-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCBT1cCA_3.py
467 lines (408 loc) · 18.4 KB
/
CBT1cCA_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#!/usr/bin/env python
import sys
import os
import argparse
from collections import deque
import json
import logging
import numpy as np
import brica1
import brica1.brica_gym
import torch
import torch.utils.data
import torch.nn as nn
from dqn import DQN
import gymnasium
class StreamDataSet(torch.utils.data.IterableDataset):
def __init__(self, stream):
super(StreamDataSet).__init__()
self.stream = stream
def __iter__(self):
return iter(self.stream)
class Perceptron(torch.nn.Module):
def __init__(self, in_dim, intra_dim, out_dim, device, epochs):
super(Perceptron, self).__init__()
self.seq = torch.nn.Sequential(nn.Linear(in_dim, intra_dim), nn.Sigmoid(),
nn.Linear(intra_dim, out_dim), nn.Sigmoid())
self.optimizer = None
self.loss_fn = nn.BCEWithLogitsLoss() # nn.BCELoss()
self.device = device
self.epochs = epochs
def forward(self, x):
return self.seq(x)
def set_optimizer(self, lr):
self.optimizer = torch.optim.SGD(self.parameters(), lr=lr)
def learn(self, dataset):
self.train()
loss_sum = 0.0
cnt = 0
for epoque in range(self.epochs):
train_loader = torch.utils.data.DataLoader(dataset, batch_size=10)
for idx, (x, y) in enumerate(train_loader):
self.optimizer.zero_grad()
output = self(x)
loss = self.loss_fn(output, y)
loss.backward()
self.optimizer.step()
if epoque == 0:
loss_sum += loss.item()
cnt += 1
return min([loss_sum / cnt, 1.0]) # average loss
class NeoCortex:
def __init__(self, in_dim, n_action, config):
self.in_dim = in_dim
self.learn_mode = config['learn']
config['ActionPredictor']['device'] = config['device']
self.action_predictor = NeoCortex.ActionPredictor(in_dim, n_action, config['ActionPredictor'])
self.moderator = NeoCortex.Moderator(n_action)
self.selector = NeoCortex.Selector(n_action)
self.uncertainty = 1.0
self.blind = config['blind']
class ActionPredictor:
def __init__(self, in_dim, out_dim, config):
super(NeoCortex.ActionPredictor, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.device = config['device']
self.batch_size = config['batch_size']
self.loss_accum_rate = config['loss_accum_rate']
self.model = Perceptron(in_dim, config['intra_dim'], out_dim, self.device, config['epochs'])
self.model.set_optimizer(config['lr'])
self.model_file = config['model_file']
if self.model_file is not None and os.path.isfile(self.model_file):
self.model.load_state_dict(torch.load(self.model_file))
self.model.eval()
self.stream = deque()
self.cnt = 0
self.average_loss = 1.0
self.dump = config['dump']
def step(self, in_data):
if in_data.dtype == np.dtype('int16'):
in_data = np.zeros(self.in_dim, dtype='float64')
x = in_data.reshape(1, len(in_data))
data = torch.from_numpy(x.astype(np.float64)).float().to(self.device)
output = self.model(data)
return output.to(self.device).detach().numpy().reshape(self.out_dim, )
def learn(self, in_data, output):
in_out_torch = (torch.tensor(in_data, dtype=torch.float64).float(),
torch.tensor(output, dtype=torch.float64).float())
self.stream.append(in_out_torch)
if self.cnt % self.batch_size == 0 and self.cnt != 0:
dataset = StreamDataSet(self.stream)
self.model.learn(dataset)
self.stream.clear()
self.cnt += 1
def accum_loss(self, in_data, output):
if in_data.dtype == np.dtype('int16'):
in_data = np.zeros(self.in_dim, dtype='float64')
x = in_data.reshape(1, len(in_data))
data = torch.from_numpy(x.astype(np.float64)).float().to(self.device)
if output.dtype == np.dtype('int16'):
output = np.zeros(len(output), dtype='float64')
y = output.reshape(1, len(output))
