Skip to content

Latest commit

 

History

History
801 lines (633 loc) · 26.2 KB

README.md

File metadata and controls

801 lines (633 loc) · 26.2 KB

Detecção de Fraudes com Cartões de Crédito

Classificando dados anônimos de transações por cartão de crédito como fraudulentas ou genuínas

Neste repo, foi analisado um dataset muito popular que trata de fraudes com cartões de crédito. O objetivo é classificar transações como fraudulentas ou genuínas.

Tirado da página do dataset no Kaggle:

The datasets contains transactions made by credit cards in September 2013 by european cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.

It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-senstive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise.

Importando bibliotecas e dados

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.utils import class_weight
from sklearn.metrics import classification_report, confusion_matrix, recall_score
from sklearn.pipeline import make_pipeline

from mlxtend.classifier import EnsembleVoteClassifier

from keras.wrappers.scikit_learn import KerasClassifier

from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping

from xgboost import XGBClassifier
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  import pandas.util.testing as tm
/usr/local/lib/python3.6/dist-packages/sklearn/externals/six.py:31: FutureWarning: The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/).
  "(https://pypi.org/project/six/).", FutureWarning)
Using TensorFlow backend.
df = pd.read_csv('https://clouda-datasets.s3.amazonaws.com/creditcard.csv.zip')

Visualização de Dados

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
 #   Column  Non-Null Count   Dtype  
---  ------  --------------   -----  
 0   Time    284807 non-null  float64
 1   V1      284807 non-null  float64
 2   V2      284807 non-null  float64
 3   V3      284807 non-null  float64
 4   V4      284807 non-null  float64
 5   V5      284807 non-null  float64
 6   V6      284807 non-null  float64
 7   V7      284807 non-null  float64
 8   V8      284807 non-null  float64
 9   V9      284807 non-null  float64
 10  V10     284807 non-null  float64
 11  V11     284807 non-null  float64
 12  V12     284807 non-null  float64
 13  V13     284807 non-null  float64
 14  V14     284807 non-null  float64
 15  V15     284807 non-null  float64
 16  V16     284807 non-null  float64
 17  V17     284807 non-null  float64
 18  V18     284807 non-null  float64
 19  V19     284807 non-null  float64
 20  V20     284807 non-null  float64
 21  V21     284807 non-null  float64
 22  V22     284807 non-null  float64
 23  V23     284807 non-null  float64
 24  V24     284807 non-null  float64
 25  V25     284807 non-null  float64
 26  V26     284807 non-null  float64
 27  V27     284807 non-null  float64
 28  V28     284807 non-null  float64
 29  Amount  284807 non-null  float64
 30  Class   284807 non-null  int64  
dtypes: float64(30), int64(1)
memory usage: 67.4 MB
df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 Amount Class
0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169 1.468177 -0.470401 0.207971 0.025791 0.403993 0.251412 -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62 0
1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 0.085102 -0.255425 -0.166974 1.612727 1.065235 0.489095 -0.143772 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2.69 0
2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 0.207643 0.624501 0.066084 0.717293 -0.165946 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0
3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 -0.054952 -0.226487 0.178228 0.507757 -0.287924 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50 0
4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739 0.753074 -0.822843 0.538196 1.345852 -1.119670 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 69.99 0
df.drop('Time', axis=1, inplace=True)
df['Class'].value_counts()
0    284315
1       492
Name: Class, dtype: int64
df['Class'].value_counts(normalize=True)*100
0    99.827251
1     0.172749
Name: Class, dtype: float64
plt.figure(figsize=(12,6))
sns.heatmap(df[df['Class']==1].corr(), cmap='viridis')
<matplotlib.axes._subplots.AxesSubplot at 0x7f0c4f049860>

png

df.corr()['Class'].drop('Class', axis = 0).plot(kind="bar", figsize=(12,6))
<matplotlib.axes._subplots.AxesSubplot at 0x7f0c4b1f1f60>

png

Dividindo dataset e treinando o modelo

A métrica utilizada para classificar os modelos foi o recall com cálculo "macro". Assim, é colocado um peso maior sobre a ocorrência de transações fraudulentas.

X = df.drop('Class', axis=1)
y = df['Class']
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=1948)
scaler = RobustScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Primeiramente serão treinados três modelos: redes neurais artificiais, regressão logística e XGgboost. Depois, os três modelos são reunidos em um mecanismo de votação para melhorar o score.

