Skip to content

Latest commit

 

History

History
65 lines (54 loc) · 2.15 KB

README.md

File metadata and controls

65 lines (54 loc) · 2.15 KB

A Minimal Cortex-Basal Ganglia Architecture

Features

  • BriCA
  • The exterior environment with OpenAI Gym
  • Action predictor (Cortex) -- a perceptron
  • Go/NoGo determiner (BG) with reinforcement/frequency learning

For details, please read this article (based on CBT1cCA_1.py).

What's New:

  • PyTorch DQN version: CBT1cCA_3.py
  • Generic TensorForce RL version: CBT1cCA_2.py

How to Install

  • Clone the repository
  • BriCA1
    • Follow the instruction here.
  • pip install the following
  • Register the environment to Gym
    • Place CBT1Env.py file in gym/gym/envs/myenv
      (wherever Gym to be used is installed)
    • Add to __init__.py (located in the same folder)
      from gym.envs.myenv.CBT1Env import CBT1Env
    • Add to gym/gym/envs/__init__.py
register(
    id='CBT1Env-v0',
    entry_point='gym.envs.myenv:CBT1Env'
    )

Usage

Command arguments

  • First arg: 1:random act, 2: reinforcement learning, 3: frequency learning
    (CBT1cCA_2/CBT1cCA_3 do not have the option 3.)

  • Options --dump: dump file path') --episode_count: Number of training episodes (default: 1) --max_steps: Max steps in an episode (default: 20) --config: Model configuration (default: CBT1CA.json) --dump_flags: m:main, b:bg, o:obs, p:predictor

Sample usage

$ python CBT1cCA_1.py 3 --episode_count 4000 --dump "BG_dump.txt" --dump_flags "mbp"

Other files

  • CBT1Env.py: Test env. (note: not MDP for delay > 1)
  • CBT1CA.json: config. file for CBT1CA_1
  • CBT1CA2.json: config. file for CBT1CA_2
    Use always "dqn" for the RL agent.
  • CBT1CA3.json: config. file for CBT1CA_3
  • CBT1EnvRLTest.py: an RL agent for the environment
  • CBT1CA.brical.json: BriCA Language file for CBT1cCA_1_BL
  • dqn.py: PyTorch DQN module (based on a PyTorch tutorial)