TypeI + self.velocityNorm * (self.c0_TypeI + self.c1_TypeI * self.lengthNorm))
return fv
def computeForceVelocityTypeII(self):
if self.velocityNorm > 0.1:
fv = (self.d_TypeII - (self.a0_TypeII + self.a1_TypeII * self.lengthNorm + self.a2_TypeII * self.lengthNorm**2)) / (self.d_TypeII + self.velocityNorm)
else:
fv = (self.Vmax_TypeII - self.velocityNorm) / (self.Vmax_TypeII + self.velocityNorm * (self.c0_TypeII + self.c1_TypeII * self.lengthNorm))
return fv
def computeAcceleration(self):
return ((self.tendonForce_N[self.timeIndex] -
self.force[self.timeIndex] * math.cos(self.pennationAngle_rad[self.timeIndex])) /
(self.mass * math.cos(self.pennationAngle_rad[self.timeIndex])) / 1000000)
def dLdt(self):
return np.array([self.velocity_m_ms[self.timeIndex],self.computeAcceleration()])
def atualizeMuscleForce(self):
self.forceNorm = (self.computeElasticElementForce() + self.computeViscousElementForce() +
self.computeTypeIActiveForce() + self.computeTypeIIActiveForce())
def atualizeTendonForce(self):
self.tendonForceNorm = (self.tendonCurvatureConstant * self.tendonElasticity *
math.log(math.exp((self.tendonLengthNorm - self.tendonLinearOnsetLength) / self.tendonCurvatureConstant) + 1))
def computeElasticElementForce(self):
return math.exp(self.elasticity / self.strain * (self.lengthNorm - self.strain - 1))
def computeViscousElementForce(self):
return self.viscosity * self.velocityNorm
def computeTypeIActiveForce(self):
return self.activationTypeI[self.timeIndex] * self.computeForceLengthTypeI() * self.computeForceVelocityTypeI()
def computeTypeIIActiveForce(self):
return self.activationTypeII[self.timeIndex] * self.computeForceLengthTypeII() * self.computeForceVelocityTypeII()
def atualizeLenghtsAndVelocity(self):
[self.length_m[self.timeIndex + 1],self.velocity_m_ms[self.timeIndex + 1]] = [self.length_m[self.timeIndex],self.velocity_m_ms[self.timeIndex]] + self.conf.timeStep_ms * self.dLdt()