ANN

def ANN_model(n_units, n_layers, dropout_rate, decrease_rate):
  model = Sequential()
  for layer in range(n_layers):
    model.add(Dense(units=n_units,activation='relu'))
    model.add(Dropout(dropout_rate))
    n_units = round(n_units*decrease_rate)   
  model.add(Dense(units=1,activation='sigmoid'))
  model.compile(optimizer='adam',
                loss='binary_crossentropy',
                metrics=['accuracy'])
  return model

skweight = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train)
kerasweight = {}

for weight in range(len(skweight)):
  kerasweight[weight] = skweight[weight]

callbacks = EarlyStopping(monitor='val_loss', patience=4)

parameters = [{'kerasclassifier__n_units': [28, 14],
               'kerasclassifier__n_layers':[2, 3],
               'kerasclassifier__dropout_rate':[0.1, 0.3],
               'kerasclassifier__decrease_rate':[0.8, 0.5],
               'kerasclassifier__epochs':[15],
               'kerasclassifier__verbose':[10],
               }]

pipe = make_pipeline(RobustScaler(),
                     KerasClassifier(build_fn=ANN_model))

grid_ann = GridSearchCV(estimator = pipe,
                        param_grid = parameters,
                        scoring='recall_macro',
                        cv=5,
                        n_jobs=-1,
                        verbose=50,
                        refit=True)

grid_ann.fit(X_train, y_train, **{'kerasclassifier__validation_data':(X_test, y_test),
                                  'kerasclassifier__callbacks':[callbacks],
                                  'kerasclassifier__verbose':10,
                                  'kerasclassifier__class_weight':kerasweight})

