From d291484cf6f3d20fb076e809f28362c4096dff90 Mon Sep 17 00:00:00 2001 From: Rob J Hyndman Date: Fri, 8 Jun 2018 18:00:33 +1000 Subject: [PATCH] Fixed some errors in 7 --- 5-regression.pdf | Bin 1878856 -> 1878809 bytes 7-exponentialsmoothing.Rmd | 43 ++++--------------------------------- 2 files changed, 4 insertions(+), 39 deletions(-) diff --git a/5-regression.pdf b/5-regression.pdf index 91a922cd91ed5da3278c2845122d0e625df66e1b..a1db3a2ecda01800f4d3d656d2ce02a00f682ad8 100644 GIT binary patch delta 19985 zcmZs>18`=~_5~W-HYT=hI}_W^#CA?FNhY>AnQ&s;6HIK|w)yhA_r81oRqs`;^>yvj z=Ud&qyU#hbclXe|bNaklf1dTrK=SQ3l9%-BIqMEaHegix+0DCes0LJ z!8v;-d-Lv`y!@N~`>BRqElu9JGrTX#JxD9gU#hUHKn)R|-W1t7poJ{tq3CEgfe4}KjgEEQna-|&)LJ-Ip?l6*N zBZb&SL|4%&;@3H228iKt2H6>Q!Dr&?2pD$DI7*i!y>Bi0cNRsVn_Ki7{Xfi;4J2!TusF`tIqXRZX(iL#-O zAuSZx?_(9CG+7nN9jr?Yg+xNnx&X~cIYbU%>@XE!sc1GQ0xFafyrSogiR5dIW=wM+ zOF-b-9ZBHPgY)qbcfc-St=N7O);9Nu_Yj_fqcKO~3xg=_Y*P39MH8#d8`_~UilMrO z;043N0+YN38G)?H+ai9%QnLEd7mwz>Wmsm^8epygeVuMPZ|$4`4P5}e+skqY>ch#6 zhn5#<;|SMj2GEr|qFcEkL;ZdD0bWd)g*eCu?hX@pvuk0(!+orr7ZT9(l}K3>H3%PZ zEF#UexDPUeUXsLXt+$)L&l<~{9s;r#R2tO?2JM1}olLe}Y8Lj@2RRp3tWtGSUJ&I^ zRx-U6GikX=PaIV_RCIzji7kx^DRz4y#Sb5}0aj9yLjdAk42GR94m;_z!+&gAETxk! zRyO6lMzbqA)7U^f=Lg~aPHcxJ)v)$!8~XSYsy^cp+L3cFN3pwfY8ImeSISgjMsjPu zoJ^_+6-O54qepSk(R>TOO>0eA$lgh1@o~ZOp!b2($!@+I^h|hm4%Trqn-$VUUgEbw zMqaRCMPLxa9l#`MfH|yIZM3@eT))1lbU@lJF{KzMJNGyoRxHTL_7W6oq|js{6BZKf zc6HB^5)5&wA>iwZ@W(FwG$2!)XVrJ5| zrvc>$hT+N8XJ1YqZuY-!%w$rC8;%X$ehla60^e)+x`a814UidyQ!gw<6qj;3gJQ>5 zRm{dbU3xZ670f3=()OdnwTV7Mi=D&W8|}0Zx`uI3U1(md zv0mU}hh)N^)?tz5NJWFvK-v5YI_a4;^7HTVlBKg@=z6#$&B=&wdFoDW=LlI}KOPA= z0L36y$OsG?lYUQb{cCJ2KTo8sfU5aP^+u-K#T&oAc_w8AIYL zQ*sX?N;WHk8a?xT#^|d?Wko)<_cIQbA5m}Ni%gm&q2gS(HMB2bHO7Nl-yCuarLKxd zN#nXkc=3sDf51Knn5;JPCv?(8pxF?p0xYsxV-U6JmqwJQc|=zDY}U3btKe(2$Aw`# zbwz&f987`_)49XnP|C1~gcJZpp@O!-aO1NLnskW9mV_@=;*CIf6DgR9_NW`N(;!gFx`EazBrPO}{M+mDle_8^Q(Ok|Sj&h@#m<9E z#ofxro2^!6lY)c;jmD#>>O{j6;1zkXx#Dw*F}}L?YlG1??$Bd&ZLGg&|5cTLZ_n?m zSEu<`&^e>kSWF)dye#7WuR=e>gTHox>V7SI*InUkJignU7P6D8O;FEBa}!xUSeGj1;J?Z3vM|EYD;eNb??pL)W2QKHKn*$~8ANk4D28ne7UBO&SDt;33e5Bw&$}7KL`Ih5 z86ws>C8l7TqY4$jMcvNbnoJZyGR=>ZWJdUhn}K&dwH2Tt+?>b%USY$|Nze@H%GC^d zW2KwWoIqvyv37QRO=ckF{yI09fcP+Ju z31Mh4!li0Ajk^tws~?V?GIg}+_QqaQdb%Ke>?%o{b9)n{WI>upeHU$k*20@OB&0=& zDrbxOVR%=_iEK`0XQ;!e;{AqDS97ZQR}!p6OppfuC?t{Mr|Mc`9cp~x!pBcfmn9|@ z^KrG5I?Myk-}0u|?JPW=FD?#`XgeW5TAtnB-AINKMB*c4+V=<1URg4|MT7N zaah^3r*MAsr-rMSnb9|D(k1WFcc^>HTa?c)Bip0rIedHZkxaoaRy_Gr)7D`S*i8`M zx8<0#^@AZz+*X|kc`IuLXe3DX3a(t8=Ad4h{ zo*9M}?c~qU@D42UEY;MlDN9&h!~R<$7&3kUbNLcjK@jt_*1UqS9u7(reGFIixeUbVOOA_#8S2*CEM(-q+%p#xEii0)hXewOEFgaT$WZMk-hb-;pmdoE>Xn z&`~{u{}4DsLGXtg9pxsrpHDE#@;9hKu2diLwV>GJl71Yj$bnlaA!L8bYt?$_<=o2BHcRo(v34O>6S&HVk42W zv1g9k)8v^3`|HO}Zdzq8u8n)HGs;ZT6!$|{(FZ+YFJmO$?{m9$sx9zHBl&%irfPyb z>_ZnOJURF^H%u^}>;)>R!pc)7>u?<+8Wj>{fyvXWy_fqr;}N1IQc5Vo>+K`eZd;TK zzXf=wr)>mlIpY-#``KEgXp76V{uycN^t8XvUpbJxGZf?KcrC zZ{lA`IPP3~yRXZtPo6O;nG9wx`fJ3)+>;>Np;7J^@u-5&+cg!6hkp+FV8S&+X9bL| z0(YD^(YMD|1s{X?@$ah!ofTFXYx+~v&mT=z-&0>Y$VQjj0a^CmY`()makABJp%_VD zeScf_?GsmD5?Q=B$qIrmSVFaOx-pjX&XaM#8m{a1$U3_;4#n%F4eq<-?Um zIXn-YvqtMl;tm&F(YZS5vdD?YEo2e?j=I4vw8g@xP@;IWD*+P^+Fc17cQg|n1 zFv2bHBS4T&T4(7J<7c|$@jHgClXcV}dlKv3U!a!nyk7G7;k8#Hhfg33B;*1$|3*Wu zLk3g30Xr3Ad~EeWy541trdE@Vos%GIU3De2^q1DGTVI!4DEgdW=^=Q zU6@0?;6}~F7hDixxkvQ9!u5zafb<4&XoJ@aN}(uLyq3Q}oB$prL#i>HZXk_d_wC8` zdN)QdHn+A7zF%o`xB4~%j{b(wSDjps7oNE@GRK|Urr5vRS5InYy3vbU5>tC~*&$5N zMJLDA1-hBT57TZu^3YWV0p(1QwP5zRjw2@3$KSo2ENyt1>yRd&y5H;Zfa`3V#<};O zx*~w+Y*zS9eWA>4=^cfKBOL$7mZF=~fep#!Y5L-KEB-^2N60uHo9!USIHqH3j$`LB z`t8Q?#MWtv?Qq#k%^LK5^9AWSX@Xp*bXnJ~wQfR`N^X0LCv`KsvXU_F`v&@k>JJ znH*jtleN}N)4h-N&cC6{V5bFqfV6X7XzDFHjuawNHC<`AB2#OAHjv86pC86$_>AT4 zvE9hYJOYVu&;&LL4u@lNbKgzE*WGp=X=X<3=eGrjYlAAoEC%$P(;B@xFYk|W23#Ra z_s{RY%>-@%;M4e^l=NY>)yYa&L?}7)``Lze z(d8uu3#OaBDYFML?P$`mf~+x})JL^K$}FI2X(cTX2fmw*Llu#p1drCw%EQ@B8mA>8 z;T42fhzZnx7ZZb^R4DixFS7yz&(1#!1H&g#$Glt7x1I2J)3hkrgtb>ZIyS0Wd89ju zge=)y78bar)~e)4k0L!&Fl}Q+nH|m(xwq<1>f_ZB8z_sj7JG+Az}3N-xBfK*cKq|s z3buCIivB0dOk8!SlSVwzs+Lq8^C>EcLLl6*`7)lxcd5s6b4l2Ytx1x;a?8+nYjNa= zDdu?G1$k_%I99qTtI=-yuaw-~C0os9Ufo&bw!y~ZN+>~)iy7Vl-r%YM)xWBHWUyh9 zNO0tfNW()Z`bY@Kwh@LpX0u{h=anS_I-x!df#oZ9) z;H?6l$Rg3=w<2YuB;N#02*LG&yAgu5pkY%{{n_&-NrHpHG@$-sQIkvNhb1hLpaj+~ zk&p(5v_Z+>^P{k%&47~z6Tp#9)Au>veW!|qs1&h~l)#6miHWEdt(AcEK%C}QImg-4 zVmBjYWn0Fn8ykzdco&d~>iQe2GLRcR!kY}Zg{ajp#;xFPD9(9u5*GYkidI-CW2e6^ z-eGHGnhdl(gd_=}KR34Qn8IJD5!9QwXCR;{OT7IIq{qG5{f?Uyl)5OFvHlLdT6=fz6 z6ZNp=ZR(QCeCblt`BTkdIU0NB%7|*tmiW2xIqIUQF2k?>a$5Ks=}KUf4Gg*YWo@9I z#{CIg!3Tew_$(KJG!ADL;&hTg1_H9j%)03kTRv4E6n%P8JCP~GTI7m}o_+j9Y@`1l zQk3uLBHl{D?*;?hE(*Ae_};1MoD00}5+7^)n@ScXZwCK{EVP6{=ZX$r+lM;6HCSler~VgQQ{Sly(F@> zs!}}qSoH)OT^c1cRyJFJ^T89XsH%@}9VNsBy<@CQ#BuP#llAhtS7%8sAnuUJcfmwo zm&T&`=p^{jK@HHBZEtKEBjw2=4YwX^S&?G>J=;VmMcr+2om&t{HA@J zVi!{2Cmuci1Ksb+%*R7e$Yuaw|1#dDdNSf=eClBrfl|Hh0nr``gG?!jh+*20J&W^g)9vhU}VfEV#&bn2v7ZY0BI>)n}RG*(P=crYz3gfma zKJO5GWJBB+WBLkGh-E=Rshr{4_gqg^!5-*&o*D^iuDvyVQI1Y<*k=TsmwME zFYP8Gc7lbcQyCRH?