-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault.yaml
129 lines (116 loc) · 2.67 KB
/
default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# @package __global__
defaults:
- /solver/default
- /conditioner: none
- _self_
- /solver/musicgen/evaluation: none
- override /dset: audio/default
autocast: true
autocast_dtype: float16
solver: musicgen
sample_rate: ???
channels: ???
compression_model_checkpoint: ???
# The following will set the num codebooks on the underlying
# model, this might be different from the actual value for n_q
# given to the transformer, when the model output is postprocessed, for instance
# for stereo channels. If not provided, default value for the compression model
# will be used.
compression_model_n_q: null
tokens:
padding_with_special_token: false
interleave_stereo_codebooks:
use: false
per_timestep: false
cache:
path:
write: false
write_shard: 0
write_num_shards: 1
dataset:
batch_size: 128
num_workers: 10
segment_duration: 30
min_segment_ratio: 0.8 # lower values such as 0.5 result in generations with a lot of silence.
return_info: true
train:
num_samples: 1000000 # need a randomly large number here for AudioDataset
valid:
num_samples: 10000
generate:
num_samples: 50
metrics:
fad:
use_gt: false
model: tf
tf:
bin: null # path to local frechet_audio_distance code
model_path: //reference/fad/vggish_model.ckpt
kld:
use_gt: false
model: passt
passt:
pretrained_length: 20
text_consistency:
use_gt: false
model: clap
clap:
model_path: //reference/clap/music_audioset_epoch_15_esc_90.14.pt
model_arch: 'HTSAT-base'
enable_fusion: false
chroma_cosine:
use_gt: false
model: chroma_base
chroma_base:
sample_rate: ${sample_rate}
n_chroma: 12
radix2_exp: 14
argmax: true
generate:
every: 25
num_workers: 5
path: samples
audio:
format: wav
strategy: loudness
sample_rate: ${sample_rate}
loudness_headroom_db: 14
lm:
prompted_samples: true
unprompted_samples: true
gen_gt_samples: false
prompt_duration: null # if not set, will use dataset.generate.segment_duration / 4
gen_duration: null # if not set, will use dataset.generate.segment_duration
remove_prompts: false
# generation params
use_sampling: false
temp: 1.0
top_k: 0
top_p: 0.0
evaluate:
every: 25
num_workers: 5
metrics:
base: false
fad: false
kld: false
text_consistency: false
chroma_cosine: false
checkpoint:
save_last: true
save_every: 50
keep_last: 10
keep_every_states: null
optim:
epochs: 200
updates_per_epoch: 2000
lr: 1e-4
optimizer: adamw
max_norm: 1.0
eager_sync: true
adam:
betas: [0.9, 0.95]
weight_decay: 0.1
eps: 1e-8
schedule:
lr_scheduler: null