# Getting predictions metrics
predictions = (grid_ann.predict(X_test) > 0.5).astype("int32")
print('\n')
print("Melhor modelo: " + str(grid_ann.best_params_))
print('\n')
print(classification_report(y_test,predictions))
print('\n')
print(confusion_matrix(y_test,predictions))
print("Recall Macro: ", str(recall_score(y_test, predictions, average='macro'))[:6])
Fitting 5 folds for each of 16 candidates, totalling 80 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done   1 tasks      | elapsed:  3.3min
[Parallel(n_jobs=-1)]: Done   2 tasks      | elapsed:  3.7min
[Parallel(n_jobs=-1)]: Done   3 tasks      | elapsed:  5.5min
[Parallel(n_jobs=-1)]: Done   4 tasks      | elapsed:  7.5min
[Parallel(n_jobs=-1)]: Done   5 tasks      | elapsed:  8.0min
[Parallel(n_jobs=-1)]: Done   6 tasks      | elapsed: 11.1min
[Parallel(n_jobs=-1)]: Done   7 tasks      | elapsed: 11.7min
[Parallel(n_jobs=-1)]: Done   8 tasks      | elapsed: 13.8min
[Parallel(n_jobs=-1)]: Done   9 tasks      | elapsed: 15.5min
[Parallel(n_jobs=-1)]: Done  10 tasks      | elapsed: 16.9min
[Parallel(n_jobs=-1)]: Done  11 tasks      | elapsed: 19.1min
[Parallel(n_jobs=-1)]: Done  12 tasks      | elapsed: 19.5min
[Parallel(n_jobs=-1)]: Done  13 tasks      | elapsed: 21.8min
[Parallel(n_jobs=-1)]: Done  14 tasks      | elapsed: 22.2min
[Parallel(n_jobs=-1)]: Done  15 tasks      | elapsed: 25.4min
[Parallel(n_jobs=-1)]: Done  16 tasks      | elapsed: 26.0min
[Parallel(n_jobs=-1)]: Done  17 tasks      | elapsed: 27.9min
[Parallel(n_jobs=-1)]: Done  18 tasks      | elapsed: 30.1min
[Parallel(n_jobs=-1)]: Done  19 tasks      | elapsed: 30.9min
[Parallel(n_jobs=-1)]: Done  20 tasks      | elapsed: 32.3min
[Parallel(n_jobs=-1)]: Done  21 tasks      | elapsed: 32.8min
[Parallel(n_jobs=-1)]: Done  22 tasks      | elapsed: 34.6min
[Parallel(n_jobs=-1)]: Done  23 tasks      | elapsed: 35.5min
[Parallel(n_jobs=-1)]: Done  24 tasks      | elapsed: 36.9min
[Parallel(n_jobs=-1)]: Done  25 tasks      | elapsed: 37.3min
[Parallel(n_jobs=-1)]: Done  26 tasks      | elapsed: 39.8min
[Parallel(n_jobs=-1)]: Done  27 tasks      | elapsed: 40.8min
[Parallel(n_jobs=-1)]: Done  28 tasks      | elapsed: 41.8min
[Parallel(n_jobs=-1)]: Done  29 tasks      | elapsed: 44.3min
[Parallel(n_jobs=-1)]: Done  30 tasks      | elapsed: 44.5min
[Parallel(n_jobs=-1)]: Done  31 tasks      | elapsed: 46.7min
[Parallel(n_jobs=-1)]: Done  32 tasks      | elapsed: 47.0min
[Parallel(n_jobs=-1)]: Done  33 tasks      | elapsed: 49.2min
[Parallel(n_jobs=-1)]: Done  34 tasks      | elapsed: 51.1min
[Parallel(n_jobs=-1)]: Done  35 tasks      | elapsed: 51.3min
[Parallel(n_jobs=-1)]: Done  36 tasks      | elapsed: 54.3min
[Parallel(n_jobs=-1)]: Done  37 tasks      | elapsed: 54.8min
[Parallel(n_jobs=-1)]: Done  38 tasks      | elapsed: 57.0min
[Parallel(n_jobs=-1)]: Done  39 tasks      | elapsed: 57.8min
[Parallel(n_jobs=-1)]: Done  40 tasks      | elapsed: 60.2min
[Parallel(n_jobs=-1)]: Done  41 tasks      | elapsed: 60.5min
[Parallel(n_jobs=-1)]: Done  42 tasks      | elapsed: 62.1min
[Parallel(n_jobs=-1)]: Done  43 tasks      | elapsed: 62.6min
[Parallel(n_jobs=-1)]: Done  44 tasks      | elapsed: 64.9min
[Parallel(n_jobs=-1)]: Done  45 tasks      | elapsed: 66.1min
[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed: 66.9min
[Parallel(n_jobs=-1)]: Done  47 tasks      | elapsed: 68.4min
[Parallel(n_jobs=-1)]: Done  48 tasks      | elapsed: 69.9min
[Parallel(n_jobs=-1)]: Done  49 tasks      | elapsed: 72.1min
[Parallel(n_jobs=-1)]: Done  50 tasks      | elapsed: 73.6min
[Parallel(n_jobs=-1)]: Done  51 tasks      | elapsed: 73.9min
[Parallel(n_jobs=-1)]: Done  52 tasks      | elapsed: 77.5min
[Parallel(n_jobs=-1)]: Done  53 tasks      | elapsed: 77.8min
[Parallel(n_jobs=-1)]: Done  54 tasks      | elapsed: 78.9min
[Parallel(n_jobs=-1)]: Done  55 tasks      | elapsed: 80.2min
[Parallel(n_jobs=-1)]: Done  56 tasks      | elapsed: 81.2min
[Parallel(n_jobs=-1)]: Done  57 tasks      | elapsed: 83.2min
[Parallel(n_jobs=-1)]: Done  58 tasks      | elapsed: 85.0min
[Parallel(n_jobs=-1)]: Done  59 tasks      | elapsed: 85.5min
[Parallel(n_jobs=-1)]: Done  60 tasks      | elapsed: 88.7min
[Parallel(n_jobs=-1)]: Done  61 tasks      | elapsed: 89.1min
[Parallel(n_jobs=-1)]: Done  62 tasks      | elapsed: 91.1min
[Parallel(n_jobs=-1)]: Done  63 tasks      | elapsed: 91.7min
[Parallel(n_jobs=-1)]: Done  64 tasks      | elapsed: 93.9min
[Parallel(n_jobs=-1)]: Done  65 tasks      | elapsed: 94.7min
[Parallel(n_jobs=-1)]: Done  66 tasks      | elapsed: 97.6min
[Parallel(n_jobs=-1)]: Done  67 tasks      | elapsed: 97.6min
[Parallel(n_jobs=-1)]: Done  68 tasks      | elapsed: 99.6min
[Parallel(n_jobs=-1)]: Done  69 tasks      | elapsed: 100.3min
[Parallel(n_jobs=-1)]: Done  70 tasks      | elapsed: 102.4min
[Parallel(n_jobs=-1)]: Done  71 tasks      | elapsed: 102.8min
[Parallel(n_jobs=-1)]: Done  72 tasks      | elapsed: 105.2min
[Parallel(n_jobs=-1)]: Done  73 tasks      | elapsed: 105.9min
[Parallel(n_jobs=-1)]: Done  74 tasks      | elapsed: 107.5min
[Parallel(n_jobs=-1)]: Done  75 tasks      | elapsed: 109.0min
[Parallel(n_jobs=-1)]: Done  76 tasks      | elapsed: 110.8min
[Parallel(n_jobs=-1)]: Done  77 tasks      | elapsed: 111.3min
[Parallel(n_jobs=-1)]: Done  80 out of  80 | elapsed: 117.0min finished
Epoch 1/15
Epoch 2/15
Epoch 3/15
Epoch 4/15
Epoch 5/15
Epoch 6/15
Epoch 7/15
Epoch 8/15