~f=|_jEmFOBA#3MldF6=+2JsvJqoZky0E!UhCn^z7tt%5WS#a z#S-p>Ebpum)`AZxkAXN=}O)uN-1u6t2%n0x>rvcW>q8SG@MSuU-3 zdb?jO?E?bv{kXq&%#kITfZKW8_InnTHJ$FZfyzVrmuR79_Fmr@sE!>&OhmF?ORLE$ z_>^czk0lp&vr}zM2UDi4mqz3Yh8au*niZozZULmJ2fxkDyP`pw4B94{l;=^6e4;^C zKE4L1^9AqeuxgR%lLhmQKUL!ZBX}8$e^)`~bDiuHsJ(bcRC@ zTeO7xB>X24K8g5Aq)#G$66KSqpG5oQKlfpL67!Q-O^cS;5?rZ0v#_+lnU398d?}RA zkg{e2ZFb=0UE`-T;&*nH8SwxeyaePyFVcmyx)VOK=ZlxoC6q)lqt`D90T9=#=cDJN z{4Nt`>p9Btuomp^h-|~PD2|2c`B--8jd)!#M~7FD0NGVp8Z1^i`Q4KY~19q#}8nHdMemYfcI=7?muKM@(u(nJt{kff99sLq{V1Xey9M z+D%%Vh6biF&Rj@eo)t2}9^)d9E5$%0ng>dzYGC3{MZ!LuP)fos8R{J1F(6kI5)dO* z;s_&Zqyr5BpIeV<1q&uB4zJUYI9r&Gl!W2%dHax-TB9j{(k}o$kzWQhmjjusmtq$Au+n%yR~ss-y#a-)NE8M{1m$I9!0gbCCWj?_%U zsN|L{l6Xdecm+i4ygV0cs41&Z3j6a6d=P%1U8|{LrL1%8Lk0c98fmBE!YFU2pd0kf zgHRHIjQ~l;{@y<%Sxu4&k>^SQH=%N+ED@jDLjne$3znSBK_r@p)(@7hlceETLTxjJ zhLRX!07GpN8O}mwA!Q*Z&dTtcB0^XrP=aEJR+KqO2NVEpFs?9H?!!J|k3_U889f}b zRI_ls^m3`|Yg+m#(h0F*{@)nzYFj2K|hpvy?h6l-3Hu5;1 zCxml`SjW#Iz~YrU=Z2RoufS-Svru(^T&^h3iAdPVMs3sB^7j#mHOL6Bfv}aQPfe0j zc?%u)Nd$;bjG}pJnV$*1oN8k!WaT$fyNeqRY7j zo?n1J=!YG+xAv-m9(~5gq;lF_qN5l0hD5F&AVHM_klMFEG>cX=&FPpxu}VZ&3I5d4^jzCK&OB zqDK;K*#*xmcQTL_q0FC0Z=wdu4lTN5vEGsX)Rvsz8doU0dFvB=zw>D}!mgINOeJ@| zyg$rM`YLabOS|mA*pzT>H~+95ZwwIO?!)y#coFtN+)d&PY#1NaR-ZrP?&DGZOyzZ= zp@gmMC-3q7CBJQNiT04q65d9W;t(c78M#xHPTm?eK;APxfdqeI(604E-}tP9Ndo~! zgh_&hrIDKQxsYZcVjhbl^ogyr`W)N!P^OjA6{F)Ft2JbT-X6Z!Si;6b_5xVYL>MI7 z0XCw(4zk(}G+qBZQ#_)#G04%E^(!T zwqgZ1jt4YehSUSV|GUmR)oB15y{WGd`!)h-SQDsP6~_tP@&`iXtSE_qHU$Xjcwsmm z!hE=bA86zWL0uE0of9@+1qbq0)`P?dUdDIJ&ul9G67g{|WiGbcymtz`+@5@$$mGhk zx6@jwr0MeazFDZSTeh$bn`~6zs{Cn_84GYaI8>=TeJe9;S9Htdr0MGPzmj`i^Rflr zTi)({o>kwQ`}fVCFV-0L5i@cfoM2~GUHkBg8lNT+W>8EHMlLcJnv5eJ0>gOdts_^k zb!|@uaYEZ)TVL((yJXsd4uH$>&Hi0i5NH*6VJTYJIkKDK_)45fL$8|Hb@RgX%=72y zJ@s&U8F|d(qRSy?y|Cdcv4ar*n37jP~%?0sXu_=#5gpM z_3}*7HJW~UQm6>6B$_CTXd{DYlbW%gpYktY?JF{jN&F9^**Y1K|AHJzhTONbwpsSn z*@joq(l^#}&e@-{Ybeh@!XxcQ}z8AIKARr+*P`j!ieTHGne zAO*&NPeKZe5_)IA{|{+=x9r&e1G7h|%~OcVi;t{biCF2*8^}^&k>?K03|R+!7;9I{LO!lzoCOdJ&ZTWJN>$} zMb2)daCQWx=pT8c#RaCHK9i?XL~Z?b#Pz9M95{4x5Wy{~3NFg}BTNN4*nti4NQF5s z)fjceI*f%m7ni3hHj#dQyiLUHFQ^ANQ2Z|Di}_-P`Qm!V!xKmGg{;WMODSL1@DT;(w+`D z{0GM8lMB~$9}>zAa1B3^3W-vfV?t&d^<)L)pTL*fJ|{V~eaz=ms<>t+>fcIo3NAAL z1)|I6dP?{g^8bI=(}a%y&)Ii-1N>v9WB*a;A;t!VRF#JZOyD1F!(4;?a}kvXzxVGX z$$0Y#c=L=LpU(X+M)kjaF2sxz_WYKD(3bz7hCe5nrhyUan;4<&S|M9o)?4+b6Bt8( zetPC}@w3#&X1pCPzru>pa+FhWl>b}pQ!r8|4d82F$8KO>@Dl#lX#USQ{uvG4{y!aY zW9V|u(ZLq|$1yQ>f*c;Db}dP*`n@XS{#KE8e!PD|rN;aVYWM_SK>zb({o50~Nml`Toa6+d24hZdf7LL8=GZ!e1=m9sgW;iNSC!?OP;r& ztr%0&8d1}c%`C0wRJFD%nqHO>4A9v6vf2LJsw%0p7mg+9yp74>Mb&B*lR)A;3aQ!gEN1fHoxyw(RmHFv~FiZMi`iNf2sn=YcHCB zI&T~hqiqQPGkq9EBgOOxyPYG%6Tu{Xi^8Eb|EGul_2Pe>9@?Pj`RUbv+kHC!%tPgz zW{|BzT0?w{up*MHpBLF-`{UA@#LYwyc2i(y)dq17+A_3)_8$%a4mk)wFzwPOjA&|` zt66r?82r|?L{Ro-;8L<~&+%!@d>WE2<@Yb6pS5gZ$7hV6M&_q+!SY$#|5@8O%cyoM1W#ISTUe+vde(W4I!M}4nie9NGuyH&) zQ=urZax65P_*pI-&#HbFGsm;&pT)%S>`sZIK-BTN1-zs64L)o*t2R{x7YDsbhXl2#46=nC|bVvPYZn_bg&_ig3+K=w#U?tYG=r9)PGl-*?3@fuxk#$7? zpn_&l=o4j)evpu8O(V+VftsQYYnaZ$5XKT=QJN*O)=i21m_N4Ki!6%l4C{^EkxA*zHzJ|p^PR7RYZnjl=M5FG^p!t($EV#cEhg}#9s z#<369wJF2ft4Ls!526%2%R^T9bH}?I_$nn6oUbWJZFHJsG0;s@jKG!> zs+59@Jt@ay0rphR&xQ)Y9iafHC0RY(4Uf2siX>)P#*q#_z1(LSjV0#vEl&8IkJ~0Y zkcaSx{k0@|ml7pLuuF9rjL{(uKURjThxJ4|n zWt5P^z}W6#D>eE|T1Z$_7h@}E( zd0Y)K0c)$C8f?Vz&dpZhIQH|unb=@)aEYc@Gf1S-_&T^VlYRJXfb9lVnZefzj_M)@ zV)i>Vm)zDSVHHk>?WB#;8i?0=0QI+7i@Tj#suN%Avs6){BZp*xkP%rY zeynh_B&T6;F8>Mc^j#uXo2AJq;0r#MDy%steLcB`uPqzVfP&uMz(oc=H)lqQbuW>A z?0D=<=7qUEh~Z)|Ric_JVosiylP<@dpz*EM2QkPO7+b5)sP(x^2Dr*b*$}xnu&7sr zT-P@&Ms=heU@-Cbd)-#>2k9J-Xr(laVJb`6^4Oo*SgNv~Hn9pNXGVLWv+UAr(S00# z{|sBd&MD*zq#wK-mD3&z-7l`3=~tncMks<{!bVeFkU z`s!G?fO6_s$#14-zr(C?^!J^cg8~6jn_RwPxjuUDQH1xo+z*YpuP2SIe(i?Yxl{#k z6sxfJL9f4m7c;nHzfM@s6gu%G|RM81I7B=<{UJ|ng=_#F&=ZC zNssEviWwQX3TUpAh17Cpq{Qkt`4u`j3kqDa2fjfyUg7mbv5{SPOvQH+Ea?W(k=BEm zkwuCQUfOXTDHhjjq9~lycq_+9hDKIJolkqGhNW2o&sV>JNG~M{r#j~bJ(H(_OmZB+j;rnvc3kHx4C|Wq~dZ_Io=ffhacVOeQU01 zTU|Sa{`%&sy|18B&EX$0{t}bF)haawD{lQ?gbTZb9(7N~!_iPBs1PP*8}n>hz*-~t zz_W!aSmLd)W=heYWDbbx%F+$bUXS-Rg}TPKy(iw*fpwLN=hELB`8n*LTeY|L5vuRt zK!0xTZpvL(F$Vth?Vm?I83`&cuRoc|tfbI<@-%@9d{zSb;@7o2_Bb$px4)Z98K2Rr z?x|b#eS-L}C0UP57^|;Rr*<`3IVz8DC_2AzGYI`hNUb3xP6w5hX?FWum zn?^dRYI~MbV-C-#w^H&9NmiE4(=vXxz9NXqLqF(8vbnG(RoY%1U+9ECc41ehK;EW3 z0UM0%Itv|iB7{uvQ>4?QS4^(>MzceZUz3G;(sw_yvu3;?Pd*-y1%)>=p3KLFUu%!I zZbm{M4pQeHa@llG{Aq4Z`f@eTN826@J&`L9cdq)@J=Tul%yv-BS`jr!9zx264WY!! zM$*}Wnd^Jd+`g_=1(SC1hOLsg3^_1|i8s!_jao{!EnYn(Bd3hN=%ZhrvGqxbJ*&}w z80O;c=MHSVjH2`}+@^1>h(B&*!+6xruUXi2!F@;6i1Imnho0Ym?@#TC{`{)L$>WeC zg0iPN?ZJKl8q#X)SC~;kJp}us&z!g7ztB{`E`x#UbT>5St1cr*s^r~IE-)RLn$uOT zZWptDuMr2r#d8Ezx+Vo+&kl=QczoX-<&dFGy{cozSNi&pP5-J?6Y9$SO?LmtCK{s* z&V=n;u~^*iym9w=pvhGT^iO9pydi$F_4Q1YHHVPDZ5le}^0gok++a4?QAeX^qocwCsj@yX{qAyfl$4G(dsOeGc%44pmHp;e zbo_%`Xm67{$PtrO*5)a%9uBv#;ZeBtn4nM{IH0cJm9nnzjjQ}D=6Gbw#+7y4Vy1t) zd|oij*Tkqjubh+;eUP#;J`w~a{Gwl%a%dxZU-QEat(GVUmIph#j*4{Qy_5?xu!7z! z8|s3GS8a$yFC=PO2lQXc|B@8>S6f5W6%&Y`4gA~scf-IOkF@3r{S+Ns3nRg$eo8c< z4qoesaG3N$ImL5EoOzD^(8#Ii{!