-
Notifications
You must be signed in to change notification settings - Fork 167
/
etc3550_intro.qmd
269 lines (197 loc) · 6.64 KB
/
etc3550_intro.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
title: "ETC3550/ETC5550 Applied forecasting"
pdf-engine: pdflatex
fig-width: 7.5
fig-height: 3.5
format:
beamer:
theme: monash
aspectratio: 169
fontsize: 14pt
section-titles: false
knitr:
opts_chunk:
dev: "cairo_pdf"
include-in-header: header.tex
execute:
echo: false
message: false
warning: false
---
```{r setup, include=FALSE}
source("setup.R")
```
## Contact details
\vspace*{0.2cm}
\begin{alertblock}{Lecturer: Professor Rob Hyndman}
\href{mailto:rob.hyndman@monash.edu}{\faicon{envelope} rob.hyndman@monash.edu}
\href{https://robjhyndman.com}{\faicon{home} robjhyndman.com}
\href{https://twitter.com/robjhyndman}{\faicon{twitter} @robjhyndman}
%\href{https://robjhyndman.com}{\faicon{university} Room E762, Menzies Building}
\end{alertblock}
\begin{block}{Tutors}
\begin{itemize}\itemsep=0cm\parskip=0cm
\item \textbf{Mitchell O'Hara-Wild}
\item Elena Sanina
\item Xiaoqian Wang
\item Yangzhouran (Fin) Yang
\item Zhixiang (Elvis) Yang
\end{itemize}
\end{block}
## Brief bio
\fontsize{13}{16}\sf
- Professor of Statistics, Monash University
- Co-author of most popular forecasting textbook in the world
- Developer of most popular forecasting software in the world
### How my forecasting methodology is used:
- Pharmaceutical Benefits Scheme
- Electricity demand
- Australian tourism demand
- Ageing population
- COVID-19 cases
- TAC large claims
## Unit objectives
\fontsize{13}{14}\sf
1. To obtain an understanding of common statistical methods used in business and economic forecasting.
2. To develop the computer skills required to forecast business and economic time series data;
3. To gain insights into the problems of implementing and operating large scale forecasting systems for use in business.
### Teaching and learning approach
* Recorded lectures embedded in the textbook at [OTexts.com/fpp3](https://OTexts.com/fpp3)
* No scheduled activities on Monday (other than week 1)
* One 50 minute lecture each Wednesday for 12 weeks.
* One 80 minute tutorial each week for 12 weeks.
## Classes
\vspace*{0.2cm}
### Lectures
**Week 1**: Monday 11am in-person. Wednesday 3pm online
**Weeks 2--11**: Wednesday 3pm online
**Week 12**: Wednesday 3pm in-person
\pause
### Tutorials
* In-person unless you're overseas.
\pause
###
* All lectures will be recorded and posted on Moodle
* One tutorial will be recorded each week and posted on Moodle.
## Key reference
\begin{block}{}\bf
\hangafter=1\hangindent=.3cm
{Hyndman, R.~J. \& Athanasopoulos, G. (2021) \emph{Forecasting: principles and practice}, 3rd edition}
\end{block}\pause
\begin{alertblock}{}\Large
\centerline{\bf OTexts.org/fpp3/}
\end{alertblock}
\pause
* Free and online
* Data sets in associated R packages
* R code for examples
## Outline
\begin{tabular}{rp{8cm}l}
\textbf{Week} & \textbf{Topic} & \textbf{Chapter} \\
\midrule
1 & Introduction to forecasting and R & 1 \\
2 & Time series graphics & 2 \\
3 & Time series decomposition & 3 \\
4 & The forecaster's toolbox & 5\\
5--6 & Exponential smoothing & 8 \\
7--9 & Forecasting with ARIMA models & 9 \\
10--11 & Multiple regression and forecasting & 7 \\
11--12 & Dynamic regression & 10 \\
\end{tabular}
## Assessment
\vspace*{-0.2cm}
- Four assignments and one larger project: 40%
- Exam (2 hours): 60%.