Melhor modelo: {'kerasclassifier__decrease_rate': 0.8, 'kerasclassifier__dropout_rate': 0.1, 'kerasclassifier__epochs': 15, 'kerasclassifier__n_layers': 3, 'kerasclassifier__n_units': 14, 'kerasclassifier__verbose': 10}


              precision    recall  f1-score   support

           0       1.00      0.97      0.99     56858
           1       0.06      0.88      0.11       104

    accuracy                           0.97     56962
   macro avg       0.53      0.93      0.55     56962
weighted avg       1.00      0.97      0.99     56962



[[55386  1472]
 [   12    92]]
Recall Macro:  0.9293

Logistic Regression

LR_model = make_pipeline(RobustScaler(),
                          LogisticRegression())

parameters = [{'logisticregression__max_iter': [1000],
               'logisticregression__C':[0.00001, 0.0001, 0.001, 0.1, 1],
               'logisticregression__class_weight':['balanced', None]}]

grid_LR = GridSearchCV(estimator = LR_model,
                           param_grid = parameters,
                           scoring = 'recall_macro',
                           cv = 5,
                           n_jobs = -1,
                           verbose=10,
                           refit=True)

grid_LR.fit(X_train, y_train)

# Prevendo com o melhor modelo
y_pred = grid_LR.predict(X_test)
# Criando matriz de confusão do melhor modelo
cm =  confusion_matrix(y_test, y_pred)

print("Melhor modelo: " + str(grid_LR.best_params_))
print('\n')
print(classification_report(y_test, y_pred))
print('\n')
print(confusion_matrix(y_test, y_pred))
print("Recall Macro: ", str(recall_score(y_test, y_pred, average='macro'))[:6])
Fitting 5 folds for each of 10 candidates, totalling 50 fits


[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done   1 tasks      | elapsed:    1.6s
[Parallel(n_jobs=-1)]: Done   4 tasks      | elapsed:    3.2s
[Parallel(n_jobs=-1)]: Done   9 tasks      | elapsed:    7.4s
[Parallel(n_jobs=-1)]: Done  14 tasks      | elapsed:   10.9s
[Parallel(n_jobs=-1)]: Done  21 tasks      | elapsed:   17.7s
[Parallel(n_jobs=-1)]: Done  28 tasks      | elapsed:   24.7s
[Parallel(n_jobs=-1)]: Done  37 tasks      | elapsed:   45.3s
[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed:  1.2min
[Parallel(n_jobs=-1)]: Done  50 out of  50 | elapsed:  1.3min finished


Melhor modelo: {'logisticregression__C': 0.1, 'logisticregression__class_weight': 'balanced', 'logisticregression__max_iter': 1000}


              precision    recall  f1-score   support

           0       1.00      0.98      0.99     56858
           1       0.07      0.90      0.13       104

    accuracy                           0.98     56962
   macro avg       0.54      0.94      0.56     56962
weighted avg       1.00      0.98      0.99     56962



[[55615  1243]
 [   10    94]]
Recall Macro:  0.9409

XGBOOST

xgb_model = make_pipeline(RobustScaler(),
                          XGBClassifier())

parameters = {'xgbclassifier__learning_rate': [0.01, 0.1, 1],
              'xgbclassifier__n_estimators': [300],
              'xgbclassifier__max_depth': [7, 15],
              'xgbclassifier__scale_pos_weight': [583],
              'xgbclassifier__seed': [1948]}

grid_xgb = GridSearchCV(estimator = xgb_model,
                           param_grid = parameters,
                           scoring = 'recall_macro',
                           cv = 5,
                           n_jobs = -1,
                           verbose=50,
                           refit=True)

grid_xgb.fit(X_train, y_train)

# Prevendo com o melhor modelo
y_pred = grid_xgb.predict(X_test)
# Criando matriz de confusão do melhor modelo
cm =  confusion_matrix(y_test, y_pred)

print("Melhor modelo: " + str(grid_xgb.best_params_))
print('\n')
print(classification_report(y_test, y_pred))
print('\n')
print(pd.DataFrame(cm))
print("Recall macro: " + str(recall_score(y_test, y_pred))[:6])
Fitting 5 folds for each of 6 candidates, totalling 30 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done   1 tasks      | elapsed:  7.9min


/usr/local/lib/python3.6/dist-packages/joblib/externals/loky/process_executor.py:691: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.
  "timeout or by a memory leak.", UserWarning


