-
Notifications
You must be signed in to change notification settings - Fork 166
/
Copy pathmodel.py
300 lines (242 loc) · 7.69 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import pronouncing
import markovify
import re
import random
import numpy as np
import os
import keras
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers.core import Dense
depth = 4 # depth of the network. changing will require a retrain
maxsyllables = 16 # maximum syllables per line. Change this freely without retraining the network
train_mode = False
artist = "kanye_west" # used when saving the trained model
rap_file = "neural_rap.txt" # where the rap is written to
def create_network(depth):
model = Sequential()
model.add(LSTM(4, input_shape=(2, 2), return_sequences=True))
for i in range(depth):
model.add(LSTM(8, return_sequences=True))
model.add(LSTM(2, return_sequences=True))
model.summary()
model.compile(optimizer='rmsprop',
loss='mse')
if artist + ".rap" in os.listdir(".") and train_mode == False:
model.load_weights(str(artist + ".rap"))
print "loading saved network: " + str(artist) + ".rap"
return model
def markov(text_file):
read = open(text_file, "r").read()
text_model = markovify.NewlineText(read)
return text_model
def syllables(line):
count = 0
for word in line.split(" "):
vowels = 'aeiouy'
word = word.lower().strip(".:;?!")
if word[0] in vowels:
count +=1
for index in range(1,len(word)):
if word[index] in vowels and word[index-1] not in vowels:
count +=1
if word.endswith('e'):
count -= 1
if word.endswith('le'):
count+=1
if count == 0:
count +=1
return count / maxsyllables
def rhymeindex(lyrics):
if str(artist) + ".rhymes" in os.listdir(".") and train_mode == False:
print "loading saved rhymes from " + str(artist) + ".rhymes"
return open(str(artist) + ".rhymes", "r").read().split("\n")
else:
rhyme_master_list = []
print "Alright, building the list of all the rhymes"
for i in lyrics:
word = re.sub(r"\W+", '', i.split(" ")[-1]).lower()
rhymeslist = pronouncing.rhymes(word)
rhymeslist = [x.encode('UTF8') for x in rhymeslist]
rhymeslistends = []
for i in rhymeslist:
rhymeslistends.append(i[-2:])
try:
rhymescheme = max(set(rhymeslistends), key=rhymeslistends.count)
except Exception:
rhymescheme = word[-2:]
rhyme_master_list.append(rhymescheme)
rhyme_master_list = list(set(rhyme_master_list))
reverselist = [x[::-1] for x in rhyme_master_list]
reverselist = sorted(reverselist)
rhymelist = [x[::-1] for x in reverselist]
f = open(str(artist) + ".rhymes", "w")
f.write("\n".join(rhymelist))
f.close()
print rhymelist
return rhymelist
def rhyme(line, rhyme_list):
word = re.sub(r"\W+", '', line.split(" ")[-1]).lower()
rhymeslist = pronouncing.rhymes(word)
rhymeslist = [x.encode('UTF8') for x in rhymeslist]
rhymeslistends = []
for i in rhymeslist:
rhymeslistends.append(i[-2:])
try:
rhymescheme = max(set(rhymeslistends), key=rhymeslistends.count)
except Exception:
rhymescheme = word[-2:]
try:
float_rhyme = rhyme_list.index(rhymescheme)
float_rhyme = float_rhyme / float(len(rhyme_list))
return float_rhyme
except Exception:
return None
def split_lyrics_file(text_file):
text = open(text_file).read()
text = text.split("\n")
while "" in text:
text.remove("")
return text
def generate_lyrics(text_model, text_file):
bars = []
last_words = []
lyriclength = len(open(text_file).read().split("\n"))
count = 0
markov_model = markov(text_file)
while len(bars) < lyriclength / 9 and count < lyriclength * 2:
bar = markov_model.make_sentence()
if type(bar) != type(None) and syllables(bar) < 1:
def get_last_word(bar):
last_word = bar.split(" ")[-1]
if last_word[-1] in "!.?,":
last_word = last_word[:-1]
return last_word
last_word = get_last_word(bar)
if bar not in bars and last_words.count(last_word) < 3:
