-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
199 lines (166 loc) · 6.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from dotenv import load_dotenv
from openai import OpenAI
import json
# user_request = (
# "What are the airports (icao codes) within 20000 meters of John F "
# "Kennedy airport, Dublin and LAX , return long and "
# "lat in degrees for each and approximate distance in miles. All output "
# "is to be in json. The json fields to include are ICAO, name, city, lat, "
# "lon, distance_in_miles and TZ. The set should be called ICAOS")
user_request = (
"What are the airports (icao codes) within 20000 meters of John F "
"Kennedy airport, Dublin and LAX , return long and "
"lat in degrees for each and approximate distance in miles."
"The json fields to include are ICAO, name, city, lat, "
"lon, distance_in_miles and TZ. The set should be called ICAOS")
load_dotenv()
my_api_key = os.getenv("OPENAI_API_KEY")
model_version = "gpt-4o"
client = OpenAI()
def read_json(file_name: str):
with open(file_name, 'r') as json_file:
data1 = json.load(json_file)
json_file_string: str = json.dumps(data1)
return json_file_string
def get_icao(location, radius, unit, coordinates):
"""The model arguments have been passed to this function. At this point
an api call would be made to retrieve the icao codes from an external
source for that location. For this demo, the api call has been replaced
with data read from 3 separate json files. One for each location."""
icao_info = {
"location": location,
"radius": radius,
"unit": unit,
"coordinates": coordinates
}
# The api call would be here using a json string
# The call has been replaced by 3 file reads.
if "John F Kennedy" in location:
json_str = read_json('icao_usa_kjfk.json')
elif "LAX" in location:
json_str = read_json('icao_usa_klax.json')
elif "Dublin" in location:
json_str = read_json('icao_irl_eidw.json')
else:
json_str = json.dumps(icao_info)
return json_str
def run_conversation(user_content: str, seed=None):
# Step 1: send the conversation and available functions to the model
messages = [{"role": "user",
"content": user_content}]
tools = [
{
"type": "function",
"function": {
"name": "get_icao",
"description": "Get the 4 digit ICAO code for a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San "
"Francisco, CA",
},
"radius": {
"type": "integer",
"description": "distance from location in "
"kilometers or miles",
},
"unit": {"type": "string",
"description": "kilometers or miles",
"enum": ["kilometers", "miles"]},
"coordinates": {"type": "string",
"description": "longitude and latitude",
"enum": ["minutes", "decimal"]},
},
"required": ["location"],
},
},
}
]
response = client.chat.completions.create(
model=model_version,
messages=messages,
tools=tools,
tool_choice="auto",
)
response_message = response.choices[0].message
# tool_calls = response.choices[0].message.tool_calls
tool_calls = response_message.tool_calls
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
available_functions = {
"get_icao": get_icao
}
messages.append(
response_message) # extend conversation with assistant's reply
# Step 4: send the info for each function call and function response
# to the model
for tool_call in tool_calls:
print(f"\nModel Function Call: {tool_call.function.name}")
print(f"Params:{tool_call.function.arguments}")
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
radius=function_args.get("radius"),
unit=function_args.get("unit"),
coordinates=function_args.get("coordinates"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = client.chat.completions.create(
model=model_version,
messages=messages,
response_format={"type": "json_object"},
seed=seed,
temperature=0,
# stream=True
) # get a new response from the model where it can see the function
return second_response
def process_output(json_str: str):
data = json.loads(json_str)
print(type(data)) # dictionary
print("data:", data)
save_model_data(data)
for icao in data['ICAOS']:
print(icao)
count = len(data["ICAOS"])
new_york_count = sum(
1 for entry in data["ICAOS"] if entry["city"] == "New York")
# Count the entries where first 2 characters of ICAO are "EI"
ei_count = sum(
1 for entry in data["ICAOS"] if entry["ICAO"].startswith("EI"))
Los_Angeles_count = sum(
1 for entry in data["ICAOS"] if entry["TZ"].endswith("Los_Angeles"))
print("")
print("{:<30}{:>5}".format("The count of all ICAO\'s is:", count))
print("{:<30}{:>5}".format("New York entries returned:", new_york_count))
print("{:<30}{:>5}".format("Dublin entries returned:", ei_count))
print("{:<30}{:>5}".format("Los Angeles entries returned:",
Los_Angeles_count))
def save_model_data(data):
with open('data_from_openai.json', 'w') as f:
json.dump(data, f)
if __name__ == '__main__':
print(f"\nRequest: {user_request}")
response = run_conversation(user_request, 123)
print("")
# The following code gives a scrolling effect. Data is being returned as it
# is found, not necessarily all in one chunk.
# stream=True
# for chunk in response:
# print(chunk.choices[0].delta.content or "", end='', flush=True)
json_string = response.choices[0].message.content
print("JSON returned: ", json_string)
process_output(json_string)