-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSysIDAlgInParamOnlyNoWeights.m
401 lines (299 loc) · 13.3 KB
/
SysIDAlgInParamOnlyNoWeights.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
%% IRLS Algorithm for only inertial parameters without any normalization and weighting
% Inputs:
% n = number of joints, double
% na = number of actuated joints, double
% nu = number of unactuated joints, double
% na/nu_idx = vector of indices of actuated/unactuated joints, na/nu vector
% m = number of data points, double
% b = number of base inertial parameters, double
% d = number of dependant parameters, double
% W_ip = Observation matrix for inertial parameters, n*m x 10*n matrix
% T = torque vector over m data points, n*m vector
% data = matrix containing pos., vel. and accel. for all joints over m data points, n x 3*m matrix
% Ginv = inverse of bijective map to get inertial parameters from base inertial parameters, 10*n x 10*n matrix
% Aid = selection matrix for indepenent parameters, 10*n x b matrix
% Ad = selection matrix for dependant and unidentifiable parameters, 10*n x (10*n-b) matrix
% Kd = regrouping transformation matrix, b x (10*n-b) matrix
% J = constraint jacobian function, nc x n matrix (nc = number of constraints)
% lb = lower bound on paramaters, p_full vector
% ub = upper bound on parameters p_full vector
% X_fm = motor, friction and offset parameters and friction exponent values, (p_full-9*n) vector
% X0_1 = initial condition for parameters, p_full vector
% Algorithm options:
% MS1 = number of multi searchs for first optimization, double
% regroup = include regouping or not, bool
% includeFMDynamics = include motor and friction dynamics, bool
% includeOffset = include offset as parameter, bool
% includeConstraints = systen has constraints, bool
% constraintVariant = choose method of constraint projection matrix, double (1 or 2)
% Output:
% X = vector of all parameters from optimization, p_full vector
% Wfull = observation matrix for inertial, motor, friction and offset parameters, n*m x p_full matrix
% alphanew = new friction exponents from optimization, n vector
% Author: Daniel Haugk, 2024, University of Michigan
function [X, Wfull, alphanew] = SysIDAlgInParamOnlyNoWeights(variables,AlgOptions,na_idx,nu_idx,J,lb,ub,X_fm,T,data,dataFull,W_ip,Ginv,Aid,Ad,Kd,X0_1,options)
% initialize variables
n = variables{1};
m = variables{2};
b = variables{3};
d = variables{4};
% initalize algorithm options
MS1 = AlgOptions{3};
regroup = AlgOptions{5};
includeOffset = AlgOptions{9};
includeFMDynamics = AlgOptions{10};
includeConstraints = AlgOptions{11};
constraintVariant = AlgOptions{12};
% compute number of all parameters with regrouping
if includeOffset
b_full = b + 4*n;
else
b_full = b + 3*n;
end
% check if constraints are included
if includeConstraints
% get number of actuated links
na = length(na_idx);
if constraintVariant == 1
% general case for all kinds of constraints
for i = 1:m
% compute constraint projection matrix
J_temp = J(dataFull(:,i));
K = eye(n) - J_temp(:,sort([na_idx nu_idx])).'*pinv(J_temp(:,sort([na_idx nu_idx])).');
% compute constrained observation matrix and joint torques
T((i-1)*n+1:i*n) = K*T((i-1)*n+1:i*n);
W_ip((i-1)*n+1:i*n,:) = K*W_ip((i-1)*n+1:i*n,:);
end
elseif constraintVariant == 2
% special case for fully actuated systems
W_ip_temp = [];
for i = 1:m
% compute constraint projection matrix
J_temp = J(dataFull(:,i));
P = [eye(na); -J_temp(:,nu_idx)\J_temp(:,na_idx)];
% compute constrained observation matrix on actuated joint level
W_ip_ = P.'*W_ip((i-1)*n+1:i*n,:);
W_ip_temp = [W_ip_temp;W_ip_];
end
% assign temporary observation matrix variable to observation matrix
W_ip = W_ip_temp;
end
else
% set variables for constrained system to empty
na = [];
na_idx = [];
nu_idx = [];
J = [];
end