++j9XyvgcG*Q-Aw?~SaRU#GCh@QOXPm;h5)%DL zY((3Tz#!=$M=*|m+(%? zT`!X>1=i}c1I(M|?Yn8XQw|aJRWw)jJpzRbbp>1*Rq^ShICe;Kg(vA5A1hVfX^a?l z3IqjEv6-@mlQ48QH=E&@jNaU$c017Zv<+;YL%)BoZw5Ua0z^>ORFP(EvQ#^39CV-$ z)`$cY!w$Qkc1N@tT#MHE1^4>JOBjRoFTDL$a>96C1nhgZBRD)~-!e=WR?I zZ7ZsT9Rgez4j&p1zZ|6W22oy7JaZC|;}0lak~|HNHEH;Xbv7EfzlwB)>;u-9KM%Zc zi;)ieE*XT*t)n^*1_cgyCs-#|<}Lja}}iivlVYB-;%h?IX}9#_~V+pn5)!kXcKFt*E? z(fJShmc@%2#07s>y$ZqWdt3@;Eb>Q82rJ%!pU?lbcIkRFNkdwLtBnSje$hN%8QARZ zzlmTQR4=}B4{w`KL6zH$ee&-o`#;$ORhD{(SKYYx53$M(QslaqH9m>;$$8oCPTr4t9@p_Su?`4#&uCDD~qQ;E6 zNPJy+G@V;lHuSGk_gn%z?nFqtQ}Y8xP@|OV)V+8(Tcs#X>lYEJ$&^K9#Yt0APTYuj z6h34IVC0WMn~od-vqdeDs2V96{I4bj;VBMS?LIwnqnZI01WB0XY;^7UpG%@YaNx)0 zwQrqc${(tC_`lnd;M9V8{Qc>p#*dT|QYg(RHhE6Ot6jqvl`KH-!|m{e|CY$Mgpe49 ztQ)DEFLN^nS{X@@;&Gq1D@b|Rh$oN6yCI7N2B3$QQe;+yt4^HTL+L3?!0GN1iG^_Y z8`NUot>^{ezDSaHz05I<&ksYHQ=}wDNyIRwqT~;UQ5&u%m?B3?F%2N8&PvORr24CD zq^|g*$lMkB+z6a`$J!CbTT~FjL7j?h8xLMY73GWwb}LB4Oi?;Q$w&(0XSd=!Oz%n@ zCO`@mGw}E&T*>SYf8d~%h}p1JZT=d%L|9(oDUCM;DOraR9$3bg1Zq-H(^=*oE^fRy z3oA72h$N1WI6jl8{jjiZJZH=#zbc+my-2uY1|t}G5JnZ<`0m!U@(O9nWD2Z|!QLSP zW6GM!HnOQBl1+J6L6~b5es0XroG_`Nc0ioB6hvT*05mfHJW>$TGBOM~@>^=mm+Qev zL3Jko_Yhm!?4o=&3dwYXoLpjTL!jcfnm|tW#6C3kowb<#(vH_!qikvlugT-j8g#BKh!}RV{XO=MHX`jsTIF zY1Gh_wO_~8UNh5pYHp7U62G_&I3X_;RxFkoQJ{XUMSknj9%Vcz9?LHySo=ksQ77|e zbsrj|HYlMRp;&Jw*Lc+&(C;On@7j%2q9amrP#uZFU{@Zhag1_9cf6g@x;s0|w`%w6 zMdpfN{Xm=U!p=*PvTLwz{zbuys1o4wKNgcj)mLZ|VCXNqdI*}&Z77#8VGuiTXEE7` zL|ti%K@G^(&*60Oc67R5F}~TBV-&DTA|y%Ya^n+&C#rIwsynK5zB78DD=#Z?gt{9R zd(IlO9PoweAhxjNDg{~VmvDhfIlh7P_4j`~i*!bI;wvpy?RS3sR!j1lk_L3<R-xD0WIGTGrSXdP*WNN;>K;A&ki{?^2kK09ORaTpuf>epcP&AWpYMNYRhyW!^J zbXw>sUr~P9rT%mV-Sg&~b88+k(@Nxs`vGt1O8|kaOZM1Xwnty(k%k&{DwUl_8FEWW z&K&R!zd-6P|460wxv=xm&I4fe^HOPoZ*Wo*@O#zDoT#2Us(pF@tr;j#-u|NN$natC zhMRagxxp63x5)M|9{WsbVOk4)QVIW+p5nTL*j5my;Add?DzZEg8S|8_;=R$Dx?3$2 zo#->S#i)K3w<)j`W1K`{SA*eD@*;zt`|LAoHb5e1S0hDO-j+kCB6%XTj;NX-c;tjJ zJ%c4)1Uwiqf0sVG;0HnmNmLpa6_DmTh7J7Wp05(tH#CL`ZRzUH;ye2rRd#1a)>i?{ zoHZQreFg&uThzZ*wi7tToJ!Ij)%_gg$~JsaB+7`YskX;-?hN zw$|3UxvI($w-15G><*iY`_5eX59;5aC#tmBE{rmEj@yp4?|{b=gxR;4xhB=PZB^?f zcP2DePRw~Z>oI5ibhVSr2CA4;fcI6ofPc{&3KMyZ}$`OR55XkPd0<=j> zP$o!))g7P_1prGP$roNJ?p8EaDQDb-RS@zQmH-k0Qn+J~=BbJ2O4s$Zr25f?pLzDj z4<8CPr;cmt0tPANSAy8cH0`T=t}vOXSb|$)$Y_0Tn&Nd#`Z#C$fA3T`Dm;jK-;!f@ zs6iLM_Qqn zTn0ead9S*LVu_Wp5}bQ!>iqOHou^LhTvi79r#P#kRrVy5ah4>0hzyY(+B}L5oo)RW zZHD#(&IlB69kf3?im(;FLuiyXb}fU#mnh|!%e4%V90YW_$Uo~swTVCy#J>KRbW%Q) z2H8%Sv?b#Sid$qYLbo7y_^uoX888d$UL6HEVYyG*_zHiW?1dN6&$`gKjwE-CkvvIH`=@+!`bKs&gTd?F=y#NjER)DoFTkV~7==a02N8nV74SoBQa~_$6HgDI(ZL}* zBMGpYh6B4qQz7v#fFXr6{mwEC0VIdqNfuE?4GUZ!J0&vrpcF=2@qK#GkL0ec!DolQ1U_|VU?kb!j5_VJ4C!`4)SMXAF{ zalGW|dri_>Gc%`rAh73Ru1>gnA9bl!}|$Voo+pr)y6wX+s$D( z0kJFzbkT~Fo@#q(@9?z5_aS;bd)RFmJV8dg9#L|#<5lZ3T`P6I^xhQ>^bSb*O-<1# zd`utH6?O)#e;qqy#LR1Jr{ND4RFY zAp)L=E&a7JEk!?Q_+sQreMzJ5OJdcrG28Fsn{%1=yc@0e%WDdo*vXZ`_rJreBe*WX z3paaJ>Tmfu8UXTzrllo?N(lNn&IF5>@?0Iw@4Q#j`TD(Pew(WRz{7dA`{SrS;UIDQ zcT&IOe2TM{LTFuNozs(Ynhf-$7TiPfWWPM}qALCWTmlbZO3gRzPfE`F;IUfZ98RL9UEX$ z-qXqZHp7t_&Thsh{y?6KN}QOz;iO+~wwlS$7OH*Z9y_DD1o(XDboT~-zX!P5Q~q+E z?op$<_IZ-*fxf zcUxD7t{YqzU`N~4-NjE7<{|FmXjwgRgvPM*2!gE8^rgsmCa7@}c1-A`qy0vu6gB>Y zqR89;=)oNtXZ5n$48E1lQHUSDKt_s71NA9)FD z2>MLYn(|{Vw3uplBtEVB!5fr5hB6-&5*cb0L#BZm07djqKFXQT9@c-)gO=-i-WD@j zzs57E_;pUdJ$+f(iR9dj?7Y0=>3m*5+jZ~3wsV}TZa6nh8dqP|DD9A$r48Yd(NzfS znlY1mm%d}He3B~+JBaP-*GWxubNc{f!u?cU6{TVE_KX+8{~6BtLld60_ZH8e#zF)=nYI5agkL^&`b`@GMab9VRq&YQFAd0xS%zL#<~d+-jI- z-pg0&^>kW)oNp|)avp0q@G*{bDX%<_B}<^jyx(Q?XSJ{h7PDjz?1ckx5DuC5TCEnZ zhC1{9?5SJ#o>lFTr_>};~G`iojZkmA7n1sAI%#c>&wL-K{I zc}b0#z}Fz=YY@+dIp+5@sY|?L;vEz3n0Uv;J0{*Sd5&wK!u%m!_IM#5)KNxtP;36k zL6$7KTem6U@HL! zpxJ^M)8%?-gLYVBLGeG;SPLz%4)V}y!QxMomumWkmh`~}3s&EvvKxA!7dBdd(EOSj zo1hcAV6z2n52&#Xwph^Hq;f0t!vJ5u2}VOOXu-g%TCyE>z)si$!xjv!Qg;{Zh7m5Y z;qEg6L|n1uZnjGk0u9Q2ll;eZ9>m#A?NrXY!^Mf%*1Sa9GE>K_=Kcb|bPIk-uoJ z1y|gvMj4b_aLq4NlA)-=f~$_GB%)Cc7QlQ9u2a^c43OA}#731C+;l4WRByjXT{09^ zTX1|>B`J>TVJXyD@U5S!Q454RBGl0m3%++Dd6kELpza!2Zo!G`Rg%+xh!jW7&|tyC z@2f#Xqm@9YqtzBXdZ`+%u-1Z~ysMHVMkF!HlZ|~`s~HwNSE%l0SZ~2I|4~WcA_5l? zxTwv7=cm*l;}PG0Xagh>ef8etn9p~pOSqzL3(hT5IRHd78iXDTUjL37#5*GV(H0=K zQNNX>`aLU|{TnSIiO~*!D=B?hC1H(-ax`oeGqoc{Br)1;6~Wh3jsSU%_FBbtMVcdy z(U?_SGfO2=j`jm#jTFa8%iO6=AvyqrHJak$=ohFOhb?pW^kE!J|Y%VO!HM8%iwm!>_126G~y0WuCZGb6J>wW0}WpR5>3q5W-x` zJo&a7Wl#?Dpu#ezF7qt&%A4vgflAAq{;$efSOkkXOC42}WnSH&ZVnc}La2rs%e+yq z?sBNJ%)erl^{^C{!3tOjt6()WLK8H@I%u%Wg(khgT4;y7W!^ilxmH*YZLkSCEc4-2 z>TZCI&;y;8`LslTjV{;>-4>?q(OfSKK%a#LmuhYc=tp@!r?1ar2W+#jWI{^@VLR-C zofei2sxbt^FbcaZ%(kmB0()Suh1JQ;Pq>O-(!Mk1#w^U;rFBQ(C=HeSEUcM+%l$A8 z6EFz}EL=RL?m-J1yEK}DLvYx_wyxxjp7ixbB+>a64qi}yNeCSwbcE0qTDbG58hqSN z_fct1KW*XY&B?1=bg#OE%avF-@~leISn=g3n%AkZjOZ)f1uG^ zAd{}#!eeVRR|TPkS3j+iWV=eJft-ccDdUdlIilx?o~wge3vakvU1IAN1EF@r(bZe{ z)pyh-iH;9Z<*NI`*x&*wEa8)u@45SOnaG=edE&*FilrK(&SMe_4OA3>smD zg&#I+jt3-p?!fb_`42k+QppoX4)>;oli+_L!