out_data = torch.from_numpy(y.astype(np.float64)).float().to(self.device)
prediction = self.model(data)
# loss = min(self.model.loss_fn(out_data, prediction).item() / torch.numel(out_data), 1.0)
loss = np.tanh(self.model.loss_fn(out_data, prediction).item()) # / torch.numel(out_data))
self.average_loss = loss * self.loss_accum_rate + self.average_loss * (1.0 - self.loss_accum_rate)
def reset(self):
self.stream.clear()
self.cnt = 0
def close(self, learn):
if self.model_file is not None and learn:
torch.save(self.model.state_dict(), self.model_file)
class Moderator:
def __init__(self, dim):
self.dim = dim
self.random = np.random.rand(self.dim)
self.use_prediction = 0
def step(self, prediction):
return prediction if self.use_prediction else self.random
def reset(self, prediction_certainty):
self.random = np.random.rand(self.dim)
self.use_prediction = np.random.binomial(1, prediction_certainty)
class Selector:
def __init__(self, dim):
self.selection = np.zeros(dim, dtype=int)
def step(self, selector_input):
max_val = np.max(selector_input)
self.selection = np.zeros(len(selector_input), dtype=int)
if max_val > 0.0:
self.selection[np.argmax(selector_input)] = 1
else:
self.selection[np.random.randint(0, len(self.selection))] = 1 # one-hot
return self.selection
def get_selection(self):
return self.selection
def select(self, in_data):
action_predictor_output = self.action_predictor.step(in_data)
moderator_output = self.moderator.step(action_predictor_output)
return self.selector.step(moderator_output)
def release(self, go):
return self.selector.get_selection() * go
def learn(self, in_data, output):
self.action_predictor.learn(in_data, output)
def reset(self):
self.uncertainty = self.action_predictor.average_loss
# self.action_predictor.reset()
if self.blind:
self.moderator.reset(0.0) # not certain
else:
self.moderator.reset(1.0 - self.uncertainty)
def close(self):
self.action_predictor.close(self.learn_mode)
class BG:
def __init__(self, config, learning_mode, train):
self.init = True
self.init_action = config['init_action']
self.blind = config['blind']
self.learning_mode = learning_mode
self.train = train
self.prev_action = 0
self.prev_observation = None
if learning_mode == "rl":
self.dqn = DQN(config['BG'], config['in_dim'] + config['n_action'], 2)
self.successes = 0
self.success_rate = config['init_success_rate']
self.sr_cycle = config['sr_cycle']
self.sr_counter = 0
self.one_go_per_episode = config['one_go_per_episode']
self.device = config['device']
def step(self, in_data, selection, reward, done):
if self.blind:
in_data = np.zeros(len(in_data), dtype=float)
observation = np.append(in_data, selection)
action = 0
if self.learning_mode == "rl":
action_t = torch.from_numpy(np.array([0]).astype(np.float32)).clone()
if self.init:
action_t = self.dqn.select_action(observation)
self.prev_action = action_t
if self.one_go_per_episode:
self.dqn.learn(observation, self.prev_action, observation, reward, False, False)
self.init = False
else:
if not self.one_go_per_episode:
self.dqn.learn(self.prev_observation, self.prev_action, observation, reward, done, done)
action_t = self.dqn.select_action(observation)
self.prev_action = action_t
else:
if np.any(self.prev_observation != observation) and done != 1:
self.dqn.learn(self.prev_observation, self.prev_action, observation, reward, False, False)
if done == 1:
if self.one_go_per_episode:
self.dqn.learn(self.prev_observation, self.prev_action, observation, reward, True, True)
self.init = True
self.dump(self.train['dump'], reward, observation, self.prev_action.item(), done, self.train['dump_flags'])
self.prev_observation = observation
action = action_t.item()
elif self.learning_mode == "rd":
