-
Notifications
You must be signed in to change notification settings - Fork 167
/
9-arima_b.qmd
164 lines (127 loc) · 5.4 KB
/
9-arima_b.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
title: "ETC3550/ETC5550 Applied forecasting"
author: "Ch9. ARIMA models"
institute: "OTexts.org/fpp3/"
pdf-engine: pdflatex
fig-width: 7.5
fig-height: 3.5
format:
beamer:
theme: monash
aspectratio: 169
fontsize: 14pt
section-titles: false
knitr:
opts_chunk:
dev: "cairo_pdf"
include-in-header: header.tex
execute:
echo: false
message: false
warning: false
---
```{r setup, include=FALSE}
source("setup.R")
library(patchwork)
library(purrr)
```
## Backshift operator notation
* $B$ shifts the data back one period. $B y_{t} = y_{t - 1}$
* $B^2$ shifts the data back two periods: $B(By_{t}) = B^{2}y_{t} = y_{t-2}$
* A difference can be written as $(1 - B) y_{t}$
* A $d$th-order difference can be written as $(1 - B)^{d} y_{t}$
* A seasonal difference followed by a first difference can be written as
$(1-B)(1-B^m)y_t$
## AR(1) model
\begin{block}{}
\centerline{$y_{t} = c + \phi_1 y_{t - 1} + \varepsilon_{t}$}
\end{block}
* When $\phi_1=0$, $y_t$ is **equivalent to WN**
* When $\phi_1=1$ and $c=0$, $y_t$ is **equivalent to a RW**
* When $\phi_1=1$ and $c\ne0$, $y_t$ is **equivalent to a RW with drift**
* When $\phi_1<0$, $y_t$ tends to **oscillate between positive and negative values**.
## Autoregressive models
A multiple regression with \textbf{lagged values} of $y_t$ as predictors.
\vspace*{-1.2cm}
\begin{align*}
y_t &= c + \phi_{1}y_{t - 1} + \phi_{2}y_{t - 2} + \cdots + \phi_{p}y_{t - p} + \varepsilon_{t} \\
&= c + (\phi_1 B + \phi_2 B^2 + \cdots + \phi_p B^p)y_t + \varepsilon_t
\end{align*}\pause\vspace*{-1.2cm}
\begin{align*}
(1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p)y_t &= c + \varepsilon_t \\
\phi(B) y_t &= c+\varepsilon_t
\end{align*}
* $\varepsilon_t$ is white noise.
* $\phi(B) = (1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p)$
## Stationarity conditions
We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.
\begin{block}{General condition for stationarity}
Complex roots of $\phi(z) = 1-\phi_1 z - \phi_2 z^2 - \dots - \phi_pz^p$ lie outside the unit circle on the complex plane.
\end{block}\pause\vspace*{-0.3cm}
* For $p=1$: $-1<\phi_1<1$.
* For $p=2$: $-1<\phi_2<1\qquad \phi_2+\phi_1 < 1 \qquad \phi_2 -\phi_1 < 1$.
* More complicated conditions hold for $p\ge3$.
* fable takes care of this.
## Moving Average (MA) models
A multiple regression with \textbf{past \emph{errors}} as predictors.
\vspace*{-1.2cm}
\begin{align*}
y_{t} &= c + \varepsilon_t + \theta_{1}\varepsilon_{t - 1} + \theta_{2}\varepsilon_{t - 2} + \cdots + \theta_{q}\varepsilon_{t - q}\\
&= c + (1 + \theta_1 B + \theta_2 B^2 + \cdots + \theta_q B^q)\varepsilon_t \\
&= c + \theta(B)\varepsilon_t
\end{align*}\pause\vspace*{-1.2cm}
* $\varepsilon_t$ is white noise.
* $\theta(B) = (1 + \theta_1 B + \theta_2 B^2 + \cdots + \theta_q B^q)$
## Invertibility
\begin{block}{General condition for invertibility}
Complex roots of $\theta(z) = 1+\theta_1 z + \theta_2 z^2 + \dots + \theta_qz^q$ lie outside the unit circle on the complex plane.
\end{block}\pause
* For $q=1$: $-1<\theta_1<1$.
* For $q=2$: $-1<\theta_2<1\qquad \theta_2+\theta_1 >-1 \qquad \theta_1 -\theta_2 < 1$.
* More complicated conditions hold for $q\ge3$.
* fable takes care of this.
## ARIMA models
\fontsize{14}{14.5}\sf\vspace*{0.2cm}
\begin{block}{ARIMA($p, d, q$) model:\qquad $\phi(B)(1-B)^dy_{t} = c + \theta(B)\varepsilon_{t}$}
\begin{tabular}{rl}
AR:& $p =$ order of the autoregressive part\\
I: & $d =$ degree of first differencing involved\\
MA:& $q =$ order of the moving average part.
\end{tabular}
\end{block}\pause\vspace*{-0.2cm}
* Conditions on AR coefficients ensure stationarity.
* Conditions on MA coefficients ensure invertibility.
* White noise model: ARIMA(0,0,0)
* Random walk: ARIMA(0,1,0) with no constant
* Random walk with drift: ARIMA(0,1,0) with \rlap{const.}
* AR($p$): ARIMA($p$,0,0)
* MA($q$): ARIMA(0,0,$q$)
## R model
\vspace*{0.2cm}
\begin{block}{Intercept form}
\centerline{$(1-\phi_1B - \cdots - \phi_p B^p) y_t' = c + (1 + \theta_1 B + \cdots + \theta_q B^q)\varepsilon_t$}
\end{block}
\begin{block}{Mean form}
\centerline{$(1-\phi_1B - \cdots - \phi_p B^p)(y_t' - \mu) = (1 + \theta_1 B + \cdots + \theta_q B^q)\varepsilon_t$}
\end{block}
* $y_t' = (1-B)^d y_t$
* $\mu$ is the mean of $y_t'$.
* $c = \mu(1-\phi_1 - \cdots - \phi_p )$.
* fable uses intercept form
## Understanding ARIMA models
\fontsize{13}{14}\sf
* If $c=0$ and $d=0$, the long-term forecasts will go to zero.
* If $c=0$ and $d=1$, the long-term forecasts will go to a non-zero constant.
* If $c=0$ and $d=2$, the long-term forecasts will follow a straight line.
* If $c\ne0$ and $d=0$, the long-term forecasts will go to the mean of the data.
* If $c\ne0$ and $d=1$, the long-term forecasts will follow a straight line.
* If $c\ne0$ and $d=2$, the long-term forecasts will follow a quadratic trend.
## Understanding ARIMA models
\fontsize{14}{16}\sf\vspace*{0.2cm}
### Forecast variance and $d$
* The higher the value of $d$, the more rapidly the prediction intervals increase in size.
* For $d=0$, the long-term forecast standard deviation will go to the standard deviation of the historical data.
### Cyclic behaviour
* For cyclic forecasts, $p\ge2$ and some restrictions on coefficients are required.
* If $p=2$, we need $\phi_1^2+4\phi_2<0$. Then average cycle of length
\centerline{$(2\pi)/\left[\text{arc cos}(-\phi_1(1-\phi_2)/(4\phi_2))\right].$}