*H6~yZc+!zS z0#laVc$2z^;4oKG2}|_$W3C3W=7^MAWZBFAs;(aS=#H7dv0tU!Qp#&no2~Le<a*OscQx8# zxz3XsZMEFU^r`k+Zt_Eo1}t~U*EQP4Nzb+1alXU_Rb@~P^PmFstWOUb^<=Ss25Mmu z=y#588S9`Pmcla7vqN3j6|fTYZ(=nxLK8H@8dwW@G`SA+g>8lP&<5?$0UJOM8#X~F zbiromh92mJKG*_VLH`5vTvXR!5Vpe(*a<_RZ{sf54Z3yP1AAc<#z4RM_55@kCSVc{ pz(LS2-$RzW_1m81?yK|u52eBa7ao@$s~jK-H#9j4B_%~qMhZI;;(Y)B delta 20019 zcmY&<1CV9Q(skRmIc?jvZQC}_v^{Oxwrxzir#Wrg_WV8feeb^bBi7pcoXU#anQLc7 zMOMU4UveH>a{k@~y!45{1;Zd~W^dtYNyNm(#gYoVf<*<;wo_S?MESflVA^6|xUk;b zs!`TS4vE{SkYfj5(6bLf93T+HBy~!dbo%p|(<0Quw8GCQ^|(S^keZ%zS((@0lld}(czQAEmRPn z`Lo24M5vfVD_l4Mbs|II&EaNkg8L-UgRNMApA0fa$QdbOFhLsK%eB~B7Vmm)icCF& z`XB7pVPff`FEpIwJAN?G>4A(jzpX-b{#~YQjG4kO#1Wt==>ktVTacU+~qgxS`vbQ z#gnvw%UX~kOyCQTag1z&DIfpUm?@#Ib4{tc@HhO93REj|jhyKjJIaL#C`LpiM!oFA zcm<;@yOE~&`#A0r8DzA zm12<;GL6LG&JBd(%30mz?YmNN-FP zfNp$-?^8t$QJF84;>XL(JLnewBrWbA{6rbUv)O0a{D@>G^En-Bf0mF>Eh^reZx5jx ze!c?x8pB$f7;0R<^EqO`UJj6X?*-EHLa8$*rCUKF7iI#%Eoern0pc5g98fNy8e=hD zSTr)0(}?Eq^pYQ|WwKbkAW=RT+67Z(B5KO!@ta&lQ-P{9d0>C=6p`YISlQOFHwA?! zs}O0vi{9Z0A|XVjLLBtN>l*|};C5466=#J6l2{L}K0MYJ804`EXu6~>YcpIfX=AeY zzO}cpJH(=Q=WFi4%Lyz44l(icgB@z>RXlxsVw_s*gpAi&0G$|_8HfrIs)`<@=tH5T z;Hp7N0*mL12ix~Vey>925Wb;wePt?}>S_Jg7j!u#_#_vL(+0_LLYin4#6`-0_+1|2 zo}l$N>pE$$ZF+`zAhd%)2m}DH=Nr|U7?8qk!#7&UBeB72j{bW9-UEB<>@FIJDT-L4TKQ};KRjahrpIQ!06ka$~aI6#`pTph*578=2H;bHp z+~&?-Q#XqVT-~$+%zAOq4zNGIyP+*FLnCV9SzO*k$LqXAbl9`~@loob$~5Ng zR>{gC--jjJAZAH1KszWin!5qSRItO(TgeE#Ukia>WtMDPxcMi0ZW1;}JVkW~ba3LA z*lc193hiQg_0~xHD^rXaN^M?|qQB&Qk0`P947D?gllOuLtaZh%6Cm8#U;C=&96THw zr^RaPXRDdLPQG!S*c=1r(jf}f=t&XKyplyC>|)qQ$u!YELv~#C`T9!xMeNx7MO@Cj z-lCjEWmPlu9;KG@c%mrWw){4YDcI`Aj7mbg2~jIQUZ&@ZMfdxpZq|$;(bvpTjydj} z&vq8glLT?ft&{+dq#Y)8yg~(K zltE|F+Of|$09c{bmLs(u5*RgX4+7+ipkD<0BKQ{}z6kk6sMb9QXoM1g3NF{*tv}xZ z_tf5^Xz5LjS`9k*T>ZjaMR4OFFVm_hBGZ~$ne~jK9yRqVd2z@ zPoYv`L)?qBNO2R^8O9EY8>~qQ>ns>XSrdPb+K5iOHW(3uE<*5KE9$$!L16eeJlc#D ztQfL1x@)DRFm}ui6cga=n#y>=YEnYIh!GFpMwr5r;NS>cNcmP$bkx(5{aBDjiXuE5 zU3i3&HYTn<<%sEm#3LyWDCC=z;{E!ZFpXH1tR=HjA4*I$f~4_;_#l1Ql1O`#uudR# zaj<(Z@=6)sQrv)XY)o9B>@1L+6a-wXiVzkw6f_Nd6+RM`Q8>V`==KCAbS+>7t}=vz9J$HU)*mP^xOG}E{hGiQN%oc?7Fd5%Lj7o4X9bF06(l7A40(mpMBbY9}ICKjiTVh{E>lP$?f*knfw1SHibSE*6_Mw7{N# zO4elQ3%sv)ZY2J+OZOGjtP1&a^4WF9@|Hooob3V3tKYg6sS~S#;O2yWA z1tIB9pQ&PMRdf)dggzT^mPpIa3M$bct8O{}czL82OJI=^@M(EY`VPzPggv|njGuZf zCUMOB9Q@YGD6&q&af((vd?L1}<&8KryVz~xjEeD(8@A2L0;kNxv$}=*QXQI#R2a|z} zgFNMlc6!^|oBc@xZ=oV!a4R#tAv+)t7FG_<_LAA{_blVR6`8n3|4_m?3cV5HZMe~g zt9wNHB4mAf5*%@$Va#z)L&TuJa5Y>%1f;K}g(=R*ghLT@xvn8+F`hr>g9_6Ine`no zx&FY8mArmhw*M(nnDDlq(^FlBwxOp)_4=o^EI9R}n{;Zm0U)h9AjW$KdL2pM_ku>wY zTV^&Ndp5)|lO)nu*=+%l5skY_5KR`F)=ZuXEI=;->xEb8lic=QJ%N)TADRTb)(ym2 zwirPj*JY`C83u{K`^5RxI%^kW$O&EVQ}_9SUc5H=DdvP!U5FjHfz%ch_f_tXfLwtP zNpBE#HJe!o(zF$~TJs1NA|Ao|<=VjW&A+v2`OH5h?|M)9hRUE3s$1?{>`_KdB)wEC zVh{)pewg+W1QfIl+~2qsFGwBt?ptGj?%uqpn(9og?1;@BEaDGf`pv_; z>HeygJMcN_z$*#TV3@6Dh-v_F!1kOlt~(7jbF#4EW^Vj3`!e*|gmVkXwrN@X6nO&s zfL3!Mo}N#^m@Ca;@cOQ@{X$5f>H*gS0XmZtAy+m6i4W2X#B3p_tN7zG%3C|8LzgA0 zt@^H@#x>qEALX6yH}ph_HjM2|{wM=Oyp(BL4x(@^*+pk%{(=DHE+y028vLsBlNx*^ zgI`N!tvb

u$RF52{nxt9k)I`Z|v^^mc6rzd{q&JZU;0lW3MwE@W^C<_0qv{9wCz zoOCkN4nRWhbchdu!K0hae2nApxAmUHm>Xhy{C57hY6&Sp4fXY3QX9WJuO3dZhuOimltP?!Am+K_UVQnC%MO-72-YFomQQy4CdKrx>rW%2~J4?0`U zQz?ztG4K9>=#)hwr5M4WwT?DH2UVp8fMHRmx*EYS0q{VnOvjF0TU%S-czt|qq^NPo z(;|OJ6+1o1a>vrFDl^l8%~S7Iq}9V{Ou?C|MNi^HLyu;`%Ze;PrdyS#qd^4zVx+=1 zmxi5URr`gK;|fMDH}nlTy(y+nkd*UYaAnRLMPw73mOdS>-$I*;yf9RXQAON=7&Q$A zXli_GnloeKe$q1ieCT`F-l||{a2|PPQXat= zmE~fFH{H|#b7(MIl6Hm=`)|R$;|EhjFWl&H#_4D<(^YNrBnbVbe4!qlnP`M5RrBb$ zqGW6d8?AuQQsSS{6uoffUV*;@LXq4``s2|BRRM!!mAuuo;m9K7c|x3fy~6^mtT@3~ zK+OS5&KU3_dnfT^n@R|7&&}9_QS&5__Sk>jG(GqM`e%$Kf12t+a<%n z1H?&b=fayhO!SZAtd4I{T8_)oO2g;FnH8>W!17DoSY>ZQ1%ZY(1B_xM?+7??gA1M* z0|0%u0fAuDzSq<&-#L+RAZ}2LAmYL&h(H6;*};uxi2{Q_*olI{gMb)O_%K+1$pO*F zMbL7J6$!<9(6gY-Llc6k0P#*STLOJ61dBp(#T7LdjYA%^1T$V?91|uEEqqiAM*^c} zMbmWUHqXq&-um!Kzyc%^7Do%xo-gda^5SY`G=X8gVmgG^{lD6-F&= z4e~(eW?{o6Y%6k9Fa025=DVs^4$1d;q8%D36qw6$g&ADS#34H@Pv}}|GqQW9o;L{{ z>dCxu+KfcvsMV*%3!m^!vEQ*`N_i4}n_u z4C!oZnj$Y-c|`BohIvZF!Ss*QffYo{zdnbX#fa|1E~3&Je{(KbK{3HuF#^fW%L z-|urlr6OKwK%oai8-+3&BocRa>{oqgeZ=ogSH6?YCoP*q=lMA4L{HG&e#|Y!a)Jfc zan=O)6>Q1eWFu_}T`qb)lObzzqyvhG6~`seef=BXd~25>5h1;_66iWd#fGmrT2CM! zbu!d7GXj{tMU-XvRe9SR(fCM^HyA|Di%O_$54w)G{t}8$y<%SplhP;Dpt2}ElGast zfct4nE7-Q$TkcxO8k{C&z8C+h`w=&J(2FGr92yYq%^L{4=!3U$Ma`W zL`^17`h@T45O?{h6nV<9jmqLm1<6XLniAG2PF{vQ6Vp<0(+^b!Iye9cy`34v9ex-k z2TZ&BPW6f-KdFNoUxpUW^IS>QL1Q);y(nR`C87L=iTPhz?jLXAPo(I{QS23C;5I15 zOU;s9hWK( zJW#cAZCJb9QCpaui zZ}OQIXHHA+Q0HDw*Vb+`Oi&W9w?^;QDs{T1bSFm(Gl*(bx)=k_Hqg6qKE|;_`XZM- zJr=bd$#ZJ-d>>y7W~7~#jy-<|%})?cxsliU;fc0l+}707a8LN}#frx;<~9m#fmDr$ zBJZ%UAJYVzAz#w_OovAERqo22lf8dF<~N&lBoLcrMzAT4upu^yz`XwhlrrDd zle*IhgBmtt0rN%JFT#Bh{)-4-MEoMs7m>e+^2NXN(7uTNMU2)N3rsN%5Z3>mDeEcV zN}%~Y)wVf6TkpNByi_R`K?viNTagIT!T%gIMl{83bnmti{o^;Ihr3$`72Qt^9WTtw z<8nCN{j|=vc~dnP|1BL35E|Wr22#WPYdukG+%{A}LhJr{C|Buu!8CB#;#+B{-{$xa zrVQU;>_nxp75VR6hB2gMeB^0@0BN!4G)ZY(f(A=4i4kh$5eZgiWqIQ<9MrroI;y&V1DVYeZ>9{2XdQR9>FS{d2+!;Os_{UZ8U;1~n5#pfgMM27SaE^W4BQ)bh zAS0xzA)YaaNo+!crIXf%fkl&2_h8>M+x*0}w!yrD#6iVJ3Ifa!9pTI~02D*Ap`ez+ zKkzb#s>b-8a!mGspETJc#jkw>wDJa}A;Q8#Z}342)y3<+^J>Se8)n%;7*wg6#@t$3 zvf`OI8WoEn;vi_X!ia3{37CyZRhcD|g++T*Ip@tg#!3v<3n8snRej@H`;Ly2lM1wA zRaG^&N0%~t44sn=6Ku%{3ur!QcEOJ#LdL+GQKX6qqa>brFcpgS=)zDw=j)6hxhFU< zG}>_C)4JXvjn<;4wA$gVg2XoZEeSL32%^{l(`=Nv8^nN7jNUdI2hB=?