-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathread_csv_results.py
355 lines (313 loc) · 14.3 KB
/
read_csv_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import json
import torch
from torchio import Subject, LabelMap, ScalarImage
import torchio
import dash
#from dash import dcc
#from dash import html
from dash.dependencies import Input, Output
import os
import pandas as pd
import inspect
import nibabel as nb
import numpy as np
from pathlib import PosixPath
import plotly.graph_objects as go
import matplotlib.pyplot as plt
plt.interactive(True)
from os.path import join as opj
from nibabel.viewers import OrthoSlicer3D as ov
def default_json_str_to_eval_python(x):
if not isinstance(x,str):
return x
if pd.isna(x):
return None
x = x.replace('true', 'True')
x = x.replace('false', 'False')
x = x.replace('null', 'None')
x = x.replace("<","'<")
x = x.replace(">", ">'") #when python function are print in csv so transform as str
#same with array, more difficult
ind_array = x.find('array')
while ind_array>0:
ind_next_tag = x[ind_array:].find("'") #suposing next tag
cut_int = ind_array + ind_next_tag
#x = x[:ind_array] + "'" + x[ind_array:cut_int] + "', " + x[cut_int:] #make the array a str
#let's just remove it
x = x[:ind_array] + "'aray_removed', " + x[cut_int:]
ind_array = x.find('array')
x = eval(x)
if isinstance(x,str):
x = eval(x)
return x
class ModelCSVResults(object):
def __init__(self, csv_path=None, df_data=None, out_tmp=""):
self.csv_path = csv_path
self.df_data = None
self.out_tmp = out_tmp
if csv_path:
self.open(csv_path=csv_path)
if df_data is not None:
self.df_data = df_data
self.dash_app = None
self.written_files = []
def open(self, csv_path):
if isinstance(csv_path, list):
df_list = []
for one_csv in csv_path:
df_list.append(pd.read_csv(one_csv))
self.df_data = pd.concat(df_list, sort=False).reindex()
else:
self.df_data = pd.read_csv(csv_path)
def close(self):
del self.df_data
self.csv_path = None
self.df_data = None
def get_row(self, idx):
return self.df_data.iloc[idx]
def read_path(self, path):
if isinstance(path, list):
return [self.read_path(p) for p in path]
elif isinstance(path, PosixPath):
return opj(str(path))
elif isinstance(path, str):
try:
eval_path = eval(path)
return self.read_path(eval_path)
except Exception:
return opj(path)
else:
raise TypeError("Could not read path: {}".format(path))
def get_volume_nibabel(self, idx, return_orig=False):
subject_row = self.get_row(idx)
subject_path = self.read_path(subject_row["image_filename"])
if return_orig:
volume = nb.load(subject_path)
else:
tio_data = self.get_volume_torchio(idx, return_orig=return_orig)
tio_data = tio_data["volume"] if "volume" in tio_data.keys() else tio_data["image_from_labels"]
data, affine = tio_data["data"], tio_data["affine"]
volume = nb.Nifti1Image(data, affine)
return volume
def get_volume_torchio(self, idx, return_orig=False):
subject_row = self.get_row(idx)
dict_suj = dict()
if not pd.isna(subject_row["image_filename"]):
path_imgs = self.read_path(subject_row["image_filename"])
if isinstance(path_imgs, list):
imgs = ScalarImage(tensor=np.asarray([nb.load(p).get_fdata() for p in path_imgs]))
else:
imgs = ScalarImage(path_imgs)
dict_suj["volume"] = imgs
if "label_filename" in subject_row.keys() and not pd.isna(subject_row["label_filename"]):
path_imgs = self.read_path(subject_row["label_filename"])
if isinstance(path_imgs, list):
imgs = LabelMap(tensor=np.asarray([nb.load(p).get_fdata() for p in path_imgs]))
else:
imgs = LabelMap(path_imgs)
dict_suj["label"] = imgs
sub = Subject(dict_suj)
if return_orig or "transfo_order" not in self.df_data.columns:
return sub
else:
trsfms, seeds = self.get_transformations(idx)
for tr in trsfms.transform.transforms:
if isinstance(tr, torchio.transforms.RandomLabelsToImage):
tr.label_key = "label"
if isinstance(tr, torchio.transforms.RandomMotionFromTimeCourse):
output_path = opj(self.out_tmp, "{}.png".format(idx))
if "fitpars" in self.df_data.columns:
fitpars = np.loadtxt(self.df_data["fitpars"][idx])
tr.fitpars = fitpars
tr.simulate_displacement = False
else:
res = sub
for trsfm, seed in zip(trsfms.transform.transforms , seeds):
if seed:
res = trsfm(res, seed)
else:
res = trsfm(res)
del res
fitpars = tr.fitpars
plt.figure()
plt.plot(fitpars.T)
plt.legend(["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"])
plt.xlabel("Timesteps")
plt.ylabel("Magnitude")
plt.title("Motion parameters")
plt.savefig(output_path)
plt.close()
self.written_files.append(output_path)
res = sub
for trsfm, seed in zip(trsfms.transform.transforms, seeds):
if seed:
res = trsfm(res, seed)
else:
res = trsfm(res)
#res = trsfms(sub, seeds)
return res
def display_original_data(self, idx):
volume = self.get_volume_nibabel(idx)
ov(volume.get_data())
def trsfm_arg_eval(self, arg_to_eval):
from torchio.transforms.preprocessing.intensity.normalization_transform import NormalizationTransform
if isinstance(arg_to_eval, str):
try:
if arg_to_eval.startswith("<function"):
arg_to_eval = arg_to_eval.split()[1]
return eval(arg_to_eval)
except NameError:
return arg_to_eval
return arg_to_eval
def get_transformations(self, idx):
from torchio.transforms import Compose
import torchio.transforms
row = self.get_row(idx)
trsfms_order = [r for r in row["transfo_order"].split("_") if r != ""]
trsfm_list = []
trsfm_seeds = []
for trsfm_name in trsfms_order:
if trsfm_name not in ["OneOf"]:
trsfm_history = default_json_str_to_eval_python(row["T_"+trsfm_name])
trsfm = getattr(torchio.transforms, trsfm_name)
#trsfm_seed = trsfm_history["seed"] if "seed" in trsfm_history.keys() else None
if trsfm_name == "RandomMotionFromTimeCourse":
trsfm_seeds.append(trsfm_history["seed"])
del trsfm_history["seed"]
init_args = inspect.getfullargspec(trsfm.__init__).args
print(init_args)
trsfm_history = {hist_key: self.trsfm_arg_eval(hist_val)
for hist_key, hist_val in trsfm_history.items()
if hist_key in init_args and hist_key not in ['metrics', 'fitpars', "read_func"]}
else:
trsfm_seeds.append(None)
if trsfm_name == "RescaleIntensity":
trsfm_history["masking_method"] = None #self.trsfm_arg_eval(str(trsfm_history["masking_method"]))
#if "seed" in trsfm_history.keys():
# del trsfm_history["seed"]
print(f"Found transform: {trsfm_name}\n{trsfm_history}")
trsfm_history = {k: v for k, v in trsfm_history.items() if k not in ["probability"]}
trsfm = trsfm(**trsfm_history)
#init_args = inspect.getfullargspec(trsfm.__init__).args
"""
hist_kwargs_init = {hist_key: self.trsfm_arg_eval(hist_val)
for hist_key, hist_val in trsfm_history.items()
if hist_key in init_args and hist_key not in ['metrics', 'fitpars', "read_func"]}
trsfm = trsfm(**hist_kwargs_init)
"""
trsfm_list.append(trsfm)
trsfm_composition = Compose(trsfm_list)
return trsfm_composition, trsfm_seeds
def normalize_dict_to_df(self, col, suffix=None, eval_func=default_json_str_to_eval_python):
if isinstance(col, list):
if not isinstance(suffix, list):
suffix = [suffix for _ in col]
for one_col, one_suffix in zip(col, suffix):
if one_col not in self.df_data:
print('WARNING col {} is missing'.format(one_col))
else:
df = self.normalize_dict_to_df(one_col, suffix=one_suffix, eval_func=eval_func)
return df
if suffix is None:
suffix = col
dict_vals = self.df_data[col]
if eval_func:
dict_vals = self.df_data[col].apply(eval_func)
#print(dict_vals[~pd.isna(dict_vals)])
if isinstance(dict_vals.iloc[0], list):
dict_vals = dict_vals.apply(lambda x: x[0]) #BAD what if more ...
