diff --git a/Demo/mousie.py b/Demo/mousie.py index d094375..eb3eb73 100644 --- a/Demo/mousie.py +++ b/Demo/mousie.py @@ -19,7 +19,7 @@ def main(): print(""" -*** E-M CLUSTERING DEMO *** +*** E-M & K-means CLUSTERING DEMO *** Uses the classic "mouse" test set. The algorithm should correctly split the face and ears into three separate clusters. k-means clustering fails on this set. @@ -59,7 +59,7 @@ def main(): n_timing_iters = 100 - pyml_report = pd.Series(index=["converged", "time", "log-likelihood"], dtype=float) + cppyml_report = pd.Series(index=["converged", "time", "log-likelihood"], dtype=float) em = clustering.EM(num_components) em.set_seed(42) em.set_absolute_tolerance(abs_tol) @@ -69,12 +69,12 @@ def main(): t0 = time.perf_counter() for _ in range(n_timing_iters): converged = int(em.fit(data)) - pyml_report["converged"] = float(converged) + cppyml_report["converged"] = float(converged) t1 = time.perf_counter() - pyml_report["time"] = (t1 - t0) / n_timing_iters - pyml_report["log-likelihood"] = em.log_likelihood + cppyml_report["time"] = (t1 - t0) / n_timing_iters + cppyml_report["log-likelihood"] = em.log_likelihood - sklearn_report = pd.Series(index=pyml_report.index, dtype=pyml_report.dtype) + sklearn_report = pd.Series(index=cppyml_report.index, dtype=cppyml_report.dtype) gmm = sklearn.mixture.GaussianMixture(num_components, tol=abs_tol, max_iter=max_iter, random_state=999, n_init=1, reg_covar=1e-15) t0 = time.perf_counter() for _ in range(n_timing_iters): @@ -83,18 +83,42 @@ def main(): sklearn_report["converged"] = 1 # gmm raises a warning if not converged. sklearn_report["time"] = (t1 - t0) / n_timing_iters sklearn_report["log-likelihood"] = gmm.score(data) + + em_report = pd.DataFrame() + em_report["cppyml"] = cppyml_report + em_report["sklearn"] = sklearn_report + + print("E-M algorithms") + print(em_report) km = sklearn.cluster.KMeans(num_components, max_iter=max_iter, tol=abs_tol, random_state=1984) - km.fit(data) + t0 = time.perf_counter() + for _ in range(n_timing_iters): + km.fit(data) + t1 = time.perf_counter() km_class = km.labels_ + km_sklearn_report = pd.Series({"converged": 1, "inertia": km.inertia_, "time": (t1 - t0) / n_timing_iters}) + + km_cppyml = clustering.KMeans(num_components) + km_cppyml.set_maximum_steps(max_iter) + km_cppyml.set_absolute_tolerance(abs_tol) + km_cppyml.set_seed(42) + km_cppyml.set_centroids_initialiser(clustering.KPP()) + + t0 = time.perf_counter() + for _ in range(n_timing_iters): + converged = km_cppyml.fit(data) + t1 = time.perf_counter() + km_cppyml_report = pd.Series({"converged": float(converged), "inertia": km_cppyml.inertia, "time": (t1 - t0) / n_timing_iters}) - report = pd.DataFrame() - report["cppyml"] = pyml_report - report["sklearn"] = sklearn_report + km_report = pd.DataFrame() + km_report["cppyml"] = km_cppyml_report + km_report["sklearn"] = km_sklearn_report - print(report) + print("K-means algorithms") + print(km_report) - pyml_class = np.argmax(em.responsibilities, axis=1) + cppyml_class = np.argmax(em.responsibilities, axis=1) sklearn_class = gmm.predict(data) palette = { @@ -104,7 +128,7 @@ def main(): } fig, ax = plt.subplots(1, 3, figsize=(12, 4)) - sns.scatterplot(x=data[:, 0], y=data[:, 1], hue=pyml_class, ax=ax[0], palette=palette) + sns.scatterplot(x=data[:, 0], y=data[:, 1], hue=cppyml_class, ax=ax[0], palette=palette) ax[0].set_title("cppyml") sns.scatterplot(x=data[:, 0], y=data[:, 1], hue=sklearn_class, ax=ax[1], palette=palette) ax[1].set_title("sklearn")