action = np.random.randint(0, 2)
elif self.learning_mode == "zr":
action = 0
if not self.blind and np.max(in_data) == 0:
return 0
# success rate
if done == 1:
self.successes += reward
self.sr_counter += 1
if self.sr_counter % self.sr_cycle == 0 and self.sr_counter != 0:
self.success_rate = self.successes / self.sr_cycle
self.successes = 0
return action
def reset(self):
self.init = True
self.prev_action = 0
def close(self):
pass
@staticmethod
def dump(dump, reward, state, action, done, dump_flags):
if dump is not None and "b" in dump_flags:
dump.write("state: {0}, rl_go {1}, reward: {2}, done: {3}\n".format(state, action, reward, done))
class CBT1Component(brica1.brica_gym.Component):
def __init__(self, learning_mode, train, config):
super().__init__()
self.in_dim = config['in_dim']
self.n_action = config['n_action'] # number of action choices
self.make_in_port('observation', self.in_dim)
self.make_in_port('reward', 1)
self.make_in_port('done', 1)
self.make_out_port('action', self.n_action)
self.make_in_port('token_in', 1)
self.make_out_port('token_out', 1)
self.make_out_port('done', 1)
self.token = 0
self.learning_mode = learning_mode
self.neocortex_learn = config['neocortex_learn']
self.one_go_per_episode = config['one_go_per_episode']
self.blind = config['blind']
config['NeoCortex']['blind'] = config['blind']
config['NeoCortex']['device'] = config['device']
config['NeoCortex']['learn'] = config['neocortex_learn']
self.neoCortex = NeoCortex(self.in_dim, self.n_action, config['NeoCortex'])
self.bg = BG(config, learning_mode, train)
self.go = 0
self.gone = False
self.use_success_rate = config['use_success_rate']
self.dump = train['dump']
self.go_cost = config['go_cost']
def fire(self):
done = self.get_in_port('done').buffer[0]
in_data = self.get_in_port('observation').buffer
reward = self.get_in_port('reward').buffer[0] - self.go * self.go_cost
selection = self.neoCortex.select(in_data) # feed the selector
self.go = self.bg.step(in_data, selection, reward, done)
self.results['action'] = self.neoCortex.release(self.go)
if not self.one_go_per_episode:
self.neoCortex.reset()
if self.go == 1 and not (self.one_go_per_episode and self.gone):
if self.neocortex_learn:
action = self.results['action']
self.neoCortex.action_predictor.accum_loss(in_data, action)
self.neoCortex.learn(in_data, action)
self.gone = True
if self.dump is not None and "b" in self.bg.train['dump_flags']:
self.dump.write("Gone\n")
self.results['done'] = np.array([done])
def reset(self):
self.token = 0
self.neoCortex.reset()
self.bg.reset()
if self.use_success_rate:
self.neoCortex.moderator.reset(self.bg.success_rate)
self.go = 0
self.gone = False
if self.learning_mode == "rd":
self.neoCortex.moderator.use_prediction = 0
self.results['token_out'] = np.array([0])
self.results['done'] = np.array([0])
self.results['action'] = np.array([0])
def close(self):
self.neoCortex.close()
self.bg.close()
class CognitiveArchitecture(brica1.Module):
def __init__(self, rl, train, config):
super(CognitiveArchitecture, self).__init__()
self.in_dim = config['in_dim']
self.n_action = config['n_action'] # number of action choices
self.make_in_port('observation', self.in_dim)
self.get_in_port('observation').buffer = np.zeros(self.in_dim)
self.make_in_port('reward', 1)
self.make_in_port('done', 1)
self.make_out_port('action', self.n_action)
self.make_in_port('token_in', 1)
self.make_out_port('token_out', 1)
self.cbt1 = CBT1Component(rl, train, config)
self.add_component('cbt1', self.cbt1)
self.cbt1.alias_in_port(self, 'observation', 'observation')
self.cbt1.alias_in_port(self, 'token_in', 'token_in')
self.cbt1.alias_in_port(self, 'reward', 'reward')