[Parallel(n_jobs=-1)]: Done   2 tasks      | elapsed:  8.2min
[Parallel(n_jobs=-1)]: Done   3 tasks      | elapsed: 16.0min
[Parallel(n_jobs=-1)]: Done   4 tasks      | elapsed: 16.2min
[Parallel(n_jobs=-1)]: Done   5 tasks      | elapsed: 24.2min
[Parallel(n_jobs=-1)]: Done   6 tasks      | elapsed: 29.2min
[Parallel(n_jobs=-1)]: Done   7 tasks      | elapsed: 37.0min
[Parallel(n_jobs=-1)]: Done   8 tasks      | elapsed: 40.5min
[Parallel(n_jobs=-1)]: Done   9 tasks      | elapsed: 49.7min
[Parallel(n_jobs=-1)]: Done  10 tasks      | elapsed: 53.2min
[Parallel(n_jobs=-1)]: Done  11 tasks      | elapsed: 56.3min
[Parallel(n_jobs=-1)]: Done  12 tasks      | elapsed: 59.6min
[Parallel(n_jobs=-1)]: Done  13 tasks      | elapsed: 62.9min
[Parallel(n_jobs=-1)]: Done  14 tasks      | elapsed: 66.3min
[Parallel(n_jobs=-1)]: Done  15 tasks      | elapsed: 69.4min
[Parallel(n_jobs=-1)]: Done  16 tasks      | elapsed: 73.8min
[Parallel(n_jobs=-1)]: Done  17 tasks      | elapsed: 76.8min
[Parallel(n_jobs=-1)]: Done  18 tasks      | elapsed: 81.0min
[Parallel(n_jobs=-1)]: Done  19 tasks      | elapsed: 84.6min
[Parallel(n_jobs=-1)]: Done  20 tasks      | elapsed: 87.0min
[Parallel(n_jobs=-1)]: Done  21 tasks      | elapsed: 88.5min
[Parallel(n_jobs=-1)]: Done  22 tasks      | elapsed: 89.5min
[Parallel(n_jobs=-1)]: Done  23 tasks      | elapsed: 90.9min
[Parallel(n_jobs=-1)]: Done  24 tasks      | elapsed: 91.9min
[Parallel(n_jobs=-1)]: Done  25 tasks      | elapsed: 93.3min
[Parallel(n_jobs=-1)]: Done  26 tasks      | elapsed: 94.4min
[Parallel(n_jobs=-1)]: Done  27 tasks      | elapsed: 95.7min
[Parallel(n_jobs=-1)]: Done  28 out of  30 | elapsed: 96.9min remaining:  6.9min
[Parallel(n_jobs=-1)]: Done  30 out of  30 | elapsed: 98.9min remaining:    0.0s
[Parallel(n_jobs=-1)]: Done  30 out of  30 | elapsed: 98.9min finished
Melhor modelo: {'xgbclassifier__learning_rate': 0.01, 'xgbclassifier__max_depth': 7, 'xgbclassifier__n_estimators': 300, 'xgbclassifier__scale_pos_weight': 583, 'xgbclassifier__seed': 1948}


              precision    recall  f1-score   support

           0       1.00      1.00      1.00     56858
           1       0.53      0.79      0.63       104

    accuracy                           1.00     56962
   macro avg       0.76      0.89      0.82     56962
weighted avg       1.00      1.00      1.00     56962



       0   1
0  56785  73
1     22  82
Recall macro: 0.7884

Mecanismo de Votação (Ensemble Voting Classifier)

Curiosamente, o modelo mais simples, Regressão Logística, mostrou o melhor resultado. Depois de reunir os três modelos em um mecanismo de votação, o score ficou melhor ainda.

eclf1 = EnsembleVoteClassifier(clfs=[grid_LR, grid_xgb, grid_ann], voting='soft', refit=False)
eclf1.fit(X_train, y_train)

# Prevendo com o melhor modelo
y_pred = eclf1.predict(X_test)
# Criando matriz de confusão do melhor modelo
cm =  confusion_matrix(y_test, y_pred)

print("Recall Macro: " + str(recall_score(y_test, y_pred, average='macro'))[:6])
print('\n')
print(classification_report(y_test, y_pred))
print('\n')
print(pd.DataFrame(cm))
Recall Macro: 0.9343


              precision    recall  f1-score   support

           0       1.00      0.99      1.00     56858
           1       0.20      0.88      0.33       104

    accuracy                           0.99     56962
   macro avg       0.60      0.93      0.66     56962
weighted avg       1.00      0.99      1.00     56962



       0    1
0  56497  361
1     13   91