-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotting.py
91 lines (79 loc) · 2.83 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import sys
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
import ROOT as root
f_water = root.TFile("../../rat-pac/output/water/testing/b_monopositrons.root", "READ")
f_wbls1pct = root.TFile("../../rat-pac/output/wbls1pct/testing/b_monopositrons.root", "READ")
f_wbls3pct = root.TFile("../../rat-pac/output/wbls3pct/testing/bonsai_monopositrons_wbls3.root", "READ")
f_wbls5pct = root.TFile("../../rat-pac/output/wbls5pct/testing/b_monopositrons.root", "READ")
# water fits
fits_water = {
"water n9": ("0.142414*n9py+1.3434", "n9py"),
"water n9eff": ("0.0332394*n9eff+1.64611", "n9eff")
}
fits_wbls1pct = {
"wbls1% n100": ("0.0394906*n100py-0.290672", "n100py"),
"wbls1% n100eff": ("0.00880797*n100eff+0.138467", "n100eff")
}
fits_wbls3pct = {
"wbls3% n100": ("0.0290602*n100py-0.673947", "n100py"),
"wbls3% n100eff": ("0.00612595*n100eff-0.177031", "n100eff")
}
fits_wbls5pct = {
"wbls5% n100": ("0.0232902*n100py-0.888654", "n100py"),
"wbls5% n100eff": ("0.00475615*n100eff-0.378911", "n100eff")
}
files = {
#f_water: fits_water,
#f_wbls1pct: fits_wbls1pct,
#f_wbls3pct: fits_wbls3pct,
f_wbls5pct: fits_wbls5pct
}
hist_idx = 0
f1, a1 = plt.subplots()
f2, a2 = plt.subplots()
for file in files:
#filename = sys.argv[1]
#rfile = root.TFile(filename, "READ")
tree = file.Get("data")
energies = np.arange(0.5, 10.5, 0.5)
#fig, axs = plt.subplots(2)
fits = files[file]
#hist_idx = 0
for key in fits:
#hist_idx += 1
res = []
mean = []
res_error = []
mean_error = []
xs = []
for e in energies:
tree.Draw(f"({fits[key][0]})-mc_energy>>hist{str(hist_idx)}", f"{fits[key][1]}>0 && closestPMT>0 && mc_energy=={e}", "goff")
hist = root.gDirectory.Get(f"hist{str(hist_idx)}")
hist_idx += 1
if hist.GetEntries() < 50: continue
sigma = hist.GetStdDev()
if sigma == 0: breakpoint()
res.append(sigma / e)
res_error.append(hist.GetStdDevError() / e)
tree.Draw(f"({fits[key][0]})>>hist1{str(hist_idx)}", f"{fits[key][1]}>0 && closestPMT>0 && mc_energy=={e}", "goff")
hist1 = root.gDirectory.Get(f"hist1{str(hist_idx)}")
hist_idx += 1
vmean = hist1.GetMean()
mean.append(vmean / e)
mean_error.append(hist1.GetMeanError() / e)
xs.append(e)
#hist.Reset("ICESM")
a1.errorbar(xs, res, yerr=res_error, label=key)
a2.errorbar(xs, mean, yerr=mean_error, label=key)
a1.set_xticks(np.arange(0.5, 10.5, 0.5))
a1.set_ylabel("Sigma / E")
a1.set_xlabel("MC energy")
a2.set_xticks(np.arange(0.5, 10.5, 0.5))
a2.set_ylabel("Mean reco energy / MC energy")
a2.set_xlabel("MC energy")
plt.close(f1)
plt.legend()
plt.show()
print("Finished")