=mnyu3Bn2n z%O8&mql=3nE&??-vT~I1%BBh8|`MI!vx)NO{^<4oF600ken?Ps@j) z6^_gTiW-mp;U{h;4w<{W%wwGR2=ANJBxihe)mo&7xfpso*#Yx$V9MyZ<@I{+T$O9A zc5Y6Y=0zJ3vt!7)iG9#5`rCCpv#Vyl?HgaWufKNhO8Fgkyfrtsv5n?ZQ;)ncte0pc z&I*Qxby~9%pkScX4zLfo&D(Hd0sM~G0nI2;gGZvP`D6aVwOGL z5lGEi!fni>Hu$qGwL)Amqei3LV1FjGw22|&ihToq8{LD!;=m6QW7JEFZTd1UtvxQ* zC^g!)D_cQ3g)V2ixSoaC^nADH`EiV~K~B7l4|}9(ESy8~8qlzUjh%){Z+I04H}>5l zHI7LkK^d5%%x3Oe%k|>0$Av8r2)6xbuEUMRIrTFOhhimo{T2;{dMjtWGkTV0GbaVC zaj%ZNa3-q9a#mmcXHn|Nz2}0!x}1-K>hf3(jLo%a)~$CqvTLp$#-MZJ{IlmBCLOxK z3MCmCK^Q>!77(8l``w4_+yFAbqfqITROTg5c+$Z=_sXqR@I**I<$U5YtbpV_^YxzP zBYgxtg*?t7DQ5LIMaS8+Z?VTY$%lT{w_P$Zf$Z=pSH=BW zM)M0=XpJy;HCa4aCB(1P8ITsk3N+@$;07B1NXpR~?x*xedbmQ^sS-8qF zWiD0mZzTLDO*%+(4%DnG)ZbGeD9Y)*y(D-Ud)0A3Et6mv8q-9K-3h_WL)u&qQ_sEY*_i7>K=MJpexLtRP$2p=i$=CGtY&O= z{u>dYo~F9{DGc+oovSl>VQ3{GxM(&Hoy#vQg^RB=BLFN$`#HsN5)Dtlpp^Z1hWx zO!#SoZbooRMO8+jr_6`7%t)cSJli0ZK^q_5#oA>G*64O_v=C*mVnQG~hGOds2g zspkBg(7uR}Ikz4Frmg*IyiP+b2c4AQG&R6`ETxbL^e%`AK7o3oXw35;!i z!}4_SWfk9ka=Z+VKB?b0G96NjW8%x#rR|q7xe9^v2c=wx$F@sv@E}r=Zysw4xTlTb z^NAUAec7n+@o_Qx%=7$xg}9tTTdE-x-5CH!7x+QQ-P_jyV`gva;_7T>WCzn)P>lH= z3FzLK`mrvGCBEZl5RzI~-u8ZFM_@?^swE8_lR+aFcsU{7HnnT zVFa(T*5wdt1yz4{;W2f##yI>oG>DhdG68)$0Ca@S?L60H_=# zyN9hgVvDA!FAhuC*>{FL(Uk=G8x)2}9Y3f(FU`^KI2HCImhZ zD~3%^7#B)kxsORYa|gIFP1mU0rQ8KVIWbLbV*Px7BD#>jd6&=Mq|O#84{9q9t`?WH z7ySbSvQ&FkEF3_&6@9tUrSiP4^71Wg@gv93s%n_Bhsbf5u=N^!vAk=v2yye{%4jK4 z7^Kw3aGkuSwWf@Bgu;7cJ5f!lSu9)BU5)|A7Be}Qpm zPd8;oH}xQ#*IriAUKZM}@^4~aKmN&0te_*sK(bk$*oFmPn(xVos>a{4Gs(MWuu-O( z@A2k-)qi#|mUEPGyOOXe<*v^C$cp}dFuI(c*ZqrBJXS1R0B`A1yP#c#NI7b&6ID^m zh4QJ>)cJ+-m%_fMw|n))_MYLt5toYwAB(u0%SdXPYAXA141! z{gSwN!JDI2?n{BXU?wzL?vCEy%DcP*?Oa$jAykM}@n~LXXt}zh04r~< zOD$o+q5)KewCl*Yyl73-z6&;Ie_t}^PU?`MPtp*u?M&*3GNP>YxBRMpxQoIXe^uKxhhB`o7G@L%8@BK&>T|6&r~Is^7A>4T$kHv-knQ^nJjL-*9x z7Mb!jGTMVhQpAh;m{Jj2&xOTUR*%tI|GxikX?-oQAEK#F|E#Y6E-e{_@(cWG_Qm)G z8}7EKD8d#k&TjdakY1+h8#`C{i33c2xD&U@T=-z|!IkjP`rwjgU^yGml%+$Os$rUH zISp;xnkIG~E4!uv?S@~ghQ-b8(l+yl28P?2M+8iKj1Dd`B!CVE-Tn+!%Jyk=u(U;C3UY7&B7es63z|P#KOIDCtduzvW zxtU?#v&iKegyW2Ci3T-^=2rzv{_&8i&4Go*-j>(wByY2aw*>O#(Yd+@#nfl5e99H< zcH!{I9Q1FbERG)t4I_T6etK`C-+8BBK>d(RQ)Ah&FaiGrQ4Rk$;5v-*CU#{jyP{vK zWr59qpP*Y=3-)`H@oVV>@JLl2`>R0Qk~npBjH>1tnaqFk{hyIN&gLN*(CcSR0n?oRLr{L^Tv@lFZVF_-XQuaC z&p)!l%m>kH-RpgN5`bZkKrl!D)#@K<+2gG2hz7O4gh259SK2}Czv`C$qea%2@>Sqp zTHL0}p2rlj&m)ih45(pn0L$hOXz#TA)VtngpMARV13;(D@*gLN>E4xI6OA!Gt}W(! zcIx0)ewe#eJ^C!xuR5rWTKB5pSG4j>)vsQGj9B-|eOc+<$~Ntlzbq18e=xqL@+^E! zRSY}5_;js$T$}gn?zx5g?a=%Dkd7em`1rFzBe&M;;UrQcx5fj#^`NHaPrzmbTg`Np zl%t!qU!}@~O24K+3{PXjV!2zje6_WkwOpkNjdr&7%;|!)dg)RFcXPs*sY<@u*v%UL z%cS{%c&2e;abu8sym&zv`jpj>dfkkL)+)?})dvIo-+oocVQmD(|EPAQb;MHU@# zU>M%;0|08IQ0Sle11?CRo_weoBAP&rO0zh9dmux?!B8Zo1kw%((%fSG@7RMf;jm?hRJGmT87DCa5P{lx*3x&p5ytyVcMv(!1IL!8xM$BUA625 zHF4@?vB&E0CSvl{eo#^5gUD0Y<_kL`37KNtr~rhpWsTH`e2}n3<2}F4qxkETr!Ao* z5DVif6T{CVz|e^|FN<=PfbLq5b)lmq04Fuo3HRH8)6}m}%IzXqg>Y(yAj|nH^Nyk1 z65JBYBim+GDFu_Ixq%1?)4xb}G?QFKgcV56Nrg(1;7Nt$7byUP%lP8JRF@cx!-4vp zAOMh^*E=V12D6I#uwe&glR$+q20%(#tG6ey6C#sbm*${Scz~xMP7bca@EijMO!4p5 z!zM{sy1&yXLIpPQ{J<;nB#!9bVJ#4hQ%cH7(!+SUOmvYnymGXNFW*!-j>`kKO4D-C ziW^go@`a)55~Q{KR`vi41}%CEo*5}byaPbi#*I79Qpux=@?wrr&W4r7TmUcIZWxVa zQRj6CyEs1Xs3K7*8xT?NqJQK6fkRHw%CPys5c}E?D_ay$#c7$D!{f*w@aPkm=Eq)VPPTbkpxN*Zpq3Qd1sTAC z_4~g5gl8N_I|n_i-e$Cr+P$2iD1U1=k3P5gY6bd+lEx)=GFARicy%5QMZ#>JY%o@n zi7g*bh~D(umU+d~Z)mqd)4NQ-pNNhr^zRAs@svx^VT1G4*BwJNSz+a`2v>}(mu}4oll)9+C+uFHGG{ME6U_np&qCRrcq-Xu>E6zU%zP-(WAT!#! z%U5m$q*CXV{-fnlhRuD*zOyP@oQ8wvhD$7ea`unDPjm@0|!Y4kV<>!$g~CZ#Px+nZ1uIYiA9;=f*$nON4FdUF3Lu8i{7zpLHV;gH>DDSvoZN?#6bLc(F6vrKdGq1MhA1ks zsNB74@<%r{^WmrxYe+Yj_~}9wO@&B<907_;U~v_M?CJ9K>NF_d-k#?|`y6&XKb~%b z++2wwII>OX>EL0tjcA@M=Ey(MYy1d%Ua@=3AioFx)Ko@ADS4qrHQ+n}>dQ`**m}4L zM?Ay~5FzW^s4JD$&@2j}2xzG)VSa1ES(hE3){JGg5DwiLgKda~+!G*7JO!oh9Twol z)P^3kF|0OXmsVhTI;C{~)pE!K z!zZxbTBv#1IEP(WN%8uFERY3$m+VI74P0kk z`aA21_=muq#KH^c%!SY~X|~Ml{ChWd>NRY(%!-`{JxrNnB_zOPlS+{{@8x-ewApGl zSre)QP6yWerb&oc34LCNvLR7lSgyv~n{B=_TYux8`{oSvF0rc}p#NaA(IqBeB@x6a zZGJnyd$g-|^Zt#4_9H97L2@4T!kNm^7?Bv!^H;*^kzknA&zm;Lno<@8{gzQW(7agv zWR3?h>l^3TuC*4jG15|SRQ7#5L=ckWb*RoEw0w7C*qTrsa?qK8q&lb{m=gs99>$Sq z?XD+cRyAM)g=W*u03G9~4Jl0!cY_10#|vH}r4Yt;Oy>xy&5HpvqFtvJRP_VSnU^@+ zqf{)EdwMuvynAwa?jiE-`>AC0i3IgK<>CjWmzdUT{A$@0fkP_@@c@(}6cbz$qP-nY#KHD2ErI8z_BCHTB?U^Rj+#WfKZrnVa9>Pf-iZWnGzdHNOcI=gtdm-?t|nEzNN-$?xs%?bRZ^ zQYfsXpcPf$0MseREH2veJsI&39Jv`w=Oxx9*8`1!g9B5YiP=Hjo#n6SG+#5x`9Zc5 zUYWh~d!oAle%ODE{IHw7r)($RiWing1zOk3I}r&z5o;VtSe|?