-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdb.py
231 lines (181 loc) · 8.86 KB
/
db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
ASCII art & notes for the test db and related properties.
. 4 30
3 14 29
/ \
/ \
2 6 13 21 28 37
/ \ / \
1 2 5 9 12 17 20 24 27 33 36
/ \ / \ / \ / \ / \
0 0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31 32 34 35 38
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
leaves in sub tree containing tx, at time tw
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0: 1 2 2 4 4 4 4 8 8 . 8 8 . 8 .8 . 8 . 8 . 16 16 16 16 16 16
1: 2 2 4
2: 1 4
3: 4 4
4: 1 2 2 8
5:
6:
7:
8:
tx=0 ta -> 20 witness from reaches the accumulator, what is the oldest accumulator we can use ?
Note: the accumulator (obviously) can't contain tx until after tx
Note: identifying by *leaf* index, not mmr index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0: 0 1 1 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15 15
1: 1 1 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15 15
2: 2 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15 15
3: 3 3 3 3 7 7 7 7 7 7 7 7 15 15 15 15 15 15
4: 4 5 5 7 7 7 7 7 7 7 7 15 15 15 15 15 15
5: 5 5 7 7 7 7 7 7 7 7 15 15 15 15 15 15
6: 6 7 7 7 7 7 7 7 7 15 15 15 15 15 15
7: 7 7 7 7 7 7 7 7 15 15 15 15 15 15
8: 8 9 9 11 11 11 11 15 15 15 15 15 15
* The reyzin paper defines `t` as "A discrete time / operation counter".
* In the context of MMRIVER, this means the number of leaf additions, which is `e`.
* `d` is the length of the witness, which is also the height, `h`, of the accumulator peak.
15
7 111 14
3 6 10 11 110 1010 13
1 2 4 5 8 9 11 1 10 100 101 1000 1001 1011 12
1111
7 111 1110
3 6 10 11 110 1010 1101 18
1 2 4 5 8 9 11 1 10 100 101 1000 1001 1011 1100 16 17
1111
7 111 1110 22
3 6 10 11 110 1010 1101 10010 21
1 2 4 5 8 9 11 1 10 100 101 1000 1001 1011 1100 10000 10001 19 20
1111
7 111 1110 10110
3 6 10 11 110 1010 1101 10010 10101
1 2 4 5 8 9 11 1 10 100 101 1000 1001 1011 1100 10000 10001 10011 10100
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31 32 34 35 38
1 2 4 5 8 9 11 12 16 17 19 20 23 24 26 27 32 33 35 36 39
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
"""
import hashlib
from algorithms import add_leaf_hash
from algorithms import leaf_count
from algorithms import complete_mmr
from algorithms import hash_pospair64
from algorithms import trailing_zeros
def hash_num64(v: int) -> bytes:
"""
Compute the SHA-256 hash of v
Args:
v (int): assumed to be an unsigned integer using at most 64 bits
Returns:
bytes: the SHA-256 hash of the big endian representation of v
"""
return hashlib.sha256(v.to_bytes(8, byteorder="big", signed=False)).digest()
class FlatDB:
"""An implementation that satisfies the required interafce of addleafhash"""
def __init__(self):
self.store = []
def append(self, v):
self.store.append(v)
return len(self.store) # index of the *NEXT* item that will be added
def get(self, i):
return self.store[i]
def init_canonical39(self):
"""Re-creates the kat db using addleafhash"""
for ileaf in range(leaf_count(38)):
# we know its a leaf, and we know len(self.store) is a valid mmr size,
# so there is a short cut here for leaf index -> mmr index.
# the count of trailing zeros in the leaf index is also the number of nodes we will need to add
i = len(self.store)
# and even numbered leaves are always singleton peaks
if ileaf % 2:
i = i + trailing_zeros(ileaf)
add_leaf_hash(self, hash_num64(i))
def init_size(self, mmrsize: int):
"""Re-creates the kat db using addleafhash"""
mmr = complete_mmr(mmrsize - 1)
for ileaf in range(leaf_count(mmr)):
# we know its a leaf, and we know len(self.store) is a valid mmr size,
# so there is a short cut here for leaf index -> mmr index.
# the count of trailing zeros in the leaf index is also the number of nodes we will need to add
i = len(self.store)
# and even numbered leaves are always singleton peaks
if ileaf % 2:
i = i + trailing_zeros(ileaf)
add_leaf_hash(self, hash_num64(i))
class KatDB:
"""A fixed size database for providing "known answers" """
def __init__(self):
# A map is used so we can build the tree in layers, with explicit put()
# calls, for illustrative purposes In a more typical implementation,
# this would just be a list.
self.store = {}
def parent_hash(self, iparent: int, ileft: int, iright: int) -> bytes:
vleft = self.store[ileft]
vright = self.store[iright]
return hash_pospair64(iparent + 1, vleft, vright)
def put(self, i: int, v: bytes):
self.store[i] = v
def get(self, i) -> bytes:
return self.store[i]
def init_canonical39(self):
"""
Initialise the db to the canonical MMR(39) which is,
4 30
3 14 29
/ \
/ \
2 6 13 21 28 37
/ \ / \
1 2 5 9 12 17 20 24 27 33 36
/ \ / \ / \ / \ / \
0 0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31 32 34 35 38
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
"""
self.store = {}
# height 0 (the leaves)
self.put(0, hash_num64(0))
self.put(1, hash_num64(1))
self.put(3, hash_num64(3))
self.put(4, hash_num64(4))
self.put(7, hash_num64(7))
self.put(8, hash_num64(8))
self.put(10, hash_num64(10))
self.put(11, hash_num64(11))
self.put(15, hash_num64(15))
self.put(16, hash_num64(16))
self.put(18, hash_num64(18))
self.put(19, hash_num64(19))
self.put(22, hash_num64(22))
self.put(23, hash_num64(23))
self.put(25, hash_num64(25))
self.put(26, hash_num64(26))
self.put(31, hash_num64(31))
self.put(32, hash_num64(32))
self.put(34, hash_num64(34))
self.put(35, hash_num64(35))
self.put(38, hash_num64(38))
# height 1
self.put(2, self.parent_hash(2, 0, 1))
self.put(5, self.parent_hash(5, 3, 4))
self.put(9, self.parent_hash(9, 7, 8))
self.put(12, self.parent_hash(12, 10, 11))
self.put(17, self.parent_hash(17, 15, 16))
self.put(20, self.parent_hash(20, 18, 19))
self.put(24, self.parent_hash(24, 22, 23))
self.put(27, self.parent_hash(27, 25, 26))
self.put(33, self.parent_hash(33, 31, 32))
self.put(36, self.parent_hash(36, 34, 35))
# height 2
self.put(6, self.parent_hash(6, 2, 5))
self.put(13, self.parent_hash(13, 9, 12))
self.put(21, self.parent_hash(21, 17, 20))
self.put(28, self.parent_hash(28, 24, 27))
self.put(37, self.parent_hash(37, 33, 36))
# height 3
self.put(14, self.parent_hash(14, 6, 13))
self.put(29, self.parent_hash(29, 21, 28))
# height 4
self.put(30, self.parent_hash(30, 14, 29))