% compute T_hat if friction and motor dynamics are included and their parameters are provided
if includeFMDynamics
% get motor, friction and offset observation matrix
[Wfm,~,~] = Wextension(X_fm(1:n),n,na,na_idx,nu_idx,J,m,data,dataFull,includeOffset,includeConstraints,constraintVariant);
% compute T_hat
T_hat = T - Wfm*X_fm(n+1:end);
else
% assign T_hat
T_hat = T;
end
% check if regrouping is wanted
if regroup
% get regrouped observation matrix
Wb = W_ip*Aid;
% compute regrouped bounds for optimization problem
lowerB1 = Aid.'*lb(1:10*n) + Kd*Ad.'*lb(1:10*n);
upperB1 = Aid.'*ub(1:10*n) + Kd*Ad.'*ub(1:10*n);
% check if regrouped bounds have to be switched
for j = 1:length(lowerB1)
if lowerB1(j)>=upperB1(j)
temp_lb = lowerB1(j);
temp_ub = upperB1(j);
lowerB1(j) = temp_ub;
upperB1(j) = temp_lb;
end
end
% regroup the initial conditions
X0_ip = Aid.'*X0_1(1:10*n) + Kd*Ad.'*X0_1(1:10*n);
% assign regrouped iniertial parameters
X0_1 = X0_ip;
else
% get observation matrix
Wb = W_ip;
% get bounds for optimization problem
lowerB1 = lb;
upperB1 = ub;
end
% run optimization algorithm
[X, W_ip] = AlgInParamOnly(Wb,T_hat,n,b,b_full,d,MS1,lowerB1,upperB1,X0_1,regroup,Ginv,options);
% put together full observation matrix
Wfull = [W_ip Wfm];
% assign friction exponents
alphanew = X_fm(1:n);
end
%% Algorithm functions
% Algorithm without optimimzation over friction exponent
function [X, W_ip] = AlgInParamOnly(Wb,T_hat,n,b,b_full,d,MS1,lowerB1,upperB1,X0_1,regroup,Ginv,options)
% assign observation matrix for inertial parameters
W_ip = Wb;
% initialize least squares function
fun1 = @(X1) optimFun(X1, W_ip, T_hat);
% formulate least squares problem for all parameters
problem1 = createOptimProblem('fmincon','x0',X0_1,'objective',fun1,'lb',lowerB1,'ub',upperB1,'nonlcon',@(X1) lmiconDet(X1,n,Ginv,b,b_full,d,regroup),'options',options);
% choose multi start option to increase the search space
gs = MultiStart;
% start optimization
X = run(gs,problem1,MS1);
end
%% Least squares functions
% least squares function for all parameters excluding friction exponent
function [fmin, gradf] = optimFun(X, W, T)
% least squares function
fmin = norm(W*X - T)^2;
% gradient of least squares function
if nargout > 1
gradf = 2*W.'*(W*X - T);
end
end
%% Helper functions
% Computation of motor and friction observation matrix
% Wm: is the motor observation matrix
% Wf: is the friction and offset observtation matrix
% Wfm: is both combined
function [Wfm, Wm, Wf] = Wextension(alpha,nLinks,na,na_idx,nu_idx,J,mData,data,dataFull,includeOffset,includeConstraints,constraintVariant)
% check if offset is included and preallocate friction regressor and observation matrix
if includeOffset
Wf = zeros(nLinks*mData,3*nLinks);
Yf = zeros(nLinks,3*nLinks);
else
Wf = zeros(nLinks*mData,2*nLinks);
Yf = zeros(nLinks,2*nLinks);
end
% preallocate motor observation matrix
Wm = zeros(nLinks*mData,nLinks);
% preallocate motor regressor matrix
Ym = zeros(nLinks,nLinks);
% compute regressor matrices over all data points
for i = 1:mData
% compute regressor matrices
for j = 1:nLinks
% assign accelerations for each joint in motor regressor matrix : Fm = motorInertia*qdd -> dFm/dmotorInertia = qdd
Ym(j,j) = data(j,i + 2*mData);
% check if offset is included and assign dFf/d(Fc,Fv,beta) for each joint, with Fc: coloumb friction coefficient, Fv: vicious friction coefficient, beta: offset
if includeOffset
Yf(j,3*(j-1)+1:3*j) = [sign(data(j,i + mData)) sign(data(j,i + mData))*abs(data(j,i + mData))^alpha(j) 1];
else
Yf(j,2*(j-1)+1:2*j) = [sign(data(j,i + mData)) sign(data(j,i + mData))*abs(data(j,i + mData))^alpha(j)];
end
end
% assign regressor matrices to observation matrix
Wm((i-1)*nLinks+1:i*nLinks,:) = Ym;
Wf((i-1)*nLinks+1:i*nLinks,:) = Yf;
end
% check if constraints are included
if includeConstraints
if constraintVariant == 1