~o1=K*pgV!)YwAIN zGnhiYG9ziPPgiY13)|Q#(cJpuL$wd%H1L!Yw~E8t2~EEBT}8Jz?Yh7cGM)&iw!rnZ z&cJW+b9DV#XZ$ez>^}n-^jf!WP9K=No<-ZXbuMSsWP8H4Hi16p|r&5^1k|Fx&z z%V3eh1GA+fqk@nCy3@Mt*BH@4Jotz4*A7Bcdw*r*(IMr5>)Oz87f%^}1Gh%>`%vzv zvK>~_#^c78)hQ6r*`1L%h1y7%{o$WcIe3J)?CQao;&XP~#Jm2%m_jRtyP`dAPy4iW zvS|y`mcEl|7hqS;L)XfYJN_H*B=zOC`F)Io)Ky2Hhjb4Ua9kMwL#1S)@#$WY7#u?b zkJ%7ym9T_FhfVlDfi5%k5=QkYJh1aMuE~9_Rwqb?9Z^{%(mc!c zQ;hiD?v9zA09&pByG!pKxYqV3BfK$6d{UpbDL;9<9iz*)N$ksd#c#77jQF$@-hhep zByrTN+z&)lPM+?7Wo(|uYdPubbG&uF-8O^LKbLlFF0LkAnOcYnlXy`Dw{w%t{xx(c zKNHg#==X0&%~FE8fd;HykZRZ^tnh&-tG{l|T$0NGt)O40CQ0gqL9W^C|2HaKIVIHb zidDQgYI9HKSM>(ws(SVbWoM*!GwW3Dlf?GQMf}DZ>4wojkOS2o&214YT=U>!M}U7% zBK(+>C=voUKy8Xt0}52EHbz-33~^GSnzUpU^o!e7N!#tmuL_sA8g2Y5UB$6eRV!(H zMeX9qU({+z>g5GZ2t;u;(&AQX%+i$!O4`ZMzbZ`s8CZmuK1-6YLg$v$$giElRBgD7 zo1Iul2DK}&(t#SBckUDypx8H)HNIi3(>z3>3fF;(Qv1GP-@bVXqA~Zw+V3Q{H`YE1-eL>$%=tOa z@wNA6a4__~zc2auTLlt|IKQo>&H&i^!IwjKMI7rV1#?<$wBE@7@DF)kg$fd1Kza1NJg$^lq5w)(kdGR5~~XoG#xL z3FqGTkk34!dt}#Q-#i+-6F9e~uMQWx=PP}EY&N@MAMV=xoPKWP==pU_%U$_?DqQ-V zA7aLfd%PX`Kfe}s@-5D-x!lcP^q#t3d-b^qyt)s$!Sy2s98tX>dFeMOL>#$Uqz>HW zKj=l>0nqMsEOQ_Ty>n8XP8~NPw{AajMvi@Ywp?l~tPZ`_UMD?tFL}0Z@l!`PpL|D? ztyevrJ4Q8R?6H-%*LE2eav2tEj{L(NBnS?XyG%)&7GN! zI6o_vcgjF0Tc~3%H|kcDaVbnW6sMbt(N1Gn0Q_1nD{j}4a%n_4oRE_J*OYoS&bl+5K^=Qa*Sr@>{C68`&+)X_FH!YJ8@PxFCK+v)YZ8^UhdhM@<{tHp6nz-dnUtRKl zQTNp@SEJ_q?Yj$LzMA=J@LMH6vat;JW9(v?tio5geQot1^|5N)n8q$8&Kb>WO1`3;EVr3NOQcj&A(6r|Jyx-yp;7InRX849~II& z{WxWbJA0W$#2s5*572!*xziE)ioGeO2mkV~e-z3wMs^h|Iu)yG((g+s=}X-HhIS{~@$FLe?h2R~2CJ5|Ue^ynVJ%yrJX^;mk)nVh^g7$rI<2vD+ z&x0_|C8H|r>l}iRG+NF@TjqbzTys*enF4QG(gm`)OIy1A7g$S&Ow|WBN`A$o8I>pT z#b?2P#ZlebvCqz8e~MxVwVJ6VT6<;&WE2oyHH+JCUbvosMWrUA*0qFu(d~<7UsOY_ z(#MeNTgBk(TV3MqTTS7u^VYfnveCH)vUwvQTx!tNU570yTsLu*|67FsV%8B+f(q@KvE zo(skV--$7$pAn;q5+aX|B)U`XS$S#w$GelVM!0C6?! z(7{lBoc8aYjoQj$j|CwK!p5Em{7ea0)V^|97e)HG>^1J0gR1j*Jff|LvlM|rX;MSU z7aoJ8V7d@$i@MCJcz^1;*5A~PD$}xkCX`~VH2(=7-a@9W`HuI zbAo~!9F(*cHFi2SLsc|fF%7AzFPH2yj#=&}iH5U~H$_Gc4T)#$F=?32PjxZ%6U96F z2@$df7j0;m=VR>Z5l%ae35{Q6>4BJQ+l)CfjvUWN?toVDv|lxH0~|VXgDn2YD465| zbQqGQVQA?dkBsf&!eqHGDxVIJ?T<$#BPNoU{~n3zKpP6Ry(KyX+?j)J#JXQS&?noK z_`~pa^EZhYBB@oDEdTdaG-L{x8c`@RhjY$Mv>-TLsUIMfE`b>s>)#}? zZ9xuADLKPa;t>0J9)2q7HY2f$O##E<6<7yMLgVm5?}n404gIVjDhR6rK!s4@*hB^& zjv4ZqnP$eM5sgJoTRwpenm{4pbSK2c>jVFQZX;d&%2PF+xj{8iGR|8G1e40moG*=Bdh8$197(@A+oA$k%-DN8{J3(n30Ua>_(p9Td=&_p9(2`0 zYGHqLStIw{RDiac>`E>`n6WPORo|wJ-MIwpF!T0w z6xh`|`zYZ>e8Lw1JQx***Vwo6(fL*0Javq>v@}ar*;N;}{tEX~AZ_ueM*g0ym&5Mj z?dtS6YIJvML(gZKgin;t;l?8ZOJA!%(Rfnh{9yTnYokaVWX2wf5BPZqYtr+5Yo@U= zQ}_GjZUGml%)<+ai@(?NN2N1jNA|*exiOb7ix$#nN?K0=z#!uVL-%Ee`I8{)7azQOgYj?6}VIenATKZVdbz(|> z!KM9pf^Gg_?%a`wnR+p7*6EVH?k9*?+&+E!IUROuvx>ghe;~D%eJVy@arCgY3UMaY zZP~F<B+weI^ccaLM(J7Xx;WL zySh!;&XVDES&!ls;e4tYZ9ih-d~$aofPCA0!ng_oRIfMFZ7wc3)X}%s%HW7${tmQx z`ExpxW*YWMz`fp2(DB4u?qJSN?o)TwaXq9=vh@};4Txk_O&jwwy2Tn0ZRGkLI513w$kqms9>% zx>$EN*UCZz{M55giR(_!<;{x^*7Q#`RRwdvU8DJCKkMis;^N)ui4u0%8_!aEb|6}= z^hAqKd|Z8boxZe9%Gy|w{#Lcct*tvJspZ?T*Vkuf9X{Ds9bA>rH|^Mq{ZC?vB%aCDCn*(aQze<5$y0wk96`3Q@^5@6`yniYQ0(*y zm;k45gdf6_Hu3>QlQIzuAn}fMbS1OL|7j-a3>tSn3IxI>jJ5#mSeW~wchc2KWtCnl zBDArv1!}8p682VededMU^Yr2=xpS~75>|(8w1c|&E@a$x6>0fc3|rVu)Bd^Oah4tC z2sqf|j0Dm#y)xWdoTvyMp88F*1pr0{MVEj{4cPkHl{UMuSYkogng97jHkDTvn+~8Y zeNY!c_M4Ty26Sa*&e{F(JS&};OZk@&WqdTMHbt}$Rw-4K|5X~!WjQ1T-6>$gb771alt7u_R<38L_I}J|<~1Q%*%>0#ilY!(t) z@U~o}wg}Rcv`MJS;I<*Fda40rihgHYEYy@Wdx6CI#_+uyq^*6ZWv_rMexXr{_MlTREyiZERLw(ZCM^#TXG+&@)f(Chuxg&X?6Yk zS%c&mx|xm%{kv6VNBDp;5#m&&NbK`S$qgZOovSF58aDhxjz2F9&Md8Cyr^`UC=bTm zeC?PUD<`LAF1hxn2)nLa1N2VNhQZ$={K;Hw8O-SG#cTQVt%p06%;jR4D=%fW8jP}; zfih`F4rF=Tv$F7$9eU>4Rodl!1es}~TKdstYx&jXx@U5H8vXzr3Kb{1=fZvMrh1!R zrORvco>W-c<-m{W8782+RArAi@6HM_9d3~|dFf6w>hZd(4?zISX+0RdNsU}B7~$}x zeCgZ0OkSEs=)Fv$HzsasFq_Kq<23CCIqG5`YdM}CT1^f|X2dlq;==aMquf3;6uzI9 zxjd+ZCDx^F&O`wHT~&w58{PLVO9sq~%?=ktpp7HzjY>!#j*}yz$^D((rVIYtqUrt0 z-N4#(S$~bm33|nYr-S8cN29uoS$ylDZRpIOZmX&1`drgoW&kv2hu zOA`i_uUdSypFLd$+1bfZ*a%%F>ofaeY7B>Ep|`PO^C^J&+p6Ihf*-bypD$erM~%A` zNyDCVDbBi6BT-R}RxkQ3i>}J!QO3MB)?VB+`9WmEp3#;`i7+~omF<&fCD}<9&Y|50 zSUY^#7=+|o^rv^mEp2HSQR?hRa(X?9dw~~ITr&;}(3KpuR6J+;%Y-J#e(q(rBJY#+ z2~I3iuK@2Wh>odHJqc%&R=z?*<0&7JZJPj=jcaG_68dp zVSzUvp{`#6O$%#lGTk4_r(v`YJA^WRp0354nNu`F(;bM)rvhkk4+FP|#r(HXGuhN~ z=NcKFfMjw0%6?KvNKfP*<;S>eZ)p*&UX^>iFRPit!!tn@OOSp^evlzQF z=GA%1KcwfBm^0xWd#Lh($*b%%%6O7YzyS!FN122|R7rWyE|dG%)NT+_%xpPMwJUqW zdLdanqS?r1XyEIygzY(oHOSqq+{z*105fP3n=rE22&2qCYpPc9Ni1`NaY$$(00D&k z{P7-t%GU5AQ}T8c+q<}$lql!+2Ot&Ur~FP-6ig=x9h-@^F@we@S#nIrEGBR(I|ulX zoeMIJ+$2$PU((z3Pr4d`B)Xn2s#fWQ4j>c=T>qF0l&!@d5nySfX*K2dcRku-vz=TH z?TAfaIK4xM+@Z1S*LWRRrg(0s8C^cLfPb1uZO*)F&c7_&ugo=Yk9+@rg`8_R6AT;2 z%bA6onav@VV%TUiXLFcPF{d2M9!<+5$I;`EO*u?CMMfrsvPj0rvpJ@NC#*>#YU#;& zk#|j$lvnR_UC-C|!+l-%hyREB!|(e4um6|3EqHEn7YjjS$BF5D3qImEd#9bPwH&+6 zcilf-Mwj#*0kfahZTGWIaj#T@FA+MExsg6R)0N~`XH9tqsieK@AODIeLnAemateGj zb_cjSnwr z9h?6v3H|p8hM9%sk^l8h$m`_TP`t*VK=_unT2+6XhU{59XmNZ@KXi=fR`O1tH-_|} z-8ny9KSjH9PNSKQmw0#>#@{!jU90lc>d}FrydaN2n;e%pJQkzs;u0u^4WoNi#!29u zuie7;3xCX4bGy0UE8nJ4XOa`R0vpq{mzib6;|v-9)T*+bbH_+~l^qr8`>$GTT(M<( ze%eqsKJiC#sbAhcMK~6b5ICei2cH}af#B_w^}C&ejS^I@XL%`eS#b+y*AM?