if isinstance(dict_vals.iloc[0],tuple): #tupe 0 is transfo name RamdomMotionFRomTimeCourse
dict_vals = dict_vals.apply(lambda x: x[1]) # BAD what if more ...
val_names = dict_vals[~pd.isna(dict_vals)].iloc[0].keys()
for name in val_names:
added_key_name = f"{suffix}_{name}" if suffix else f"{name}"
#self.df_data[added_key_name] = dict_vals.apply(lambda x: x[name] if not(pd.isna(x)) else None)
self.df_data.loc[:, added_key_name] = dict_vals.apply(lambda x: x[name] if not(pd.isna(x)) else None)
return self.df_data
def extract_from_history(self, col, key, save_csv=False, col_name=None):
data_col = self.df_data[~self.df_data[col].isnull()][col]
dict_data = data_col.apply(lambda x: eval(x)[key])
if save_csv:
if not col_name:
col_name = key
self.df_data[col_name] = dict_data
self.df_data.to_csv(self.csv_path)
return dict_data
def check_dash(self):
if not self.dash_app:
self.dash_app = dash.Dash()
def clean_tmp_dir(self):
for f in self.written_files:
os.remove(f)
def correlation(self, col_x, col_y):
filtered_df = self.df_data[~self.df_data[col_x].isnull() & ~self.df_data[col_y].isnull()]
return filtered_df[col_y].corr(filtered_df[col_x])
def plot_hist(self, data, save=None):
if isinstance(data, nb.Nifti1Image):
data = data.get_fdata().reshape(-1)
elif isinstance(data, torch.Tensor):
data = data.flatten().numpy()
n, bins, patches = plt.hist(data, bins=256, range=(1, data.max()), facecolor='red', alpha=0.75,
histtype='step')
if save:
plt.savefig(save)
plt.close()
def scatter(self, col_x, col_y, renderer="browser", color=None, port_number=8050, **kwargs):
fig = go.Figure()
filtered_df = self.df_data[~self.df_data[col_x].isnull() & ~self.df_data[col_y].isnull()]
if not color or color not in self.df_data.columns:
fig.add_trace(go.Scatter(x=filtered_df[col_x], y=filtered_df[col_y],
hovertext=filtered_df["image_filename"], text=filtered_df.index.to_numpy(),
mode="markers", **kwargs))
else:
categories = filtered_df[color].unique().astype(str)
traces = []
for idx, cat in enumerate(categories):
cat_data = filtered_df[filtered_df[color] == cat]
traces.append(go.Scatter(x=cat_data[col_x], y=cat_data[col_y], marker_symbol=idx,
hovertext=cat_data["image_filename"], text=cat_data.index.to_numpy(),
mode="markers", name=cat, **kwargs))
fig.add_traces(traces)
fig.update_layout(xaxis_title=col_x,
yaxis_title=col_y,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
self.check_dash()
self.dash_app.layout = html.Div(children=[
html.H1(children='CSV MRI Scatter Plot'),
html.Div(children='''
Plot from {}
'''.format(self.csv_path)),
dcc.Graph(
id='scatter-plot',
figure=fig
),
html.Div(id='output-click'),
])
@self.dash_app.callback(
[Output('output-click', 'children'),],
[Input('scatter-plot', 'clickData'),],
)
def display_click_data(clickData):
path = clickData["points"][0]["hovertext"]
idx = clickData["points"][0]["text"]
out_path = opj(self.out_tmp, str(idx) + ".nii")
if not os.path.exists(out_path):
transformed = self.get_volume_torchio(idx)
key = list(transformed.get_images_dict(intensity_only=True).keys())[0]
transformed = transformed[key]
data, affine = transformed['data'].squeeze().numpy(), transformed["affine"]
nib_volume = nb.Nifti1Image(data, affine)
nib_volume.to_filename(out_path)
self.written_files.append(out_path)
self.plot_hist(nib_volume, save=opj(self.out_tmp, str(idx) + "_hist.png"))
if path:
os.system("mrviewv " + out_path)
return "Viewing: {}".format(path)
self.dash_app.run_server(debug=False, port=port_number)