self.cbt1.alias_in_port(self, 'done', 'done')
self.cbt1.alias_out_port(self, 'action', 'action')
self.cbt1.alias_out_port(self, 'token_out', 'token_out')
def main():
parser = argparse.ArgumentParser(description='BriCA Minimal Cognitive Architecture with Gym')
parser.add_argument('mode', help='0: zero output, 1:random act, 2: reinforcement learning',
choices=['0', '1', '2'])
parser.add_argument('--dump', help='dump file path')
parser.add_argument('--episode_count', type=int, default=1, metavar='N',
help='Number of training episodes (default: 1)')
parser.add_argument('--max_steps', type=int, default=20, metavar='N',
help='Max steps in an episode (default: 20)')
parser.add_argument('--config', type=str, default='CBT1CA3.json', metavar='N',
help='Model configuration (default: CBT1CA3.json')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dump_flags', type=str, default="",
help='m:main, b:bg, o:obs, p:predictor')
parser.add_argument('--use-cuda', default=False,
help='uses CUDA for training')
args = parser.parse_args()
with open(args.config) as config_file:
config = json.load(config_file)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
train = {"episode_count": args.episode_count, "max_steps": args.max_steps, "dump_flags": args.dump_flags}
if args.dump is not None and args.dump_flags != "":
try:
dump = open(args.dump, mode='w')
except IOError:
print('Error: No dump path specified', file=sys.stderr)
sys.exit(1)
else:
dump = None
train["dump"] = dump
if "e" in args.dump_flags:
config['env']['dump'] = dump
else:
config['env']['dump'] = None
if "p" in args.dump_flags:
config['NeoCortex']['ActionPredictor']['dump'] = dump
else:
config['NeoCortex']['ActionPredictor']['dump'] = None
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
config["device"] = device
env = gymnasium.make(config['env']['name'], config=config['env'])
md = args.mode
model = None
if md == "0":
model = CognitiveArchitecture("zr", train, config)
elif md == "1": # random act
model = CognitiveArchitecture("rd", train, config)
elif md == "2": # act by reinforcement learning
model = CognitiveArchitecture("rl", train, config)
agent = brica1.brica_gym.GymAgent(model, env)
scheduler = brica1.VirtualTimeSyncScheduler(agent)
dump_cycle = config["dump_cycle"]
dump_counter = 0
reward_sum = 0.0
reward_go_sum = 0.0
go_count = 0
for i in range(train["episode_count"]):
last_token = 0
for j in range(train["max_steps"]):
scheduler.step()
current_token = agent.get_out_port('token_out').buffer[0]
if last_token + 1 == current_token:
last_token = current_token
if "o" in train["dump_flags"]:
dump.write(str(agent.get_in_port("observation").buffer.tolist()) + '\n')
if agent.env.done:
agent.env.flush = True
while True:
scheduler.step()
if agent.get_in_port("done").buffer[0] == 1:
scheduler.step()
break
if dump is not None and "m" in args.dump_flags:
if model.cbt1.one_go_per_episode and model.cbt1.gone:
go_count += 1
reward_go_sum += agent.get_in_port("reward").buffer[0]
reward_sum += agent.get_in_port("reward").buffer[0]
if dump_counter % dump_cycle == 0 and dump_counter != 0:
if go_count != 0:
reward_per_go = reward_go_sum / go_count
else:
reward_per_go = 0.0
average_loss = model.cbt1.neoCortex.action_predictor.average_loss
dump.write("{0}: avr. reward: {1:.2f}\treward/go: {2:.2f}\tloss: {3:.2f}\n".
format(dump_counter // dump_cycle,
reward_sum / dump_cycle,
reward_per_go,
average_loss))
reward_sum = 0.0
reward_go_sum = 0.0
go_count = 0
dump_counter += 1
model.cbt1.reset()
agent.env.reset()
agent.env.done = False
break
print("Close")
if dump is not None:
dump.close()
model.cbt1.close()
env.close()
if __name__ == '__main__':
main()