^7Ch7( zW>N#qR!oXlNH{lS2~%_Dc%)%dJNj)}eCv{7+CyKNX!Q(@g&~~6Qr$XuD}J>!sS~JL zu{lt>Wdl|n)FkDCL4#IFY1eH-pBk8+DM_Kj*XG-Q-czMIfN3ByuKbcy?CWle$PPgy z0k($loOdUPglhFtUe2kQBG%r^CIf0wi4d*d>akkhdc zx`M6Km_P&C2U3^=2ID*t&5@xE`dcYln7Q>49Q9cvsa45}GnU}D;b6KF)}@#Cpu#WY z)+gj^xzN$`4;qnjCkG$#<AEv8khDK;E-hCn8g_B>&+RI$5^1rZ8uDpls zISY9Jh%A=%1I z${yE5FYdug3Z>u0!x+9rM(XA&xaA#<8z+!*p8+C^K2Vfho5-0izeC|aBoik^zFqz6 zv@@*E-vjjOOa6ptYyLD;z;fp(@F~YInjb77)(1)yZsZ}EHiT%S{Y*-^%VQ{C;*y5K z2tkb)^x(B==*{N8NI_dmpZ4VXI>YN}MRt>pdY0DKeKT!UnXr32YF-t<` zXB)5GnYyT(_~KB}v!(sV0{H6}UO_^xJwN>S72@7I#)*R$`HF)S6vh?x0A)8(o{937 z-<}AsXJvjfpEm^Pa=qnwx6HIsPWQ9Z?l(%9nE-gu{e4>85d+19&`vERFG_rd(`g zU%ds4teNnRi76=Dp5fBFRH;Gyo*8T8a-CZa8(kfgqE#}N-4 z45G5mFI=ef3s+mOnBmpNORi+vMfbU3L`P%NXN;!LSgd69#O~R+VbAdA{eVe1RsQzm z?7nP{cG^i=UjHFbW}MJ9{mxUdC8M)pL)*FBrZ}lPx&`zscC_nAb&4OaZUinfyCY@4 zor4iGKUT3b)khx@9n(wMmgWI!(1f@33VqVd9mXOo8 zeI1Br^lvw%w-oQonqMFVT5Bo3fC2m%e{KKHe|1zeSJo{m0Qa+lbftwaTXxqYdmvKi zSFZtg$FQt#4T;~g=152MpWw`oRFF1& z5EQ~|u}rIw^FMpanqEj4FW7%>buU&gehhO(K1H4UwqTEK{DdS}><9{d75^;i&k{3P zf$cmCk1P@tS?jzNi*r70rL-ob@%W1OW4pdBR`_k~RgnFDYk0e}w?#rACrx?{c#M2| z?#Z(sRVrmakJE}C#}<-QxL9|`0ifc1Y;|c_nn!{@9Mm4aQ$M7u!~L64dfMDG;V~T4 z@wsWtFgG40mx=HN$p>wvavQD1GZB>wb4zM;pgFY{pJY+cj|H&beO_8{0=;?J=YNB& zKbIjdPPO~4mk7wHW}H8KDC;+mnS>@b1SYuTM9V_Ysa5a3Z$P&aC-jKLQ2-I1DYI@sIRsyBcw%!}Brikns@Bb|=ZGjC^Wu>}B?@`w`I%x9yux zhLenxj2G(+EPvlCM}5@y2MuEYqf=O z{=~eDRgZu!sTcMwJ#@dQ;6{`NBsKUdk{n&7z`8_n)s>zgS(DC}3BFezc?QBhU;gT2 zC#+#-4yy#i)~~pa%?)KNu@nIqd#}rtY?fE#!-oes9OnCgyBJ}{F}AoWXl*hCBBomT zha2Qsl8TpTAmBdsDfmT#GgrZOa!-e9+84XT+~y`x$5l#QaO6Xav_!XBz1#vOX$@%n zbs-NZRx&s#R@jnUY6WrTHn+Z?yE>gou{ywCzlV_uZ4z%V9EUtGk(}dp1jhIEcH0u=rF$+i+3Tlg~nh#Ms=k)N+lVSMBz%Z6hhR?a~DOntB6x zPHNW+Rl9v|V`Rq%6yHnR42mARznAK$=NtT=KJ%@s^9%|9pjh0ogl?T@0~Cos%$rxqgog zA{LaXvEtNQj|tBq);GfUU1vxS&)xUm4Oo#Ft9aM2X)_wPF;zVRRpK5{+4rgJ912IZ z6%=5yirPm;oeYI!3R`63x<322Lv16ErO!J~1b|5;_afZ@o0QQXS>Dt> zNh-ygEKg^|w$|tea*B6vnP8vkuE6&aPjt0DF^l0fVH^CELq-Wreo;4jl;7O@Frtl^ zjxKE;Vt#BJ^0^Q>etv4p2*GcSif+a9P**E^sMb*HBdK(2W9wHn*lK*C3vl&A&0_F| z^>*MXyatq<M;6#5AAvqLRtzw^Ml+>GEs6Y7a;b;@9BsdnZOc%TaJVp=t}bTF z29t5>8Q9(Q>ao8`c0)<|#7eCXZ!+*Lq;clTYWTaIy~FK_J~H?+K_f^@1_gu3Kp-xj H7@7Y9c`@g* diff --git a/7-exponentialsmoothing.Rmd b/7-exponentialsmoothing.Rmd index b88474a..8615367 100644 --- a/7-exponentialsmoothing.Rmd +++ b/7-exponentialsmoothing.Rmd @@ -59,7 +59,6 @@ $y_{T-5}$ & $(0.2)(0.8)^5$ & $(0.4)(0.6)^5$ & $(0.6)(0.4)^5$ & $(0.8)(0.2 \bottomrule \end{tabular} - ## Simple Exponential Smoothing \fontsize{14}{16}\sf @@ -87,7 +86,6 @@ $$ $$ * Unlike regression there is no closed form solution --- use numerical optimization. - ## Example: Oil production \fontsize{10}{11}\sf @@ -153,7 +151,6 @@ autoplot(fc) + ylab("Oil (millions of tonnes)") + xlab("Year") ``` - # Trend methods ## Holt's linear trend @@ -168,7 +165,7 @@ autoplot(fc) + \pause\vspace*{-0.2cm} * Two smoothing parameters $\alpha$ and $\beta^*$ ($0\le\alpha,\beta^*\le1$). - * $\ell_t$ level: weighted average between $y_t$ one-step ahead forecast for time $t$, $(\ell_{t-1} + b_{t-1}=\pred{y}{t}{t-1})$ + * $\ell_t$ level: weighted average between $y_t$ and one-step ahead forecast for time $t$, $(\ell_{t-1} + b_{t-1}=\pred{y}{t}{t-1})$ * $b_t$ slope: weighted average of $(\ell_{t} - \ell_{t-1})$ and $b_{t-1}$, current and previous estimate of slope. * Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE. @@ -294,13 +291,11 @@ s_{t} &= \gamma (y_{t}-\ell_{t-1}-b_{t-1}) + (1-\gamma)s_{t-m}, \end{align*} \end{block}\fontsize{12}{14}\sf - * $k=$ integer part of $(h-1)/m$. Ensures estimates from the final year are used for forecasting. * Parameters:  $0\le \alpha\le 1$,  $0\le \beta^*\le 1$,  $0\le \gamma\le 1-\alpha$  and $m=$ period of seasonality (e.g. $m=4$ for quarterly data). ## Holt-Winters additive method - * Seasonal component is usually expressed as $s_{t} = \gamma^* (y_{t}-\ell_{t})+ (1-\gamma^*)s_{t-m}.$ * Substitute in for $\ell_t$: @@ -308,9 +303,7 @@ s_{t} &= \gamma (y_{t}-\ell_{t-1}-b_{t-1}) + (1-\gamma)s_{t-m}, * We set $\gamma=\gamma^*(1-\alpha)$. * The usual parameter restriction is $0\le\gamma^*\le1$, which translates to $0\le\gamma\le(1-\alpha)$. - - -## Holt-Winters multiplicative +## Holt-Winters multiplicative method \fontsize{13}{14}\sf For when seasonal variations are changing proportional to the level of the series. @@ -373,7 +366,6 @@ s_{t} &= \gamma \frac{y_{t}}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma)s_{t-m} \end{align*} \end{block} - ## Your turn Apply Holt-Winters’ multiplicative method to the `gas` data. @@ -382,7 +374,6 @@ Apply Holt-Winters’ multiplicative method to the `gas` data. 1. Experiment with making the trend damped. 