-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_recruitment_silo_trial.R
200 lines (188 loc) · 10.8 KB
/
random_recruitment_silo_trial.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
source('set_up_script.R')
registerDoParallel(cores=20)
## ring vaccination trial ##################################################
nClusters <- 100
nTrials <- 1000
vaccine_efficacies <- c(0,0.7)
adaptations <- c('Ney','Ros','TST','TS','')
cluster_flags <- c(0,1)
trial_designs <- expand.grid(VE=vaccine_efficacies,cluster=cluster_flags,adapt=adaptations,stringsAsFactors = F)
trial_designs$weight <- 'continuous'
nComb <- sum(trial_designs$adapt=='')
nCombAdapt <- nComb*length(adaptations)
trial_designs <- rbind(trial_designs,trial_designs[trial_designs$adapt=='',])
trial_designs$weight[(nCombAdapt+1):(nComb*(length(adaptations)+1))] <- 'binary'
trial_designs$ttepower <- trial_designs$tteVE_est <- trial_designs$tteVE_sd <- trial_designs$power <-
trial_designs$VE_est <- trial_designs$VE_sd <- trial_designs$vaccinated <- trial_designs$infectious <- trial_designs$enrolled <- 0
ref_recruit_day <- 30
eval_day <- 31
latest_infector_time <- eval_day - 0
## store original lists
true_contact_of_contact_list <- contact_of_contact_list
true_high_risk_list <- high_risk_list
true_household_list <- household_list
true_contact_list <- contact_list
## get list sizes
total_size <- mean(sapply(1:length(high_risk_list),function(x){
hrs <- high_risk_list[[x]]
hr_hhs <- unlist(sapply(hrs,function(y)household_list[[y]]))
c_of_c <- contact_of_contact_list[[x]]
cont <- contact_list[[x]]
length(unique(c(cont,c_of_c,hr_hhs)))
}))
## overwrite with empty lists
high_risk_list <- household_list <- contact_of_contact_list <- lapply(g_name,function(x)c())
## fill contact list with random indices of mean total size
contact_list <- lapply(g_name,function(x)sample(g_name,total_size,replace=F))
ebola_spread_wrapper <- function(i_nodes_info,s_nodes,v_nodes,e_nodes_info,direct_VE){
contact_of_contact_list <- true_contact_of_contact_list
contact_list <- true_contact_list
# to contacts
current_infectious <- i_nodes_info[,1]
if(length(current_infectious)>0){
e_nodes_info <- spread(s_nodes,v_nodes,e_nodes_info,current_infectious,direct_VE,incperiod_shape,incperiod_rate,susc_list=contact_list,beta_scalar=1)
s_nodes[e_nodes_info[,1]] <- 0
e_nodes_info <- spread(s_nodes,v_nodes,e_nodes_info,current_infectious,direct_VE,incperiod_shape,incperiod_rate,susc_list=hr_and_hh_list,beta_scalar=high_risk_scalar-1)
s_nodes[e_nodes_info[,1]] <- 0
e_nodes_info <- spread(s_nodes,v_nodes,e_nodes_info,current_infectious,direct_VE,incperiod_shape,incperiod_rate,susc_list=contact_of_contact_list,beta_scalar=neighbour_scalar)
}
return(e_nodes_info)
}
for(rnd in 1){
trial_results <- foreach(des = 1:nCombAdapt) %dopar% {
cluster_flag <- trial_designs$cluster[des]
direct_VE <- trial_designs$VE[des]
adaptation <- trial_designs$adapt[des]
vaccinated_count <- infectious_count <- enrolled_count <- list()
for(i in 1:2) vaccinated_count[[i]] <- infectious_count[[i]] <- enrolled_count[[i]] <- 0
pval_binary_mle3 <- ve_est3 <- pval_binary_mle2 <- ve_est2 <- pval_binary_mle <- ve_est <- c()
for(tr in 1:nTrials){
vaccinees <- trial_participants <- recruit_times <- c()
vaccinees2 <- trial_participants2 <- c()
infectious_by_vaccine <- excluded <- matrix(0,nrow=nClusters,ncol=2)
results_list <- list()
allocation_ratio <- 0.5
netwk_list <- list()
for(iter in 1:nClusters){