% general case for all kinds of constraints
for i = 1:mData
% compute constraint projection matrix
J_temp = J(dataFull(:,i));
K = eye(nLinks) - J_temp(:,sort([na_idx nu_idx])).'*pinv(J_temp(:,sort([na_idx nu_idx])).');
% compute constrained observation matrix for motor and friction dynamics
Wm((i-1)*nLinks+1:i*nLinks,:) = K*Wm((i-1)*nLinks+1:i*nLinks,:);
Wf((i-1)*nLinks+1:i*nLinks,:) = K*Wf((i-1)*nLinks+1:i*nLinks,:);
end
elseif constraintVariant == 2
% special case for fully actuated systems
Wf_temp = [];
Wm_temp = [];
for i = 1:mData
% compute constraint projection matrix
J_temp = J(dataFull(:,i));
P = [eye(na); -J_temp(:,nu_idx)\J_temp(:,na_idx)];
% compute constrained observation matrix for motor and friction dynamics on actuated joint level
Wm_ = P.'*Wm((i-1)*nLinks+1:i*nLinks,:);
Wf_ = P.'*Wf((i-1)*nLinks+1:i*nLinks,:);
Wm_temp = [Wm_temp;Wm_];
Wf_temp = [Wf_temp;Wf_];
end
% assign temporary observation matrix variable to observation matrix
Wm = Wm_temp;
Wf = Wf_temp;
end
end
% get full observation matrix for motor and friction parameters
Wfm = [Wm Wf];
end
% ------------------------------------------------------------------------
% nonlinear LMI constraint
function [LMIdet , nonlinEqCon, DC, DCeq] = lmiconDet(X,nLinks,Ginv,b,b_full,d,regroup)
%check if regrouping was done
if regroup
% get full inertial parameter vector
phi = Ginv*[X(1:b); zeros(d,1)];
% derivative of phi w.r.t. x for LMI-gradient
dphidX = Ginv*[eye(b) zeros(b,b_full-b); zeros(d,b_full)];
% preallocate gradient of LMI-matrix determinant
DC = zeros(nLinks,10*nLinks);
else
% get full inertial parameter vector
phi = X;
% preallocate gradient of LMI-matrix determinant
DC = zeros(nLinks,nLinks*10+3*nLinks);
end
% preallocate LMI-matrix
LMIdet = zeros(nLinks,1);
% compute derivative of LMI-matrix w.r.t. inertial parameters : dphi/d(LMI-matrix)
if nargout > 2
% get derivative of each element in the intertial parameters phi
dphi1dLMI = [-0.5 0 0 0; 0 0.5 0 0; 0 0 0.5 0; 0 0 0 0];
dphi2dLMI = [0 -1 0 0; -1 0 0 0; 0 0 0 0; 0 0 0 0];
dphi3dLMI = [0 0 -1 0; 0 0 0 0; -1 0 0 0; 0 0 0 0];
dphi4dLMI = [0.5 0 0 0; 0 -0.5 0 0; 0 0 0.5 0; 0 0 0 0];
dphi5dLMI = [0 0 0 0; 0 0 -1 0; 0 -1 0 0; 0 0 0 0];
dphi6dLMI = [0.5 0 0 0;0 0.5 0 0; 0 0 -0.5 0; 0 0 0 0];
dphi7dLMI = [0 0 0 1; 0 0 0 0; 0 0 0 0; 1 0 0 0];
dphi8dLMI = [0 0 0 0; 0 0 0 1; 0 0 0 0; 0 1 0 0];
dphi9dLMI = [0 0 0 0; 0 0 0 0; 0 0 0 1; 0 0 1 0];
dphi10dLMI = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 1];
% plug them together to get the full derivative matrix
dphidLMI = [dphi1dLMI dphi2dLMI dphi3dLMI dphi4dLMI dphi5dLMI ...
dphi6dLMI dphi7dLMI dphi8dLMI dphi9dLMI dphi10dLMI];
end
% compute LMI-matrix
for i = 1:nLinks
% get inertia tensor
I = [phi(10*(i-1)+1) phi(10*(i-1)+2) phi(10*(i-1)+3);
phi(10*(i-1)+2) phi(10*(i-1)+4) phi(10*(i-1)+5)
phi(10*(i-1)+3) phi(10*(i-1)+5) phi(10*(i-1)+6)];
% compute all 4 parts of the LMI-matrix
lmi11 = (trace(I)/2)*eye(3) - I;
lmi12 = [phi(10*(i-1)+7) phi(10*(i-1)+8) phi(10*(i-1)+9)]';
lmi21 = lmi12';
lmi22 = phi(10*(i-1)+10);
% plug them together to get the LMI-matrix
LMI = [lmi11 lmi12; lmi21 lmi22];
% get determinant of LMI-matrix (negative sign for positive definite check)
LMIdet(i,1) = -det(LMI);
% compute gradient of determinant of LMI-matrix
if nargout > 2
% compute gradient for each parameter seperately
for j = 1:10
% check if LMI is singular, if it is use pseudo inverse
if rank(LMI) < 4
DC(i,j+(i-1)*10) = LMIdet(i,1)*trace(pinv(LMI)*dphidLMI(:,4*(j-1)+1:j*4));
else
DC(i,j+(i-1)*10) = LMIdet(i,1)*trace(LMI\dphidLMI(:,4*(j-1)+1:j*4));
end
end
% no equality constraints
DCeq = [];
end
end
% get full LMI-gradient (with regrouping we have the chain-rule: dLMI/dX = dLMI/dphi * dphi/dX)
if regroup
DC = (DC*dphidX).';
else
DC = DC.';
end
% no equality constraints
nonlinEqCon = [];
end