1. Check that the residuals from the best method look like white noise. - # Taxonomy of exponential smoothing methods ## Exponential smoothing methods @@ -419,9 +410,8 @@ There are also multiplicative trend methods (not recommended). \placefig{0}{1.4}{width=12.8cm}{pegelstable.pdf} - ## R functions -\fontsize{11.5}{15}\sf +\fontsize{11.5}{13}\sf * Simple exponential smoothing: no trend. \newline `ses(y)` @@ -437,8 +427,6 @@ There are also multiplicative trend methods (not recommended). * Combination of no trend with seasonality not possible using these functions. - - # Innovations state space models ## Methods v Models @@ -464,7 +452,6 @@ There are also multiplicative trend methods (not recommended). * Trend $=\{$N,A,A\damped$\}$ * Seasonal $=\{$N,A,M$\}$. - ## Exponential smoothing methods \fontsize{12}{14}\sf @@ -521,7 +508,6 @@ M,A,M: &Multiplicative Holt-Winters' method with multiplicative errors \pause \color{orange}{\bf There are 18 separate models in the ETS framework} - ## A model for SES \begin{block}{Component form}\vspace*{-0.4cm} @@ -569,14 +555,11 @@ Holt's linear method with additive errors. \end{align*} * For simplicity, set $\beta=\alpha \beta^*$. - ## Your turn \large * Write down the model for ETS(A,Ad,N) - - ## ETS(A,A,A) Holt-Winters additive method with additive errors. @@ -594,14 +577,11 @@ Holt-Winters additive method with additive errors. * Forecast errors: $\varepsilon_{t} = y_t - \hat{y}_{t|t-1}$ * $k$ is integer part of $(h-1)/m$. - ## Your turn \large - * Write down the model for ETS(A,N,A) - ## ETS(M,N,N) SES with multiplicative errors. @@ -639,12 +619,10 @@ Holt's linear method with multiplicative errors. \placefig{0}{1.5}{width=12.8cm,trim=0 120 0 0,clip=true}{fig_7_ets_add.pdf} - ## Multiplicative error models \placefig{0}{1.5}{width=12.8cm,trim=0 120 0 0,clip=true}{fig_7_ets_multi.pdf} - ## Estimating ETS models * Smoothing parameters $\alpha$, $\beta$, $\gamma$ and $\phi$, and the initial states $\ell_0$, $b_0$, $s_0,s_{-1},\dots,s_{-m+1}$ are estimated by maximising the "likelihood" = the probability of the data arising from the specified model. @@ -668,7 +646,6 @@ g(\bm{x}_{t-1})\varepsilon_t$\\ \end{tabular} \end{block} - Additive errors : \mbox{}\vspace*{-0.5cm}\newline $k(x)=1$.\qquad $y_t = \mu_{t} + \varepsilon_t$. @@ -731,7 +708,6 @@ which is the AIC corrected (for small sample bias). \] \end{block} - ## Automatic forecasting **From Hyndman et al.\ (IJF, 2002):** @@ -745,14 +721,12 @@ criterion). Method performed very well in M3 competition. - ## Some unstable models * Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state. * These are: ETS(A,N,M), ETS(A,A,M), ETS(A,A\damped,M). * Models with multiplicative errors are useful for strictly positive data, but are not numerically stable with data containing zeros or negative values. In that case only the six fully additive models will be applied. - ## Exponential smoothing models \fontsize{11}{12}\sf @@ -832,7 +806,6 @@ $$\hat\varepsilon_t = y_t - \hat{y}_{t|t-1}$$ Multiplicative error model: $$\hat\varepsilon_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$ - ## Forecasting with ETS models \structure{Point forecasts:} iterate the equations for $t=T+1,T+2,\dots,T+h$ and set all $\varepsilon_t=0$ for $t>T$.\pause @@ -840,7 +813,6 @@ $$\hat\varepsilon_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$ * Not the same as $\text{E}(y_{t+h} | \bm{x}_t)$ unless trend and seasonality are both additive. * Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same. - ## Example: ETS(A,A,N) \vspace*{-1.3cm} @@ -913,7 +885,6 @@ PI for most ETS models: $\hat{y}_{T+h|T} \pm c \sigma_h$, where $c$ depends on c ets(h02) ``` - ## Example: drug sales \fontsize{8}{8}\sf @@ -921,7 +892,6 @@ ets(h02) ets(h02, model="AAA", damped=FALSE) ``` - ## The `ets()` function * Automatically chooses a model by default using the AIC, AICc or BIC. @@ -934,7 +904,6 @@ ets(h02, model="AAA", damped=FALSE) * **Methods:** `coef()`, `autoplot()`, `plot()`, `summary()`, `residuals()`, `fitted()`, `simulate()` and `forecast()` * `autoplot()` shows time plots of the original time series along with the extracted components (level, growth and seasonal). - ## Example: drug sales ```{r, echo=TRUE, fig.height=4} h02 %>% ets() %>% autoplot() @@ -946,9 +915,8 @@ h02 %>% ets() %>% autoplot() h02 %>% ets() %>% forecast() %>% autoplot() ``` - ## Example: drug sales -\fontsize{9}{12}\sf +\fontsize{11}{13}\sf ```{r, echo=TRUE} h02 %>% ets() %>% accuracy() @@ -973,7 +941,6 @@ accuracy(forecast(fit1,10), test) ## The `ets()` function in R \fontsize{12}{13}\sf - ```r ets(y, model = "ZZZ", damped = NULL, additive.only = FALSE, @@ -998,7 +965,6 @@ ets(y, model = "ZZZ", damped = NULL, * `damped=FALSE`, then a non-damped trend will used. * If `damped=NULL` (default), then either a damped or a non-damped trend will be selected according to the information criterion chosen. - ## The `ets()` function in R \fontsize{13}{14.5}\sf\vspace*{-0.2cm} @@ -1054,7 +1020,6 @@ ets(y, model = "ZZZ", damped = NULL, * `lambda`: The Box-Cox transformation parameter. Ignored if `lambda=NULL`. Otherwise, forecasts are back-transformed via inverse Box-Cox transformation. * `biasadj`: Apply bias adjustment after Box-Cox? - ## Your turn * Use `ets()` on some of these series:\vspace*{0.2cm}