## select random person to start
first_infected <- sample(g_name,1)
netwk <- simulate_contact_network(first_infected,cluster_flag=cluster_flag,allocation_ratio=allocation_ratio,direct_VE=direct_VE)
netwk_list[[iter]] <- netwk
results_list[[iter]] <- netwk[[1]]
results <- results_list[[iter]]
infectious_by_vaccine[iter,] <- c(sum(results$vaccinated&results$DayInfectious>results$RecruitmentDay+9),sum(!results$vaccinated&results$inTrial&results$DayInfectious>results$RecruitmentDay+9))
excluded[iter,] <- c(sum(results$vaccinated&results$DayInfectious<results$RecruitmentDay+10),sum(!results$vaccinated&results$inTrial&results$DayInfectious<results$RecruitmentDay+10))
recruit_times[iter] <- netwk[[3]][1]
vaccinees[iter] <- netwk[[4]]
trial_participants[iter] <- netwk[[5]]
##!! weighting non-events
rec_day <- recruit_times[iter]
infectious_index <- results$DayInfectious<latest_infector_time+rec_day&(results$DayRemoved>rec_day|is.na(results$DayRemoved))
infectious_names <- results$InfectedNode[infectious_index]
infectious_ends <- pmin(results$DayRemoved[infectious_index],latest_infector_time+rec_day)
infectious_ends[is.na(infectious_ends)] <- latest_infector_time+rec_day
infectious_starts <- pmax(results$DayInfectious[infectious_index],rec_day)
vaccinees2[iter] <- netwk[[4]]
trial_participants2[iter] <- netwk[[5]]
## iter corresponds to a day, so we can adapt the enrollment rate on iter=31
if(adaptation!=''&&iter %% eval_day == 0 && sum(vaccinees)>0){
weights <- get_efficacious_probabilities(results_list,vaccinees,trial_participants,max_time=length(results_list),contact_network = -1)
allocation_ratio <- response_adapt(weights[[3]],weights[[2]],days=iter,adaptation=adaptation)
}
}
#ph_results <- iterate_ph_model(netwk_list,cluster_flag=cluster_flag,pre_randomisation=F)
#pval_binary_mle3[tr] <- ph_results[1]
#ve_est3[tr] <- ph_results[2]
eval_list <- get_efficacious_probabilities(results_list,vaccinees=vaccinees2,trial_participants=trial_participants2,contact_network = -1)
pval_binary_mle2[tr] <- calculate_pval(eval_list[[3]],eval_list[[2]])
ve_est2[tr] <- eval_list[[1]]
vaccinated_count[[1]] <- vaccinated_count[[1]] + sum(vaccinees2)/nTrials
enrolled_count[[1]] <- enrolled_count[[1]] + sum(trial_participants2)/nTrials
infectious_count[[1]] <- infectious_count[[1]] + (sum(sapply(results_list,nrow))-length(results_list))/nTrials
if(adaptation==''){
pop_sizes <- c(sum(vaccinees2),sum(trial_participants2) - sum(vaccinees2)) - colSums(excluded)
pval_binary_mle[tr] <- calculate_pval(colSums(infectious_by_vaccine,na.rm=T),pop_sizes)
ve_est[tr] <- calculate_ve(colSums(infectious_by_vaccine,na.rm=T),pop_sizes)
vaccinated_count[[2]] <- vaccinated_count[[2]] + sum(vaccinees2)/nTrials
enrolled_count[[2]] <- enrolled_count[[2]] + sum(trial_participants2)/nTrials
infectious_count[[2]] <- infectious_count[[2]] + (sum(sapply(results_list,nrow))-length(results_list))/nTrials
}
## ICC without weighting
#if(cluster_flag==1){
# vax <- vaccinees
# non_vax <- trial_participants - vax
# trial_case <- sapply(results_list,function(x)sum(x$inTrial==T))
# vax_case <- sapply(results_list,function(x)sum(x$vaccinated==T))
# non_vax_case <- trial_case - vax_case
# cid <- rep(1:length(trial_participants),times=trial_participants)
# non_cases <- trial_participants - trial_case
# y <- unlist(sapply(1:length(trial_case),function(x) c(rep(1,times=trial_case[x]),rep(0,times=non_cases[x]))))
#icc <- iccbin(cid,y,data=data.frame(cid=factor(cid),y=y),method='aov',ci.type='aov')