\pause
\begin{block}{}\small\centering
\begin{tabular}{llr}
\textbf{Task} & \textbf{Due Date} & \textbf{Value} \\
\midrule
Assignment 1 & Sun 12 March & 2\% \\
Assignment 2 & Sun 26 March & 6\% \\
Assignment 3 & Sun 16 April & 6\% \\
Assignment 4 & Sun 30 April & 6\% \\
Project & Sun 21 May & 20\% \\
Final exam & Official exam period & 60\%
\end{tabular}
\end{block}
\pause\vspace*{-0.4cm}
- Need at least 45\% for exam, and 50\% for total.
- \textbf{ETC5550 students:} Extra exam question.
## Moodle site
\fontsize{18}{24}\sf
- Includes all course materials
- Assignment submissions
- Forum for asking questions, etc.
###
**Please don't send emails. Use the forum.**
## International Institute of Forecasters
\placefig{1}{3}{width=4cm}{iifLOGO2}
\begin{textblock}{8}(7,3)
\begin{block}{}
\begin{itemize}
\item The IIF provides a prize to the top student in this subject each year.
\item US\$100 plus one year membership.
\end{itemize}
\end{block}
\end{textblock}
## R
\fontsize{13}{13}\sf
![](figs/Rlogo.png){height=1.3cm}
Available for download from CRAN:
https://cran.r-project.org
\vspace*{-0.5cm}\noindent\rule{\textwidth}{1pt}
![](figs/RStudio-Logo-Flat.png){height=1.3cm}
Available for download from RStudio:
https://posit.co/download/rstudio-desktop/
<!-- \placefig{.4}{1.2}{width=6cm}{figs/Rlogo} -->
<!-- \placefig{7}{3.5}{width=5.5cm}{figs/RStudio-Ball} -->
## Main packages
\placefig{4.2}{1.4}{width=3.8cm}{tsibble.png}
\placefig{8.0}{1.4}{width=3.8cm}{tsibbledata.png}
\placefig{2.3}{4.65}{width=3.8cm}{tidyverse.png}
\placefig{6.1}{4.65}{width=3.8cm}{feasts.png}
\placefig{9.9}{4.65}{width=3.8cm}{fable.png}
## Main packages
```r
# Install required packages (do once)
install.packages(c("tidyverse", "fpp3"))
```
\pause
```r
# At the start of each session
library(fpp3)
```
## Exercises Week 1
\fontsize{18}{24}\sf
* Make sure you are familiar with R, RStudio and the tidyverse packages.
* Do first five chapters of `learnr.numbat.space`.
* Assignment 1
## Assignment 1: forecast the following series
\small
1. Google closing stock price in $USD on 20 March 2023.
2. Maximum temperature at Melbourne airport on 4 April 2023.
3. The difference in points (Collingwood minus Essendon) scored in the AFL match between Collingwood and Essendon for the Anzac Day clash. 25 April 2023.
4. The seasonally adjusted estimate of total employment for April 2023. ABS CAT 6202, to be released around mid May 2023.
5. Google closing stock price in $USD on 22 May 2023.
\begin{block}{Due Sunday 12 March}
For each of these, give a point forecast and an 80\% prediction interval.
\end{block}\pause
\begin{alertblock}{}
Prize: \$50 Amazon gift voucher
\end{alertblock}
## Assignment 1: scoring
\small
$Y=$ actual, $F=$ point forecast, $[L,U]=$ prediction interval
### Point forecasts:
$$\text{Absolute Error} = |Y-F|
$$\vspace*{-1cm}
* Rank results for all students in class
* Add ranks across all five items
### Prediction intervals:
$$
\text{Interval Score} = (U - L) + 10(L - Y)_+ + 10 (Y-U)_+
$$\vspace*{-1cm}
* $u_+ = \text{max}(u,0)$
* Rank results for all students
* Add ranks across all five items