bars.append(bar)
last_words.append(last_word)
count += 1
return bars
def build_dataset(lines, rhyme_list):
dataset = []
line_list = []
for line in lines:
line_list = [line, syllables(line), rhyme(line, rhyme_list)]
dataset.append(line_list)
x_data = []
y_data = []
for i in range(len(dataset) - 3):
line1 = dataset[i ][1:]
line2 = dataset[i + 1][1:]
line3 = dataset[i + 2][1:]
line4 = dataset[i + 3][1:]
x = [line1[0], line1[1], line2[0], line2[1]]
x = np.array(x)
x = x.reshape(2,2)
x_data.append(x)
y = [line3[0], line3[1], line4[0], line4[1]]
y = np.array(y)
y = y.reshape(2,2)
y_data.append(y)
x_data = np.array(x_data)
y_data = np.array(y_data)
#print "x shape " + str(x_data.shape)
#print "y shape " + str(y_data.shape)
return x_data, y_data
def compose_rap(lines, rhyme_list, lyrics_file, model):
rap_vectors = []
human_lyrics = split_lyrics_file(lyrics_file)
initial_index = random.choice(range(len(human_lyrics) - 1))
initial_lines = human_lyrics[initial_index:initial_index + 2]
starting_input = []
for line in initial_lines:
starting_input.append([syllables(line), rhyme(line, rhyme_list)])
starting_vectors = model.predict(np.array([starting_input]).flatten().reshape(1, 2, 2))
rap_vectors.append(starting_vectors)
for i in range(100):
rap_vectors.append(model.predict(np.array([rap_vectors[-1]]).flatten().reshape(1, 2, 2)))
return rap_vectors
def vectors_into_song(vectors, generated_lyrics, rhyme_list):
print "\n\n"
print "About to write rap (this could take a moment)..."
print "\n\n"
def last_word_compare(rap, line2):
penalty = 0
for line1 in rap:
word1 = line1.split(" ")[-1]
word2 = line2.split(" ")[-1]
while word1[-1] in "?!,. ":
word1 = word1[:-1]
while word2[-1] in "?!,. ":
word2 = word2[:-1]
if word1 == word2:
penalty += 0.2
return penalty
def calculate_score(vector_half, syllables, rhyme, penalty):
desired_syllables = vector_half[0]
desired_rhyme = vector_half[1]
desired_syllables = desired_syllables * maxsyllables
desired_rhyme = desired_rhyme * len(rhyme_list)
score = 1.0 - (abs((float(desired_syllables) - float(syllables))) + abs((float(desired_rhyme) - float(rhyme)))) - penalty
return score
dataset = []
for line in generated_lyrics:
line_list = [line, syllables(line), rhyme(line, rhyme_list)]
dataset.append(line_list)
rap = []
vector_halves = []
for vector in vectors:
vector_halves.append(list(vector[0][0]))
vector_halves.append(list(vector[0][1]))
for vector in vector_halves:
scorelist = []
for item in dataset:
line = item[0]
if len(rap) != 0:
penalty = last_word_compare(rap, line)
else:
penalty = 0
total_score = calculate_score(vector, item[1], item[2], penalty)
score_entry = [line, total_score]
scorelist.append(score_entry)
fixed_score_list = []
for score in scorelist:
fixed_score_list.append(float(score[1]))
max_score = max(fixed_score_list)
for item in scorelist:
if item[1] == max_score:
rap.append(item[0])
print str(item[0])
for i in dataset:
if item[0] == i[0]:
dataset.remove(i)
break
break
return rap
def train(x_data, y_data, model):
model.fit(np.array(x_data), np.array(y_data),
batch_size=2,
epochs=5,
verbose=1)
model.save_weights(artist + ".rap")
def main(depth, train_mode):
model = create_network(depth)
text_file = "lyrics.txt"
text_model = markov(text_file)
if train_mode == True:
bars = split_lyrics_file(text_file)
if train_mode == False:
bars = generate_lyrics(text_model, text_file)
rhyme_list = rhymeindex(bars)
if train_mode == True:
x_data, y_data = build_dataset(bars, rhyme_list)
train(x_data, y_data, model)
if train_mode == False:
vectors = compose_rap(bars, rhyme_list, text_file, model)
rap = vectors_into_song(vectors, bars, rhyme_list)
f = open(rap_file, "w")
for bar in rap:
f.write(bar)
f.write("\n")
main(depth, train_mode)