#}
}
print(c(des,adaptation))
power <- VE_est <- VE_sd <- c()
power[1] <- sum(pval_binary_mle2<0.05,na.rm=T)/sum(!is.na(pval_binary_mle2))
#power[3] <- sum(pval_binary_mle3<0.05,na.rm=T)/sum(!is.na(pval_binary_mle3))
VE_est[1] <- mean(ve_est2,na.rm=T)
#VE_est[3] <- mean(ve_est3,na.rm=T)
VE_sd[1] <- sd(ve_est2,na.rm=T)
#VE_sd[3] <- sd(ve_est3,na.rm=T)
if(adaptation==''){
power[2] <- sum(pval_binary_mle<0.05,na.rm=T)/sum(!is.na(pval_binary_mle))
VE_est[2] <- mean(ve_est,na.rm=T)
VE_sd[2] <- sd(ve_est,na.rm=T)
}
return(list(power, VE_est, VE_sd,vaccinated_count, infectious_count, enrolled_count))
}
for(des in 1:nCombAdapt){
cluster_flag <- trial_designs$cluster[des]
direct_VE <- trial_designs$VE[des]
adaptation <- trial_designs$adapt[des]
trial_designs$vaccinated[des] <- trial_results[[des]][[4]][[1]]
trial_designs$infectious[des] <- trial_results[[des]][[5]][[1]]
trial_designs$enrolled[des] <- trial_results[[des]][[6]][[1]]
if(adaptation==''){
trial_designs$vaccinated[des+nComb] <- trial_results[[des]][[4]][[2]]
trial_designs$infectious[des+nComb] <- trial_results[[des]][[5]][[2]]
trial_designs$enrolled[des+nComb] <- trial_results[[des]][[6]][[2]]
}
trial_designs$power[des] <- trial_results[[des]][[1]][1]
trial_designs$VE_est[des] <- trial_results[[des]][[2]][1]
trial_designs$VE_sd[des] <- trial_results[[des]][[3]][1]
if(adaptation==''){
trial_designs$power[des+nComb] <- trial_results[[des]][[1]][2]
trial_designs$VE_est[des+nComb] <- trial_results[[des]][[2]][2]
trial_designs$VE_sd[des+nComb] <- trial_results[[des]][[3]][2]
#trial_designs$ttepower[des+nComb] <- trial_results[[des]][[1]][3]
#trial_designs$tteVE_est[des+nComb] <- trial_results[[des]][[2]][3]
#trial_designs$tteVE_sd[des+nComb] <- trial_results[[des]][[3]][3]
}
#trial_designs$ttepower[des] <- trial_results[[des]][[1]][3]
#trial_designs$tteVE_est[des] <- trial_results[[des]][[2]][3]
#trial_designs$tteVE_sd[des] <- trial_results[[des]][[3]][3]
}
print(subset(trial_designs,VE==0))
print(subset(trial_designs,VE>0))
result_table <- subset(trial_designs,VE>0)[,c(2:13)[-c(10:12)]]
#result_table_tte <- subset(trial_designs,VE>0)[,c(2:13)[-c(7:9)]]
result_table$t1e <- subset(trial_designs,VE==0)$power
#result_table_tte$t1e <- subset(trial_designs,VE==0)$ttepower
result_table$VE <- paste0(round(result_table$VE_est,2),' (',round(result_table$VE_sd,2),')')
#result_table_tte$VE <- paste0(round(result_table_tte$tteVE_est,2),' (',round(result_table_tte$tteVE_sd,2),')')
result_table <- result_table[,!colnames(result_table)%in%c('VE_est','VE_sd')]
#result_table_tte <- result_table_tte[,!colnames(result_table_tte)%in%c('tteVE_est','tteVE_sd')]
#colnames(result_table_tte)[colnames(result_table_tte)=='ttepower'] <- 'power'
result_table$endpoint <- 'binary'
#result_table_tte$endpoint <- 'TTE'
#result_table <- rbind(result_table,result_table_tte)
result_table$adapt <- as.character(result_table$adapt)
result_table$adapt[result_table$adapt==''] <- 'None'
result_table$cluster[result_table$cluster==0] <- 'Individual'
result_table$cluster[result_table$cluster==1] <- 'Cluster'
result_table <- result_table[,c(1:3,10,4:9)]
result_table <- subset(result_table,!(endpoint=='TTE'&weight=='binary'))
colnames(result_table) <- c('Randomisation','Adaptation','Weighting','Endpoint','Sample size','Infectious','Vaccinated','Power','Type 1 error','VE estimate')
print(xtable(result_table), include.rownames = FALSE)
saveRDS(result_table,paste0('storage/rrsilo',rnd,'.Rds'))
}